casassg commented on a change in pull request #8962: URL: https://github.com/apache/airflow/pull/8962#discussion_r429339659
########## File path: airflow/operators/python.py ########## @@ -145,6 +148,142 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): Review comment: Mainly this came from a realization that we were reimplementing PythonOperator either way. Main discussion here: https://github.com/databand-ai/airflow/pull/5#discussion_r416168956 ########## File path: airflow/models/xcom_arg.py ########## @@ -83,7 +83,7 @@ def __getitem__(self, item): """ Implements xcomresult['some_result_key'] """ - return XComArg(operator=self.operator, key=item) + return XComArg(operator=self.operator, key=str(item)) Review comment: related discussion: https://github.com/databand-ai/airflow/pull/5#discussion_r416171596 This small cast makes the `multiple_output` piece work more reliably and more transparently to the user. Not actually a new feature, but mostly a fix of what already got merged in XComArg. I can break it into a separate PR but note that XCom class already does this when saving the key (not when retrieving it) ########## File path: airflow/ti_deps/deps/trigger_rule_dep.py ########## @@ -18,10 +18,10 @@ from collections import Counter -import airflow from airflow.ti_deps.deps.base_ti_dep import BaseTIDep from airflow.utils.session import provide_session from airflow.utils.state import State +from airflow.utils.trigger_rule import TriggerRule as TR Review comment: Had to resolve it because it created a circular import when I added the decorator as `airflow.task` ########## File path: airflow/operators/python.py ########## @@ -145,6 +147,141 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): + """ + Wraps a Python callable and captures args/kwargs when called for execution. + + :param python_callable: A reference to an object that is callable + :type python_callable: python callable + :param multiple_outputs: if set, function return value will be + unrolled to multiple XCom values. List/Tuples will unroll to xcom values + with index as key. Dict will unroll to xcom values with keys as keys. + Defaults to False. + :type multiple_outputs: bool + """ + + template_fields = ('_op_args', '_op_kwargs') + ui_color = '#ffefeb' + + # since we won't mutate the arguments, we should just do the shallow copy + # there are some cases we can't deepcopy the objects(e.g protobuf). + shallow_copy_attrs = ('python_callable',) + + @apply_defaults + def __init__( + self, + python_callable: Callable, + multiple_outputs: bool = False, + *args, + **kwargs + ) -> None: + # Check if we need to generate a new task_id + task_id = kwargs.get('task_id', None) + dag = kwargs.get('dag', None) or DagContext.get_current_dag() + if task_id and dag and task_id in dag.task_ids: + prefix = task_id.rsplit("__", 1)[0] + task_id = sorted( + filter(lambda x: x.startswith(prefix), dag.task_ids), + reverse=True + )[0] + num = int(task_id[-1] if '__' in task_id else '0') + 1 + kwargs['task_id'] = f'{prefix}__{num}' + + if not kwargs.get('do_xcom_push', True) and not multiple_outputs: + raise AirflowException('@task needs to have either do_xcom_push=True or ' + 'multiple_outputs=True.') + if not callable(python_callable): + raise AirflowException('`python_callable` param must be callable') + self._fail_if_method(python_callable) + super().__init__(*args, **kwargs) + self.python_callable = python_callable + self.multiple_outputs = multiple_outputs + self._kwargs = kwargs + self._op_args: List[Any] = [] + self._called = False + self._op_kwargs: Dict[str, Any] = {} + + @staticmethod + def _fail_if_method(python_callable): + if 'self' in signature(python_callable).parameters.keys(): + raise AirflowException('@task does not support methods') + + def __call__(self, *args, **kwargs): + # If args/kwargs are set, then operator has been called. Raise exception + if self._called: Review comment: It will fail at parse time. Correct. 