This is an automated email from the ASF dual-hosted git repository.

alamb pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/arrow-datafusion.git


The following commit(s) were added to refs/heads/main by this push:
     new 1d8576aef0 Revert "chore(pruning): Support `IS NOT NULL` predicates in 
`PruningPredicate` (#9208)" (#9232)
1d8576aef0 is described below

commit 1d8576aef09ab87e6d3250645fd64a3e7c6b4aa0
Author: Chunchun Ye <[email protected]>
AuthorDate: Wed Feb 14 17:52:57 2024 -0500

    Revert "chore(pruning): Support `IS NOT NULL` predicates in 
`PruningPredicate` (#9208)" (#9232)
    
    This reverts commit cc139c9790023463d2240213f2e4f335d9a880dd.
---
 .../datasource/physical_plan/parquet/row_groups.rs | 49 ++---------------
 datafusion/core/src/physical_optimizer/pruning.rs  | 63 ----------------------
 2 files changed, 5 insertions(+), 107 deletions(-)

diff --git a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs 
b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs
index c876694db1..fa9523a763 100644
--- a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs
+++ b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs
@@ -620,20 +620,13 @@ mod tests {
                 ParquetStatistics::boolean(Some(false), Some(true), None, 1, 
false),
             ],
         );
-        let rgm3 = get_row_group_meta_data(
-            &schema_descr,
-            vec![
-                ParquetStatistics::int32(Some(17), Some(30), None, 1, false),
-                ParquetStatistics::boolean(Some(false), Some(true), None, 0, 
false),
-            ],
-        );
-        vec![rgm1, rgm2, rgm3]
+        vec![rgm1, rgm2]
     }
 
     #[test]
     fn row_group_pruning_predicate_null_expr() {
         use datafusion_expr::{col, lit};
-        // c1 > 15 and IsNull(c2) => c1_max > 15 and c2_null_count > 0
+        // int > 1 and IsNull(bool) => c1_max > 1 and bool_null_count > 0
         let schema = Arc::new(Schema::new(vec![
             Field::new("c1", DataType::Int32, false),
             Field::new("c2", DataType::Boolean, false),
@@ -664,7 +657,7 @@ mod tests {
         use datafusion_expr::{col, lit};
         // test row group predicate with an unknown (Null) expr
         //
-        // c1 > 15 and c2 = NULL => c1_max > 15 and NULL
+        // int > 1 and bool = NULL => c1_max > 1 and null
         let schema = Arc::new(Schema::new(vec![
             Field::new("c1", DataType::Int32, false),
             Field::new("c2", DataType::Boolean, false),
@@ -679,35 +672,7 @@ mod tests {
 
         let metrics = parquet_file_metrics();
         // bool = NULL always evaluates to NULL (and thus will not
-        // pass predicates. Ideally these should all be false
-        assert_eq!(
-            prune_row_groups_by_statistics(
-                &schema,
-                &schema_descr,
-                &groups,
-                None,
-                Some(&pruning_predicate),
-                &metrics
-            ),
-            vec![1, 2]
-        );
-    }
-
-    #[test]
-    fn row_group_pruning_predicate_not_null_expr() {
-        use datafusion_expr::{col, lit};
-        // c1 > 15 and IsNotNull(c2) => c1_max > 15 and c2_null_count = 0
-        let schema = Arc::new(Schema::new(vec![
-            Field::new("c1", DataType::Int32, false),
-            Field::new("c2", DataType::Boolean, false),
-        ]));
-        let schema_descr = arrow_to_parquet_schema(&schema).unwrap();
-        let expr = col("c1").gt(lit(15)).and(col("c2").is_not_null());
-        let expr = logical2physical(&expr, &schema);
-        let pruning_predicate = PruningPredicate::try_new(expr, 
schema.clone()).unwrap();
-        let groups = gen_row_group_meta_data_for_pruning_predicate();
-
-        let metrics = parquet_file_metrics();
+        // pass predicates. Ideally these should both be false
         assert_eq!(
             prune_row_groups_by_statistics(
                 &schema,
@@ -717,11 +682,7 @@ mod tests {
                 Some(&pruning_predicate),
                 &metrics
             ),
-            // The first row group was filtered out because c1_max is 10, 
which is smaller than 15.
-            // The second row group was filtered out because it contains null 
value on "c2".
-            // The third row group is kept because c1_max is 30, which is 
greater than 15 AND
-            // it does NOT contain any null value on "c2".
-            vec![2]
+            vec![1]
         );
     }
 
