gabriel-attie commented on issue #41340:
URL: https://github.com/apache/airflow/issues/41340#issuecomment-2283867696

   @josix:
   
   1 - The DAGs doesn't really matter since they disappear randomly. But here 
is one example:
   
   `import logging
   
   from airflow.decorators import dag, task
   from airflow.models.param import Param
   from airflow.operators.python import get_current_context
   
   from common.tasks.general import trigger_another_dag
   from common.tasks.teams import notify_failure
   from common.services.etl import ETLService
   from common.settings.car import *
   from common.settings.dags import default_args
   from common.settings.monitoring import UPDATE_RUNNING, WEEKLY
   from common.settings.envs import START_DATE
   
   
   logger = logging.getLogger("airflow.task")
   etl_service = ETLService()
   
   
   @dag(
       default_args=default_args,
       schedule_interval="@weekly",
       start_date=START_DATE,
       catchup=False,
       tags=["public"],
       params={
            "ignore_discrepancy": Param(False, type="boolean"),
            "emergency_mode": Param(None, type=["null", "string"])
       },
   )
   def update_car_extract():
       @task(on_failure_callback=notify_failure)
       def main_run_attrs() -> dict:
           """Core function Create monitoring instance
   
           :return: dict with data to monitoring this project
           """
           from common.models.car import DataModel
   
           context = get_current_context()
   
           return etl_service.start_monitoring(
               DataModel, context, UPDATE_RUNNING, WEEKLY
           )
   
       @task(on_failure_callback=notify_failure)
       def download_file_to_s3() -> str:
           """Core function to downloads files from source directly to S3.
           It can be set to run in emergency mode by a DAG conf.
   
           :return: string with s3 path to raw data
           """
           from common.models.sema_mt_car import DataModel
   
           context = get_current_context()
   
           # Set the url to download
           source_urls = {"zip": SOURCE}
           logger.info(f"The Source URLS: {source_urls}")
   
           result_download = etl_service.download_file(
               context, DataModel, source_urls, use_raw=False
           )
   
           return result_download
   
       dag_conf = {
           "main_run_attrs": main_run_attrs(),
           "raw_data_zip_path": download_file_to_s3(),
       }
       trigger_another_dag(
           dag_conf,
           "trigger_transform_dag",
           "update_car_transform",
       )
   
   update_car_extract()`
   
   2 - Dockerfile
   `FROM apache/airflow:2.9.3-python3.11
   COPY requirements.txt /requirements.txt
   RUN pip install --upgrade pip --trusted-host pypi.org --trusted-host 
files.pythonhosted.org
   RUN pip install --no-cache-dir -r /requirements.txt --trusted-host pypi.org 
--trusted-host files.pythonhosted.org
   USER root
   RUN apt-get update && \
       apt-get install --allow-downgrades -y libpq5=15.6-0+deb12u1 
libmariadb3=1:10.11.6-0+deb12u1
   RUN apt-get install -y libgdal-dev \
       gdal-bin \
       gcc \
       g++
   RUN sudo apt-get install unrar-free -y
   RUN sudo pip install geopandas --trusted-host pypi.org --trusted-host 
files.pythonhosted.org
   RUN sudo pip install --global-option=build_ext 
--global-option="-I/usr/include/gdal" GDAL==`gdal-config --version` 
--trusted-host pypi.org --trusted-host files.pythonhosted.org
   RUN sudo pip install --no-cache-dir rasterio --trusted-host pypi.org 
--trusted-host files.pythonhosted.org
   RUN apt-get clean
   USER airflow`
   
   3 - docker-compose.yaml
   `x-airflow-common:
     &airflow-common
     # In order to add custom dependencies or upgrade provider packages you can 
use your extended image.
     # Comment the image line, place your Dockerfile in the directory where you 
placed the docker-compose.yaml
     # and uncomment the "build" line below, Then run `docker-compose build` to 
build the images.
     image: my-tag:latest
     # build: .
     environment:
       &airflow-common-env
       AIRFLOW__CORE__EXECUTOR: LocalExecutor
       AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: 
postgresql+psycopg2://airflow:airflow@postgres/airflow
       AIRFLOW__CORE__FERNET_KEY: ''
       AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
       AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
       AIRFLOW__API__AUTH_BACKENDS: 
'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
       AIRFLOW__WEBSERVER__SHOW_TRIGGER_FORM_IF_NO_PARAMS: 'true'
       AIRFLOW__WEBSERVER__EXPOSE_CONFIG: 'true'
       AIRFLOW__CORE__DEFAULT_TIMEZONE: 'America/Sao_Paulo'
       AIRFLOW__WEBSERVER__DAG_ORIENTATION: 'TB'
       AIRFLOW__LOGGING__COLORED_CONSOLE_LOG: 'true'
       AIRFLOW__SCHEDULER__SCHEDULER_ZOMBIE_TASK_THRESHOLD: 600
       # yamllint disable rule:line-length
       # Use simple http server on scheduler for health checks
       # See 
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server
       # yamllint enable rule:line-length
       AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
       # WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick 
checks
       # for other purpose (development, test and especially production usage) 
build/extend Airflow image.
       _PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
       # The following line can be used to set a custom config file, stored in 
the local config folder
       # If you want to use it, outcomment it and replace airflow.cfg with the 
name of your config file
       # AIRFLOW_CONFIG: '/opt/airflow/config/airflow.cfg'
     volumes:
       - ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
       - ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
       - ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
       - ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
       - ${AIRFLOW_PROJ_DIR:-.}/common:/opt/airflow/plugins/common
       - $HOME/.aws:/home/airflow/.aws
     user: "${AIRFLOW_UID:-50000}:0"
     depends_on:
       &airflow-common-depends-on
       postgres:
         condition: service_healthy
   