1 function == 1 operator. Airflow doesn't allow dynamic operators (execute 1 operator several times). You can still work around it. This will work though: ```py @task def update_user(user_id: str): ... with DAG(...): # Fetch list of users ... # Execute task for each user for user_id in users_list: update_user.copy(f'update_{user_id}')(user_id) ########## File path: docs/concepts.rst ########## @@ -116,6 +116,47 @@ DAGs can be used as context managers to automatically assign new operators to th op.dag is dag # True +.. _concepts:functional_dags: + +Functional DAGs +--------------- +*Added in Airflow 1.10.11* + +DAGs can be defined using functional abstractions. Outputs and inputs are sent between tasks using +:ref:`XComs <concepts:xcom>` values. In addition, you can wrap functions as tasks using the +:ref:`task decorator <concepts:task_decorator>`. Dependencies are automatically inferred from +the message dependencies. + +Example DAG with functional abstraction + +.. code:: python + + with DAG( + 'send_server_ip', default_args=default_args, schedule_interval=None + ) as dag: + + # Using default connection as it's set to httpbin.org by default + get_ip = SimpleHttpOperator( + task_id='get_ip', endpoint='get', method='GET', xcom_push=True + ) + + @dag.task(multiple_outputs=True) + def prepare_email(raw_json: str) -> str: + external_ip = json.loads(raw_json)['origin'] + return { + 'subject':f'Server connected from {external_ip}', + 'body': f'Seems like today your server executing Airflow is connected from the external IP {external_ip}<br>' + } + + email_info = prepare_email(get_ip.output) Review comment: The AIP used `__call__` instead which was a bit more verbose and cofusing in my opinion. I rather keep `.output` as it allows for more composable DAGs. ########## File path: airflow/operators/python.py ########## @@ -145,6 +148,142 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): + """ + Wraps a Python callable and captures args/kwargs when called for execution. + + :param python_callable: A reference to an object that is callable + :type python_callable: python callable + :param multiple_outputs: if set, function return value will be + unrolled to multiple XCom values. List/Tuples will unroll to xcom values + with index as key. Dict will unroll to xcom values with keys as keys. + Defaults to False. + :type multiple_outputs: bool + """ + + template_fields = ('_op_args', '_op_kwargs') + ui_color = '#ffefeb' + + # since we won't mutate the arguments, we should just do the shallow copy + # there are some cases we can't deepcopy the objects(e.g protobuf). + shallow_copy_attrs = ('python_callable',) + + @apply_defaults + def __init__( + self, + python_callable: Callable, + multiple_outputs: bool = False, + *args, + **kwargs + ) -> None: + dag = kwargs.get('dag', None) or DagContext.get_current_dag() + kwargs['task_id'] = self._get_unique_task_id(kwargs['task_id'], dag) + self._validate_python_callable(python_callable) + super().__init__(*args, **kwargs) + self.python_callable = python_callable + self.multiple_outputs = multiple_outputs + self._kwargs = kwargs + self._op_args: List[Any] = [] + self._called = False + self._op_kwargs: Dict[str, Any] = {} + + @staticmethod + def _get_unique_task_id(task_id, dag): Review comment: Main reason for this is to allow for `copy` method to work without having to specify explicitly a new task_id. This was mostly for convenience to the user. While saying this aloud, I think maybe we can move the generate portion to `copy` method better. related conversation: https://github.com/databand-ai/airflow/pull/5#discussion_r417771808 ########## File path: airflow/operators/python.py ########## @@ -145,6 +147,141 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): + """ + Wraps a Python callable and captures args/kwargs when called for execution. + + :param python_callable: A reference to an object that is callable + :type python_callable: python callable + :param multiple_outputs: if set, function return value will be + unrolled to multiple XCom values. List/Tuples will unroll to xcom values + with index as key. Dict will unroll to xcom values with keys as keys. + Defaults to False. + :type multiple_outputs: bool + """ + + template_fields = ('_op_args', '_op_kwargs') + ui_color = '#ffefeb' + + # since we won't mutate the arguments, we should just do the shallow copy + # there are some cases we can't deepcopy the objects(e.g protobuf). + shallow_copy_attrs = ('python_callable',) + + @apply_defaults + def __init__( + self, + python_callable: Callable, + multiple_outputs: bool = False, + *args, + **kwargs + ) -> None: + # Check if we need to generate a new task_id + task_id = kwargs.get('task_id', None) + dag = kwargs.get('dag', None) or DagContext.get_current_dag() + if task_id and dag and task_id in dag.task_ids: + prefix = task_id.rsplit("__", 1)[0] + task_id = sorted( + filter(lambda x: x.startswith(prefix), dag.task_ids), + reverse=True + )[0] + num = int(task_id[-1] if '__' in task_id else '0') + 1 + kwargs['task_id'] = f'{prefix}__{num}' + + if not kwargs.get('do_xcom_push', True) and not multiple_outputs: + raise AirflowException('@task needs to have either do_xcom_push=True or ' + 'multiple_outputs=True.') + if not callable(python_callable): + raise AirflowException('`python_callable` param must be callable') + self._fail_if_method(python_callable) + super().