diff --git a/datafusion/core/src/physical_optimizer/pruning.rs 
b/datafusion/core/src/physical_optimizer/pruning.rs
index e1b52c3837..648b1f70c5 100644
--- a/datafusion/core/src/physical_optimizer/pruning.rs
+++ b/datafusion/core/src/physical_optimizer/pruning.rs
@@ -315,7 +315,6 @@ pub trait PruningStatistics {
 /// `x < 5` | `x_max < 5`
 /// `x = 5 AND y = 10` | `x_min <= 5 AND 5 <= x_max AND y_min <= 10 AND 10 <= 
y_max`
 /// `x IS NULL`  | `x_null_count > 0`
-/// `x IS NOT NULL`  | `x_null_count = 0`
 ///
 /// ## Predicate Evaluation
 /// The PruningPredicate works in two passes
@@ -1121,34 +1120,6 @@ fn build_is_null_column_expr(
     }
 }
 
-/// Given an expression reference to `expr`, if `expr` is a column expression,
-/// returns a pruning expression in terms of IsNotNull that will evaluate to 
true
-/// if the column does NOT contain null, and false if it may contain null
-fn build_is_not_null_column_expr(
-    expr: &Arc<dyn PhysicalExpr>,
-    schema: &Schema,
-    required_columns: &mut RequiredColumns,
-) -> Option<Arc<dyn PhysicalExpr>> {
-    if let Some(col) = expr.as_any().downcast_ref::<phys_expr::Column>() {
-        let field = schema.field_with_name(col.name()).ok()?;
-
-        let null_count_field = &Field::new(field.name(), DataType::UInt64, 
true);
-        required_columns
-            .null_count_column_expr(col, expr, null_count_field)
-            .map(|null_count_column_expr| {
-                // IsNotNull(column) => null_count = 0
-                Arc::new(phys_expr::BinaryExpr::new(
-                    null_count_column_expr,
-                    Operator::Eq,
-                    
Arc::new(phys_expr::Literal::new(ScalarValue::UInt64(Some(0)))),
-                )) as _
-            })
-            .ok()
-    } else {
-        None
-    }
-}
-
 /// The maximum number of entries in an `InList` that might be rewritten into
 /// an OR chain
 const MAX_LIST_VALUE_SIZE_REWRITE: usize = 20;
@@ -1175,14 +1146,6 @@ fn build_predicate_expression(
         return build_is_null_column_expr(is_null.arg(), schema, 
required_columns)
             .unwrap_or(unhandled);
     }
-    if let Some(is_not_null) = 
expr_any.downcast_ref::<phys_expr::IsNotNullExpr>() {
-        return build_is_not_null_column_expr(
-            is_not_null.arg(),
-            schema,
-            required_columns,
-        )
-        .unwrap_or(unhandled);
-    }
     if let Some(col) = expr_any.downcast_ref::<phys_expr::Column>() {
         return build_single_column_expr(col, schema, required_columns, false)
             .unwrap_or(unhandled);
@@ -2089,32 +2052,6 @@ mod tests {
         Ok(())
     }
 
-    #[test]
-    fn row_group_predicate_is_null() -> Result<()> {
-        let schema = Schema::new(vec![Field::new("c1", DataType::Int32, 
false)]);
-        let expected_expr = "c1_null_count@0 > 0";
-
-        let expr = col("c1").is_null();
-        let predicate_expr =
-            test_build_predicate_expression(&expr, &schema, &mut 
RequiredColumns::new());
-        assert_eq!(predicate_expr.to_string(), expected_expr);
-
-        Ok(())
-    }
-
-    #[test]
-    fn row_group_predicate_is_not_null() -> Result<()> {
-        let schema = Schema::new(vec![Field::new("c1", DataType::Int32, 
false)]);
-        let expected_expr = "c1_null_count@0 = 0";
-
-        let expr = col("c1").is_not_null();
-        let predicate_expr =
-            test_build_predicate_expression(&expr, &schema, &mut 
RequiredColumns::new());
-        assert_eq!(predicate_expr.to_string(), expected_expr);
-
-        Ok(())
-    }
-
     #[test]
     fn row_group_predicate_required_columns() -> Result<()> {
         let schema = Schema::new(vec![

Reply via email to