atul-astronomer opened a new issue, #47370:
URL: https://github.com/apache/airflow/issues/47370

   ### Apache Airflow version
   
   3.0.0
   
   ### If "Other Airflow 2 version" selected, which one?
   
   _No response_
   
   ### What happened?
   
   Fetching templated fields is failing.
   
   ```typescript
   [2025-03-05T05:48:43.892005Z] ERROR - Task failed with exception 
logger="task" 
error_detail=[{"exc_type":"AttributeError","exc_value":"'Response' object has 
no attribute 
'dag_id'","syntax_error":null,"is_cause":false,"frames":[{"filename":"/opt/airflow/task_sdk/src/airflow/sdk/execution_time/task_runner.py","lineno":605,"name":"run"},{"filename":"/opt/airflow/task_sdk/src/airflow/sdk/execution_time/task_runner.py","lineno":726,"name":"_execute_task"},{"filename":"/opt/airflow/airflow/models/baseoperator.py","lineno":168,"name":"wrapper"},{"filename":"/opt/airflow/airflow/decorators/base.py","lineno":252,"name":"execute"},{"filename":"/opt/airflow/airflow/models/baseoperator.py","lineno":168,"name":"wrapper"},{"filename":"/opt/airflow/providers/standard/src/airflow/providers/standard/operators/python.py","lineno":196,"name":"execute"},{"filename":"/opt/airflow/providers/standard/src/airflow/providers/standard/operators/python.py","lineno":222,"name":"execute_callable"},{"filename":
 
"/opt/airflow/airflow/utils/operator_helpers.py","lineno":261,"name":"run"},{"filename":"/files/dags/decorated_rendered_templates.py","lineno":39,"name":"templated1"},{"filename":"/opt/airflow/airflow/utils/session.py","lineno":98,"name":"wrapper"},{"filename":"/opt/airflow/airflow/models/renderedtifields.py","lineno":172,"name":"get_templated_fields"}]}]
   ``` 
   
   ### What you think should happen instead?
   
   DAG should pass as it was passing in Airflow 2
   
   ### How to reproduce
   
   Run the below DAG in AF3 beta1 version:
   
   ```python
   from airflow.models import DAG
   from airflow.decorators import task
   from pendulum import today
   from airflow.models.renderedtifields import RenderedTaskInstanceFields as 
rtif
   from airflow import settings
   from dags.plugins.api_utility import get_task_instance
   
   from datetime import datetime, timedelta
   
   docs = """
   ####Purpose
   The purpose of this dag is to check that rendered templates, which are found 
in the task details in the UI, are rendering the correct datatypes with python 
decorated tasks.\n
   It achieves this test by using the RenderedTaskInstanceFields from 
airflow.models.renderedtifields to assert the xcom arg datatypes.
   ####Expected Behavior
   This dag has 3 tasks that are all expected to succeed.
   """
   
   
   @task
   def pusher1(dict1):
       return dict1
   
   
   @task
   def pusher2(template2):
       return template2
   
   
   @task
   def templated1(**context):
       sesh = settings.Session()
       dag_id = context['dag'].dag_id
       print(dag_id)
       run_id = context['run_id']
       get_ti1 = get_task_instance(dag_id, run_id, "pusher1")
       get_ti2 = get_task_instance(dag_id, run_id, "pusher2")
       print(get_ti1)
       print(get_ti2)
       temp_fields_task1 = rtif.get_templated_fields(get_ti1, sesh)
       temp_fields_task2 = rtif.get_templated_fields(get_ti2, sesh)
       print(f"This is the 1st tasks rendered_template_fields 
{temp_fields_task1}")
       print(f"This is the 2nd tasks rendered_template_fields 
{temp_fields_task2}")
       print(
           f"""
       The 1st tasks xcom arg datatype is 
{type(temp_fields_task1['op_args'][0])}
       And the 2nd tasks xcom arg datatype is 
{type(temp_fields_task2['op_args'][0])}
       """
       )
   
       assert isinstance(temp_fields_task1["op_args"][0], list) == True
       assert isinstance(temp_fields_task2["op_args"][0], dict) == True
       assert temp_fields_task1["op_args"][0] == [
           'hello_world', '01234567-8910-1112-1314-151617181920'
       ]
       assert float(temp_fields_task2["op_args"][0]['key1']) > 0 and 
float(temp_fields_task2["op_args"][0]['key1']) < 1
   
   
   with DAG(
       dag_id="check_decorated_rendered_templates",
       start_date=datetime(2021, 1, 1),
       schedule=timedelta(days=61),
       doc_md=docs,
       max_active_runs=3,
       tags=["core"],
   ) as dag:
   
       t1 = pusher1(["hello_world", '{{ 
macros.uuid.UUID("01234567891011121314151617181920") }}'])
       t2 = pusher2({"key1": '{{ macros.random() }}'})
       t3 = templated1()
   
   t1 >> t2 >> t3
   ``` 
   
   ### Operating System
   
   Linux
   
   ### Versions of Apache Airflow Providers
   
   _No response_
   
   ### Deployment
   
   Other
   
   ### Deployment details
   
   _No response_
   
   ### Anything else?
   
   _No response_
   
   ### Are you willing to submit PR?
   
   - [ ] Yes I am willing to submit a PR!
   
   ### Code of Conduct
   
   - [x] I agree to follow this project's [Code of 
Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to