__init__(*args, **kwargs) + self.python_callable = python_callable + self.multiple_outputs = multiple_outputs + self._kwargs = kwargs + self._op_args: List[Any] = [] + self._called = False + self._op_kwargs: Dict[str, Any] = {} + + @staticmethod + def _fail_if_method(python_callable): + if 'self' in signature(python_callable).parameters.keys(): + raise AirflowException('@task does not support methods') + + def __call__(self, *args, **kwargs): + # If args/kwargs are set, then operator has been called. Raise exception + if self._called: + raise AirflowException('@task decorated functions can only be called once. If you need to reuse ' + 'it several times in a DAG, use the `copy` method.') + + # If we have no DAG, reinitialize class to capture DAGContext and DAG default args. Review comment: Defining a task decorated operator without a DAG and adding it to the DAG on `__call__`. ``` @taks def add_2(num) return num+2 with DAG(...): add_2(2) ``` Otherwise this does not work. Also if we define `default_args` in `DAG` we wont be able to capture it either. ########## File path: airflow/operators/python.py ########## @@ -145,6 +147,141 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): + """ + Wraps a Python callable and captures args/kwargs when called for execution. + + :param python_callable: A reference to an object that is callable + :type python_callable: python callable + :param multiple_outputs: if set, function return value will be + unrolled to multiple XCom values. List/Tuples will unroll to xcom values + with index as key. Dict will unroll to xcom values with keys as keys. + Defaults to False. + :type multiple_outputs: bool + """ + + template_fields = ('_op_args', '_op_kwargs') + ui_color = '#ffefeb' + + # since we won't mutate the arguments, we should just do the shallow copy + # there are some cases we can't deepcopy the objects(e.g protobuf). + shallow_copy_attrs = ('python_callable',) + + @apply_defaults + def __init__( + self, + python_callable: Callable, + multiple_outputs: bool = False, + *args, + **kwargs + ) -> None: + # Check if we need to generate a new task_id + task_id = kwargs.get('task_id', None) + dag = kwargs.get('dag', None) or DagContext.get_current_dag() + if task_id and dag and task_id in dag.task_ids: + prefix = task_id.rsplit("__", 1)[0] + task_id = sorted( + filter(lambda x: x.startswith(prefix), dag.task_ids), + reverse=True + )[0] + num = int(task_id[-1] if '__' in task_id else '0') + 1 + kwargs['task_id'] = f'{prefix}__{num}' + + if not kwargs.get('do_xcom_push', True) and not multiple_outputs: + raise AirflowException('@task needs to have either do_xcom_push=True or ' + 'multiple_outputs=True.') + if not callable(python_callable): + raise AirflowException('`python_callable` param must be callable') + self._fail_if_method(python_callable) + super().__init__(*args, **kwargs) + self.python_callable = python_callable + self.multiple_outputs = multiple_outputs + self._kwargs = kwargs + self._op_args: List[Any] = [] + self._called = False + self._op_kwargs: Dict[str, Any] = {} + + @staticmethod + def _fail_if_method(python_callable): + if 'self' in signature(python_callable).parameters.keys(): + raise AirflowException('@task does not support methods') + + def __call__(self, *args, **kwargs): + # If args/kwargs are set, then operator has been called. Raise exception + if self._called: + raise AirflowException('@task decorated functions can only be called once. If you need to reuse ' + 'it several times in a DAG, use the `copy` method.') + + # If we have no DAG, reinitialize class to capture DAGContext and DAG default args. + if not self.has_dag(): + self.