This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 296b3e195fb Updating dev docs (build nightly-tests-2025-05-25-0)
296b3e195fb is described below

commit 296b3e195fba47bd143661c2849f293fdd8e321d
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Mon May 26 00:35:16 2025 +0000

    Updating dev docs (build nightly-tests-2025-05-25-0)
---
 docs/dev/python/data.html               |  46 +++++------
 docs/dev/python/dataset.html            | 136 ++++++++++++++++----------------
 docs/dev/python/getstarted.html         |   2 +-
 docs/dev/python/memory.html             |   6 +-
 docs/dev/python/pandas.html             |   6 +-
 docs/dev/python/parquet.html            |  12 +--
 docs/dev/r/articles/data_wrangling.html |  20 ++---
 docs/dev/r/pkgdown.yml                  |   2 +-
 docs/dev/r/reference/to_duckdb.html     |  10 +--
 docs/dev/r/search.json                  |   2 +-
 docs/dev/searchindex.js                 |   2 +-
 11 files changed, 122 insertions(+), 122 deletions(-)

diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index bbdff58393e..3e003759422 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1783,7 +1783,7 @@ for you:</p>
 
 <span class="gp">In [29]: </span><span class="n">arr</span>
 <span class="gh">Out[29]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f26932f0a00&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f0265734b80&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
@@ -1795,7 +1795,7 @@ for you:</p>
 <p>But you may also pass a specific data type to override type inference:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [30]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">pa</span><span class="o">.</span><span 
class="n">uint16</span><span class="p">())</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7f26932f0e20&gt;</span>
+<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7f0265735000&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2</span>
@@ -1830,7 +1830,7 @@ nulls:</p>
 <p>Arrays can be sliced without copying:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [36]: </span><span 
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span 
class="p">:</span><span class="mi">3</span><span class="p">]</span>
 <span class="gh">Out[36]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f26932f11e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f0265735960&gt;</span>
 <span class="go">[</span>
 <span class="go">  2,</span>
 <span class="go">  null</span>
@@ -1883,7 +1883,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 
 <span class="gp">In [45]: </span><span class="n">arr</span>
 <span class="gh">Out[45]: </span>
-<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7f26932f2500&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7f0265735ea0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    5,</span>
@@ -1908,7 +1908,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 dictionaries:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [46]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;z& [...]
 <span class="gh">Out[46]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26932f2800&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f02657367a0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int64</span>
 <span class="go">  [</span>
@@ -1935,7 +1935,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [48]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">2</span><span class="p">,</span [...]
 <span class="gh">Out[48]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26932f2ec0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f0265736d40&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1950,7 +1950,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [49]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([(</span><span 
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span 
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span 
class="p">,</span> <span class="kc">False</span><span class="p">)],</span> 
<span class="nb">type</span><span class="o">=</span><span 
class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[49]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26932f2f80&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f0265736e60&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1969,7 +1969,7 @@ level and at the individual field level.  If initializing 
from a sequence
 of Python dicts, a missing dict key is handled as a null value:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [50]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">},</span> <span 
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="kc">None</s 
[...]
 <span class="gh">Out[50]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26932f3040&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f0265736bc0&gt;</span>
 <span class="go">-- is_valid:</span>
 <span class="go">  [</span>
 <span class="go">    true,</span>
@@ -2004,7 +2004,7 @@ individual arrays, and no copy is involved:</p>
 
 <span class="gp">In [55]: </span><span class="n">arr</span>
 <span class="gh">Out[55]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26932f2620&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f026589b8e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
@@ -2031,7 +2031,7 @@ the type is explicitly passed into <a class="reference 
internal" href="generated
 
 <span class="gp">In [58]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[58]: </span>
-<span class="go">&lt;pyarrow.lib.MapArray object at 0x7f2693252fe0&gt;</span>
+<span class="go">&lt;pyarrow.lib.MapArray object at 0x7f0265737a60&gt;</span>
 <span class="go">[</span>
 <span class="go">  keys:</span>
 <span class="go">  [</span>
@@ -2065,7 +2065,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [60]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">keys</span>
 <span class="gh">Out[60]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f26932f3d00&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f0265737820&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;x&quot;,</span>
 <span class="go">  &quot;y&quot;,</span>
@@ -2074,7 +2074,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [61]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">items</span>
 <span class="gh">Out[61]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f26932f3e20&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f0265737ac0&gt;</span>
 <span class="go">[</span>
 <span class="go">  4,</span>
 <span class="go">  5,</span>
@@ -2083,7 +2083,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [62]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">keys</span><span class="p">)</span>
 <span class="gh">Out[62]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f2693134040&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f0265737fa0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    &quot;x&quot;,</span>
@@ -2096,7 +2096,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [63]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">items</span><span class="p">)</span>
 <span class="gh">Out[63]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f26932f3ee0&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f0265737e80&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    4,</span>
@@ -2131,7 +2131,7 @@ selected:</p>
 