   services:
     postgres:
       image: postgis/postgis:13-3.4
       platform: linux/amd64
       environment:
         POSTGRES_USER: airflow
         POSTGRES_PASSWORD: airflow
         POSTGRES_DB: airflow
       volumes:
         - postgres-db-volume:/var/lib/postgresql/data
       ports:
         - "5432:5432"
       healthcheck:
         test: ["CMD", "pg_isready", "-U", "airflow"]
         interval: 10s
         retries: 5
         start_period: 5s
       restart: always
   
     airflow-webserver:
       <<: *airflow-common
       command: webserver
       ports:
         - "8080:8080"
       healthcheck:
         test: ["CMD", "curl", "--fail", "http://localhost:8080/health";]
         interval: 30s
         timeout: 10s
         retries: 5
         start_period: 30s
       restart: always
       depends_on:
         <<: *airflow-common-depends-on
         airflow-init:
           condition: service_completed_successfully
   
     airflow-scheduler:
       <<: *airflow-common
       command: scheduler
       healthcheck:
         test: ["CMD", "curl", "--fail", "http://localhost:8974/health";]
         interval: 30s
         timeout: 10s
         retries: 5
         start_period: 30s
       restart: always
       depends_on:
         <<: *airflow-common-depends-on
         airflow-init:
           condition: service_completed_successfully
   
     airflow-triggerer:
       <<: *airflow-common
       command: triggerer
       healthcheck:
         test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob 
--hostname "$${HOSTNAME}"']
         interval: 30s
         timeout: 10s
         retries: 5
         start_period: 30s
       restart: always
       depends_on:
         <<: *airflow-common-depends-on
         airflow-init:
           condition: service_completed_successfully
   
     airflow-init:
       <<: *airflow-common
       entrypoint: /bin/bash
       # yamllint disable rule:line-length
       command:
         - -c
         - |
           if [[ -z "${AIRFLOW_UID}" ]]; then
             echo
             echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
             echo "If you are on Linux, you SHOULD follow the instructions 
below to set "
             echo "AIRFLOW_UID environment variable, otherwise files will be 
owned by root."
             echo "For other operating systems you can get rid of the warning 
with manually created .env file:"
             echo "    See: 
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user";
             echo
           fi
           one_meg=1048576
           mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / 
one_meg))
           cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
           disk_available=$$(df / | tail -1 | awk '{print $$4}')
           warning_resources="false"
           if (( mem_available < 4000 )) ; then
             echo
             echo -e "\033[1;33mWARNING!!!: Not enough memory available for 
Docker.\e[0m"
             echo "At least 4GB of memory required. You have $$(numfmt --to iec 
$$((mem_available * one_meg)))"
             echo
             warning_resources="true"
           fi
           if (( cpus_available < 2 )); then
             echo
             echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for 
Docker.\e[0m"
             echo "At least 2 CPUs recommended. You have $${cpus_available}"
             echo
             warning_resources="true"
           fi
           if (( disk_available < one_meg * 10 )); then
             echo
             echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for 
Docker.\e[0m"
             echo "At least 10 GBs recommended. You have $$(numfmt --to iec 
$$((disk_available * 1024 )))"
             echo
             warning_resources="true"
           fi
           if [[ $${warning_resources} == "true" ]]; then
             echo
             echo -e "\033[1;33mWARNING!!!: You have not enough resources to 
run Airflow (see above)!\e[0m"
             echo "Please follow the instructions to increase amount of 
resources available:"
             echo "   
https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin";
             echo
           fi
           mkdir -p /sources/logs /sources/dags /sources/plugins /sources/common
           chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins,common}
           exec /entrypoint airflow version
       # yamllint enable rule:line-length
       environment:
         <<: *airflow-common-env
         _AIRFLOW_DB_MIGRATE: 'true'
         _AIRFLOW_WWW_USER_CREATE: 'true'
         _AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
         _AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
         _PIP_ADDITIONAL_REQUIREMENTS: ''
       user: "0:0"
       volumes:
         - ${AIRFLOW_PROJ_DIR:-.}:/sources
   
     airflow-cli:
       <<: *airflow-common
       profiles:
         - debug
       environment:
         <<: *airflow-common-env
         CONNECTION_CHECK_MAX_COUNT: "0"
       # Workaround for entrypoint issue. See: 
https://github.com/apache/airflow/issues/16252
       command:
         - bash
         - -c
         - airflow
   
     # You can enable flower by adding "--profile flower" option e.g. 
docker-compose --profile flower up
     # or by explicitly targeted on the command line e.g. docker-compose up 
flower.
     # See: https://docs.docker.com/compose/profiles/
   
   volumes:
     postgres-db-volume:
   `
   
   4 - There are no specific conditions in where the dogs go missing. I do 
suspect thought on the docker compose down and up too frequently.
   
   
   In the moment I do not have screenshots showing the how the files goes 
missing in the web server. But it literally just goes missing, from 16 DAGs for 
example, I refresh the page (F5) and it's now with 14 DAGs.
   
   For context: in our dev and production environment this does not occur. Only 
in the local environment. Usually in the local I have around 30 DAGs and in 
production we have around 300+ with codes going to 2k lines.
   
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to