__init__(python_callable=self.python_callable, + multiple_outputs=self.multiple_outputs, + **self._kwargs) + + # Capture args/kwargs + self._op_args = args + self._op_kwargs = kwargs + self._called = True + return XComArg(self) + + def copy(self, task_id: Optional[str] = None, **kwargs): + """ + Create a copy of the task, allow to overwrite ctor kwargs if needed. + + If alias is created a new DAGContext, apply defaults and set new DAG as the operator DAG. + + :param task_id: Task id for the new operator + :type task_id: Optional[str] + """ + if task_id: + self._kwargs['task_id'] = task_id + return _PythonFunctionalOperator( + python_callable=self.python_callable, + multiple_outputs=self.multiple_outputs, + **{**kwargs, **self._kwargs} + ) + + def execute(self, context: Dict): + return_value = self.python_callable(*self._op_args, **self._op_kwargs) + self.log.info("Done. Returned value was: %s", return_value) + if not self.multiple_outputs: + return return_value + if isinstance(return_value, dict): + for key, value in return_value.items(): + self.xcom_push(context, str(key), value) + elif isinstance(return_value, (list, tuple)): + for key, value in enumerate(return_value): + self.xcom_push(context, str(key), value) + return return_value + + +def task(python_callable: Optional[Callable] = None, **kwargs): + """ + Python operator decorator. Wraps a function into an Airflow operator. + Accepts kwargs for operator kwarg. Will try to wrap operator into DAG at declaration or + on function invocation. Use alias to reuse function in the DAG. + + :param python_callable: Function to decorate + :type python_callable: Optional[Callable] + :param multiple_outputs: if set, function return value will be Review comment: I like the typehints, but would probably leave it for a follow up PR. Rather make it explicit. Happy to revert unrolling tuples and lists. ########## File path: tests/operators/test_python.py ########## @@ -311,6 +315,350 @@ def func(**context): python_operator.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) +class TestAirflowTask(unittest.TestCase): + + @classmethod + def setUpClass(cls): + super().setUpClass() + + with create_session() as session: + session.query(DagRun).delete() + session.query(TI).delete() + + def setUp(self): + super().setUp() + self.dag = DAG( + 'test_dag', + default_args={ + 'owner': 'airflow', + 'start_date': DEFAULT_DATE}) + self.addCleanup(self.dag.clear) + + def tearDown(self): + super().tearDown() + + with create_session() as session: + session.query(DagRun).delete() + session.query(TI).delete() + + def _assert_calls_equal(self, first, second): + assert isinstance(first, Call) + assert isinstance(second, Call) + assert first.args == second.args + # eliminate context (conf, dag_run, task_instance, etc.) + test_args = ["an_int", "a_date", "a_templated_string"] + first.kwargs = { + key: value + for (key, value) in first.kwargs.items() + if key in test_args + } + second.kwargs = { + key: value + for (key, value) in second.kwargs.items() + if key in test_args + } + assert first.kwargs == second.kwargs + + def test_python_operator_python_callable_is_callable(self): + """Tests that @task will only instantiate if + the python_callable argument is callable.""" + not_callable = {} + with pytest.raises(AirflowException): + task_decorator(not_callable, dag=self.dag) + + def test_python_callable_arguments_are_templatized(self): + """Test @task op_args are templatized""" + recorded_calls = [] + + # Create a named tuple and ensure it is still preserved + # after the rendering is done + Named = namedtuple('Named', ['var1', 'var2']) + named_tuple = Named('{{ ds }}', 'unchanged') + + task = task_decorator( + # a Mock instance cannot be used as a callable function or test fails with a + # TypeError: Object of type Mock is not JSON serializable + build_recording_function(recorded_calls), + dag=self.dag) + task(4, date(2019, 1, 1), "dag {{dag.dag_id}} ran on {{ds}}.", named_tuple) + + self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + execution_date=DEFAULT_DATE, + start_date=DEFAULT_DATE, + state=State.RUNNING + ) + task.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + ds_templated = DEFAULT_DATE.date().isoformat() + assert len(recorded_calls) == 1 + self._assert_calls_equal( + recorded_calls[0], + Call(4, + date(2019, 1, 1), + "dag {} ran on {}.".format(self.dag.dag_id, ds_templated), + Named(ds_templated, 'unchanged')) + ) + + def test_python_callable_keyword_arguments_are_templatized(self): + """Test PythonOperator op_kwargs are templatized""" + recorded_calls = [] + + task = task_decorator( + # a Mock instance cannot be used as a callable function or test fails with a + # TypeError: Object of type Mock is not JSON serializable + build_recording_function(recorded_calls), + dag=self.dag + ) + task(an_int=4, a_date=date(2019, 1, 1), a_templated_string="dag {{dag.dag_id}} ran on {{ds}}.") + self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + execution_date=DEFAULT_DATE, + start_date=DEFAULT_DATE, + state=State.RUNNING + ) + task.