 <span class="gp">In [69]: </span><span class="n">union_arr</span>
 <span class="gh">Out[69]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f26932f34c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f02657355a0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2170,7 +2170,7 @@ each offset in the selected child array it can be 
found:</p>
 
 <span class="gp">In [76]: </span><span class="n">union_arr</span>
 <span class="gh">Out[76]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f2693134400&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f0265778340&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2219,7 +2219,7 @@ consider an example:</p>
 
 <span class="gp">In [80]: </span><span class="n">dict_array</span>
 <span class="gh">Out[80]: </span>
-<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7f269312d5b0&gt;</span>
+<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7f02657715b0&gt;</span>
 
 <span class="go">-- dictionary:</span>
 <span class="go">  [</span>
@@ -2246,7 +2246,7 @@ consider an example:</p>
 
 <span class="gp">In [82]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[82]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f26931350c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f0265779660&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -2260,7 +2260,7 @@ consider an example:</p>
 
 <span class="gp">In [83]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[83]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f2693135240&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f0265735420&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2316,7 +2316,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [90]: </span><span class="n">batch</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[90]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f2693135e40&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f0265779de0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2330,7 +2330,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [92]: </span><span class="n">batch2</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[92]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f2693136020&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f026577a7a0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;bar&quot;,</span>
 <span class="go">  &quot;baz&quot;,</span>
@@ -2374,7 +2374,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [98]: </span><span class="n">c</span>
 <span class="gh">Out[98]: </span>
-<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7f2693136500&gt;</span>
+<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7f0265778fa0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    1,</span>
@@ -2408,7 +2408,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [100]: </span><span class="n">c</span><span 
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[100]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f2693136440&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f026577ad40&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index 15d1720aecf..42db10c41ca 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1669,7 +1669,7 @@ can pass it the path to the directory containing the data 
files:</p>
 <span class="gp">In [12]: </span><span class="n">dataset</span> <span 
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span 
class="n">dataset</span><span class="p">(</span><span class="n">base</span> 
<span class="o">/</span> <span 
class="s2">&quot;parquet_dataset&quot;</span><span class="p">,</span> <span 
class="nb">format</span><span class="o">=</span><span 
class="s2">&quot;parquet&quot;</span><span class="p">)</span>
 
 <span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7f26931d4b20&gt;</span>
+<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7f02ac8ec8e0&gt;</span>
 </pre></div>
 </div>
 <p>In addition to searching a base directory, <a class="reference internal" 
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset" 
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal 
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1678,8 +1678,8 @@ single file or a list of file paths.</p>
 needed, it only crawls the directory to find all the files:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span 
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
 <span class="gh">Out[14]: </span>
-<span 
class="go">[&#39;/tmp/pyarrow-lai47036/parquet_dataset/data1.parquet&#39;,</span>
-<span class="go"> 
&#39;/tmp/pyarrow-lai47036/parquet_dataset/data2.parquet&#39;]</span>
+<span 
class="go">[&#39;/tmp/pyarrow-yviq6zb_/parquet_dataset/data1.parquet&#39;,</span>
+<span class="go"> 
&#39;/tmp/pyarrow-yviq6zb_/parquet_dataset/data2.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1700,23 +1700,23 @@ this can require a lot of memory, see below on 
filtering / iterative loading):</
 <span class="go">c: int64</span>
 <span class="gt">----</span>
 <span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>: 
[[0.19399054333168506,-0.6002820997050798,1.5896576862455272,-0.05585739715912515,-1.8579636678493037],[2.0272608549147293,-0.12834874241556604,-0.30158854143175035,0.0747074299540064,0.6092006115970965]]
+<span class="ne">b</span>: 
[[1.7874494946767645,-1.7410913312287322,-0.2651430041204955,1.1404376814326151,-0.045381922139700215],[-0.12200717367756185,0.3063922880194675,-0.3740850638158205,1.6820150965184364,0.7914770078819638]]
 <span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
 
