sreyan32 opened a new issue, #58440:
URL: https://github.com/apache/airflow/issues/58440

   ### Apache Airflow version
   
   Other Airflow 2/3 version (please specify below)
   
   ### If "Other Airflow 2/3 version" selected, which one?
   
   2.10.2
   
   ### What happened?
   
   I am using the AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS = False using 
an -e enviroment variable in an Airflow Podman image.
   
   But I see that this configuration is not respected and I still am getting 
masked passwords in my Airflow task logs.
   
   <img width="718" height="25" alt="Image" 
src="https://github.com/user-attachments/assets/2b6cee7d-5507-451b-990a-292795e71997";
 />
   
   How can I fully disable the masking for the task logs ?
   
   ### What you think should happen instead?
   
   The configuration AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS = False 
should be respected and all masking should be disabled in the Airflow task logs.
   
   ### How to reproduce
   
   Start Airflow with 
   
   `podman run -d --name airflow --network airflow-net --cpus 8 --memory 8192m 
-e AIRFLOW__CORE__EXECUTOR=LocalExecutor -e AIRFLOW_UID=50000 -e 
AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS=False -e 
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN=postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
 -v doc-dbt:/opt/airflow/doc-dbt -v airflow-dags:/opt/airflow/dags -v 
airflow-logs:/opt/airflow/logs -v airflow-plugins:/opt/airflow/plugins -p 
8080:8080 apache/airflow:2.10.5 webserver
   `
   
   Create a connection for snowflake_test with a password.
   
   Use the following DAG to test:
   
   
   ```
   from airflow import DAG
   from airflow.operators.python import PythonOperator
   from airflow.utils.dates import days_ago
   from airflow.models.connection import Connection
   from cryptography.hazmat.primitives import serialization
   import base64
   
   # Define the Python function
   def python_test():
       # Fetch the connection from Airflow secrets
       conn = Connection.get_connection_from_secrets("snowflake_test")
       
       # Extract extra fields
       extra_dict = conn.extra_dejson
       private_key_content = extra_dict.get("private_key_content")  # safer 
than self._get_field
           
       print(f"private_key_content: {private_key_content}")
   
       if conn.password:
           print(f"conn.test:{conn.password}")
   
           passphrase = conn.password.strip().encode()
           
       private_key_pem = base64.b64decode(private_key_content)
           
       
       from typing import Any
       def default_backend() -> Any:
           from cryptography.hazmat.backends.openssl.backend import backend
           return backend
   
       p_key = serialization.load_pem_private_key(private_key_pem, 
password=passphrase,backend=default_backend())
   
   
   # Define the DAG
   with DAG(
       dag_id="snowflake_private_key_dag",
       start_date=days_ago(1),
       schedule_interval=None,  # Run on demand
       catchup=False,
       tags=["example", "snowflake"]
   ) as dag:
   
       python_task = PythonOperator(
           task_id="print_private_key",
           python_callable=python_test
       )
   
   ```
   
   
   
   ### Operating System
   
   Windows (Podman Fedora Core OS)
   
   ### Versions of Apache Airflow Providers
   
   _No response_
   
   ### Deployment
   
   Other
   
   ### Deployment details
   
   Using Podman with Fedora Core OS VM.
   
   `podman run -d --name airflow --network airflow-net --cpus 8 --memory 8192m 
-e AIRFLOW__CORE__EXECUTOR=LocalExecutor -e AIRFLOW_UID=50000 -e 
AIRFLOW__CORE__HIDE_SENSITIVE_VAR_CONN_FIELDS=False -e 
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN=postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
 -v doc-dbt:/opt/airflow/doc-dbt -v airflow-dags:/opt/airflow/dags -v 
airflow-logs:/opt/airflow/logs -v airflow-plugins:/opt/airflow/plugins -p 
8080:8080 apache/airflow:2.10.2 webserver`
   
   
   ### Anything else?
   
   _No response_
   
   ### Are you willing to submit PR?
   
   - [ ] Yes I am willing to submit a PR!
   
   ### Code of Conduct
   
   - [x] I agree to follow this project's [Code of 
Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to