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + assert len(recorded_calls) == 1 + self._assert_calls_equal( + recorded_calls[0], + Call(an_int=4, + a_date=date(2019, 1, 1), + a_templated_string="dag {} ran on {}.".format( + self.dag.dag_id, DEFAULT_DATE.date().isoformat())) + ) + + def test_copy_in_dag(self): + """Test copy method to reuse tasks in a DAG""" + + @task_decorator + def do_run(): + return 4 + with self.dag: + do_run() + assert ['do_run'] == self.dag.task_ids + do_run_1 = do_run.copy() + do_run_2 = do_run.copy() + assert do_run_1.task_id == 'do_run__1' + assert do_run_2.task_id == 'do_run__2' + + def test_copy(self): + """Test copy method outside of a DAG""" + @task_decorator + def do_run(): + return 4 + + @task_decorator + def do__run(): + return 4 + do_run_1 = do_run.copy() + do_run_2 = do_run.copy() + do__run_1 = do__run.copy() + do__run_2 = do__run.copy() + with self.dag: + do_run() + assert ['do_run'] == self.dag.task_ids + do_run_1() + do_run_2() + do__run() + do__run_1() + do__run_2() + + assert do_run_1.task_id == 'do_run__1' + assert do_run_2.task_id == 'do_run__2' + assert do__run_1.task_id == 'do__run__1' + assert do__run_2.task_id == 'do__run__2' + + def test_copy_10(self): + """Test copy method outside of a DAG""" + @task_decorator + def __do_run(): + return 4 + + with self.dag: + __do_run() + do_runs = [__do_run.copy() for _ in range(20)] + + assert do_runs[-1].task_id == '__do_run__20' + + def test_dict_outputs(self): + """Tests pushing multiple outputs as a dictionary""" + + @task_decorator(multiple_outputs=True) + def return_dict(number: int): + return { + 'number': number + 1, + 43: 43 + } + + test_number = 10 + with self.dag: + return_dict(test_number) + + dr = self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + start_date=timezone.utcnow(), + execution_date=DEFAULT_DATE, + state=State.RUNNING + ) + + return_dict.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + ti = dr.get_task_instances()[0] + assert ti.xcom_pull(key='number') == test_number + 1 + assert ti.xcom_pull(key='43') == 43 + assert ti.xcom_pull() == {'number': test_number + 1, '43': 43} + + def test_tuple_outputs(self): + """Tests pushing multiple outputs as tuple""" + + @task_decorator(multiple_outputs=True) + def return_tuple(number: int): + return number + 1, 43 + + test_number = 10 + with self.dag: + return_tuple(test_number) + + dr = self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + start_date=timezone.utcnow(), + execution_date=DEFAULT_DATE, + state=State.RUNNING + ) + + return_tuple.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + ti = dr.get_task_instances()[0] + assert ti.xcom_pull(key='0') == test_number + 1 + assert ti.xcom_pull(key='1') == 43 + assert ti.xcom_pull() == [test_number + 1, 43] + + def test_list_outputs(self): + """Tests pushing multiple outputs as list""" + + @task_decorator(multiple_outputs=True) + def return_tuple(number: int): + return [number + 1, 43] + + test_number = 10 + with self.dag: + return_tuple(test_number) + + dr = self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + start_date=timezone.utcnow(), + execution_date=DEFAULT_DATE, + state=State.RUNNING + ) + + return_tuple.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + ti = dr.get_task_instances()[0] + assert ti.xcom_pull(key='0') == test_number + 1 + assert ti.xcom_pull(key='1') == 43 + assert ti.xcom_pull() == [test_number + 1, 43] + + def test_xcom_arg(self): + """Tests that returned key in XComArg is returned correctly""" + + @task_decorator + def add_2(number: int): + return number + 2 + + @task_decorator + def add_num(number: int, num2: int = 2): Review comment: They do. I can add a test. ########## File path: airflow/operators/python.py ########## @@ -145,6 +148,142 @@ def execute_callable(self): return self.python_callable(*self.op_args, **self.op_kwargs) +class _PythonFunctionalOperator(BaseOperator): + """ + Wraps a Python callable and captures args/kwargs when called for execution. + + :param python_callable: A reference to an object that is callable + :type python_callable: python callable + :param multiple_outputs: if set, function return value will be + unrolled to multiple XCom values. List/Tuples will unroll to xcom values + with index as key. Dict will unroll to xcom values with keys as keys. + Defaults to False. + :type multiple_outputs: bool + """ + + template_fields = ('_op_args', '_op_kwargs') + ui_color = '#ffefeb' + + # since we won't mutate the arguments, we should just do the shallow copy + # there are some cases we can't deepcopy the objects(e.g protobuf). + shallow_copy_attrs = ('python_callable',) + + @apply_defaults + def __init__( + self, + python_callable: Callable, + multiple_outputs: bool = False, + *args, + **kwargs + ) -> None: + dag = kwargs.get('dag', None) or DagContext.get_current_dag() + kwargs['task_id'] = self._get_unique_task_id(kwargs['task_id'], dag) + self._validate_python_callable(python_callable) + super().__init__(*args, **kwargs) + self.python_callable = python_callable + self.multiple_outputs = multiple_outputs + self._kwargs = kwargs + self._op_args: List[Any] = [] + self._called = False + self._op_kwargs: Dict[str, Any] = {} + + @staticmethod + def _get_unique_task_id(task_id, dag): + if not dag or task_id not in dag.task_ids: + return task_id + core = re.split(r'__\d+$', task_id)[0] + suffixes = sorted( + [int(re.split(r'^.+__', task_id)[1]) + for task_id in dag.task_ids + if re.match(rf'^{core}__\d+$', task_id)] + ) + if not suffixes: + return f'{core}__1' + return f'{core}__{suffixes[-1] + 1}' + + @staticmethod + def _validate_python_callable(python_callable): + if not callable(python_callable): + raise AirflowException('`python_callable` param must be callable') + if 'self' in signature(python_callable).parameters.keys(): + raise AirflowException('@task does not support methods') + + def __call__(self, *args, **kwargs): + # If args/kwargs are set, then operator has been called. Raise exception + if self._called: + raise AirflowException('@task decorated functions can only be called once. If you need to reuse ' + 'it several times in a DAG, use the `copy` method.') + + # If we have no DAG, reinitialize class to capture DAGContext and DAG default args. + if not self.has_dag(): + self.__init__(python_callable=self.python_callable, + multiple_outputs=self.multiple_outputs, + **self._kwargs) + + # Capture args/kwargs + self._op_args = args + self._op_kwargs = kwargs + self._called = True + return XComArg(self) + + def copy(self, task_id: Optional[str] = None, **kwargs): + """ + Create a copy of the task, allow to overwrite ctor kwargs if needed. + + If alias is created a new DAGContext, apply defaults and set new DAG as the operator DAG. + + :param task_id: Task id for the new operator + :type task_id: Optional[str] + """ + if task_id: + self._kwargs['task_id'] = task_id + return _PythonFunctionalOperator( + python_callable=self.python_callable, + multiple_outputs=self.multiple_outputs, + **{**kwargs, **self._kwargs} + ) + + def execute(self, context: Dict): + return_value = self.python_callable(*self._op_args, **self._op_kwargs) + self.log.info("Done. Returned value was: %s", return_value) + if not self.multiple_outputs: + return return_value + if isinstance(return_value, dict): + for key, value in return_value.items(): + self.xcom_push(context, str(key), value) + elif isinstance(return_value, (list, tuple)): + for key, value in enumerate(return_value): + self.xcom_push(context, str(key), value) + return return_value + + +def task(python_callable: Optional[Callable] = None, **kwargs): Review comment: It does otherwise you can't do: ``` @task(task_id='test', dag=dag, multiple_outputs=True) def random_name(...) ``` This calls function and then wraps it. We need to allow both use cases (using args in decorator and not using it). ########## File path: tests/operators/test_python.py ########## @@ -311,6 +315,350 @@ def func(**context): python_operator.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) +class TestAirflowTask(unittest.TestCase): + + @classmethod + def setUpClass(cls): + super().setUpClass() + + with create_session() as session: + session.query(DagRun).delete() + session.query(TI).delete() + + def setUp(self): + super().setUp() + self.dag = DAG( + 'test_dag', + default_args={ + 'owner': 'airflow', + 'start_date': DEFAULT_DATE}) + self.addCleanup(self.dag.clear) + + def tearDown(self): + super().tearDown() + + with create_session() as session: + session.query(DagRun).delete() + session.query(TI).delete() + + def _assert_calls_equal(self, first, second): + assert isinstance(first, Call) + assert isinstance(second, Call) + assert first.args == second.args + # eliminate context (conf, dag_run, task_instance, etc.) + test_args = ["an_int", "a_date", "a_templated_string"] + first.kwargs = { + key: value + for (key, value) in first.kwargs.items() + if key in test_args + } + second.kwargs = { + key: value + for (key, value) in second.kwargs.items() + if key in test_args + } + assert first.kwargs == second.kwargs + + def test_python_operator_python_callable_is_callable(self): + """Tests that @task will only instantiate if + the python_callable argument is callable.""" + not_callable = {} + with pytest.raises(AirflowException): + task_decorator(not_callable, dag=self.dag) + + def test_python_callable_arguments_are_templatized(self): + """Test @task op_args are templatized""" + recorded_calls = [] + + # Create a named tuple and ensure it is still preserved + # after the rendering is done + Named = namedtuple('Named', ['var1', 'var2']) + named_tuple = Named('{{ ds }}', 'unchanged') + + task = task_decorator( + # a Mock instance cannot be used as a callable function or test fails with a + # TypeError: Object of type Mock is not JSON serializable + build_recording_function(recorded_calls), + dag=self.dag) + task(4, date(2019, 1, 1), "dag {{dag.dag_id}} ran on {{ds}}.", named_tuple) + + self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + execution_date=DEFAULT_DATE, + start_date=DEFAULT_DATE, + state=State.RUNNING + ) + task.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + ds_templated = DEFAULT_DATE.date().isoformat() + assert len(recorded_calls) == 1 + self._assert_calls_equal( + recorded_calls[0], + Call(4, + date(2019, 1, 1), + "dag {} ran on {}.".format(self.dag.dag_id, ds_templated), + Named(ds_templated, 'unchanged')) + ) + + def test_python_callable_keyword_arguments_are_templatized(self): + """Test PythonOperator op_kwargs are templatized""" + recorded_calls = [] + + task = task_decorator( + # a Mock instance cannot be used as a callable function or test fails with a + # TypeError: Object of type Mock is not JSON serializable + build_recording_function(recorded_calls), + dag=self.dag + ) + task(an_int=4, a_date=date(2019, 1, 1), a_templated_string="dag {{dag.dag_id}} ran on {{ds}}.") + self.dag.create_dagrun( + run_id=DagRunType.MANUAL.value, + execution_date=DEFAULT_DATE, + start_date=DEFAULT_DATE, + state=State.RUNNING + ) + task.run(start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) + + assert len(recorded_calls) == 1 + self._assert_calls_equal( + recorded_calls[0], + Call(an_int=4, + a_date=date(2019, 1, 1), + a_templated_string="dag {} ran on {}.".format( + self.dag.dag_id, DEFAULT_DATE.date().isoformat())) + ) + + def test_copy_in_dag(self): + """Test copy method to reuse tasks in a DAG""" + + @task_decorator + def do_run(): + return 4 + with self.dag: + do_run() + assert ['do_run'] == self.dag.task_ids + do_run_1 = do_run.copy() + do_run_2 = do_run.copy() + assert do_run_1.task_id == 'do_run__1' + assert do_run_2.task_id == 'do_run__2' + + def test_copy(self): + """Test copy method outside of a DAG""" + @task_decorator + def do_run(): + return 4 + + @task_decorator + def do__run(): + return 4 + do_run_1 = do_run.copy() + do_run_2 = do_run.copy() + do__run_1 = do__run.copy() + do__run_2 = do__run.copy() + with self.dag: + do_run() + assert ['do_run'] == self.dag.task_ids + do_run_1() + do_run_2() + do__run() + do__run_1() + do__run_2() + + assert do_run_1.task_id == 'do_run__1' + assert do_run_2.task_id == 'do_run__2' + assert do__run_1.task_id == 'do__run__1' + assert do__run_2.task_id == 'do__run__2' + + def test_copy_10(self): + """Test copy method outside of a DAG""" + @task_decorator + def __do_run(): + return 4 + + with self.dag: + __do_run() + do_runs = [__do_run.copy() for _ in range(20)] + + assert do_runs[-1].task_id == '__do_run__20' + + def test_dict_outputs(self): + """Tests pushing multiple outputs as a dictionary""" + + @task_decorator(multiple_outputs=True) + def return_dict(number: int): + return { + 'number': number + 1, + 43: 43 Review comment: XCom automatically casts keys to strings. That's the reason for adding casting in XComArg/ ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org