 <span class="c1"># converting to pandas to see the contents of the scanned 
table</span>
 <span class="gp">In [17]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[17]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.193991  1</span>
-<span class="go">1  1 -0.600282  2</span>
-<span class="go">2  2  1.589658  1</span>
-<span class="go">3  3 -0.055857  2</span>
-<span class="go">4  4 -1.857964  1</span>
-<span class="go">5  5  2.027261  2</span>
-<span class="go">6  6 -0.128349  1</span>
-<span class="go">7  7 -0.301589  2</span>
-<span class="go">8  8  0.074707  1</span>
-<span class="go">9  9  0.609201  2</span>
+<span class="go">0  0  1.787449  1</span>
+<span class="go">1  1 -1.741091  2</span>
+<span class="go">2  2 -0.265143  1</span>
+<span class="go">3  3  1.140438  2</span>
+<span class="go">4  4 -0.045382  1</span>
+<span class="go">5  5 -0.122007  2</span>
+<span class="go">6  6  0.306392  1</span>
+<span class="go">7  7 -0.374085  2</span>
+<span class="go">8  8  1.682015  1</span>
+<span class="go">9  9  0.791477  2</span>
 </pre></div>
 </div>
 </section>
@@ -1739,11 +1739,11 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [21]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[21]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.193991  1</span>
-<span class="go">1  1 -0.600282  2</span>
-<span class="go">2  2  1.589658  1</span>
-<span class="go">3  3 -0.055857  2</span>
-<span class="go">4  4 -1.857964  1</span>
+<span class="go">0  0  1.787449  1</span>
+<span class="go">1  1 -1.741091  2</span>
+<span class="go">2  2 -0.265143  1</span>
+<span class="go">3  3  1.140438  2</span>
+<span class="go">4  4 -0.045382  1</span>
 </pre></div>
 </div>
 </section>
@@ -1775,16 +1775,16 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [23]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">])</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[23]: </span>
 <span class="go">   a         b</span>
-<span class="go">0  0  0.193991</span>
-<span class="go">1  1 -0.600282</span>
-<span class="go">2  2  1.589658</span>
-<span class="go">3  3 -0.055857</span>
-<span class="go">4  4 -1.857964</span>
-<span class="go">5  5  2.027261</span>
-<span class="go">6  6 -0.128349</span>
-<span class="go">7  7 -0.301589</span>
-<span class="go">8  8  0.074707</span>
-<span class="go">9  9  0.609201</span>
+<span class="go">0  0  1.787449</span>
+<span class="go">1  1 -1.741091</span>
+<span class="go">2  2 -0.265143</span>
+<span class="go">3  3  1.140438</span>
+<span class="go">4  4 -0.045382</span>
+<span class="go">5  5 -0.122007</span>
+<span class="go">6  6  0.306392</span>
+<span class="go">7  7 -0.374085</span>
+<span class="go">8  8  1.682015</span>
+<span class="go">9  9  0.791477</span>
 </pre></div>
 </div>
 <p>With the <code class="docutils literal notranslate"><span 
class="pre">filter</span></code> keyword, rows which do not match the filter 
predicate will
@@ -1793,18 +1793,18 @@ not be included in the returned table. The keyword 
expects a boolean
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;a&#39;</span><span class="p">)</span> <span 
class="o">&gt;=</span> <span class="mi">7</sp [...]
 <span class="gh">Out[24]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  7 -0.301589  2</span>
-<span class="go">1  8  0.074707  1</span>
-<span class="go">2  9  0.609201  2</span>
+<span class="go">0  7 -0.374085  2</span>
+<span class="go">1  8  1.682015  1</span>
+<span class="go">2  9  0.791477  2</span>
 
 <span class="gp">In [25]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;c&#39;</span><span class="p">)</span> <span class="o">==</span> 
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span 
class="n">to_pandas</span><spa [...]
 <span class="gh">Out[25]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  1 -0.600282  2</span>
-<span class="go">1  3 -0.055857  2</span>
-<span class="go">2  5  2.027261  2</span>
-<span class="go">3  7 -0.301589  2</span>
-<span class="go">4  9  0.609201  2</span>
+<span class="go">0  1 -1.741091  2</span>
+<span class="go">1  3  1.140438  2</span>
+<span class="go">2  5 -0.122007  2</span>
+<span class="go">3  7 -0.374085  2</span>
+<span class="go">4  9  0.791477  2</span>
 </pre></div>
 </div>
 <p>The easiest way to construct those <a class="reference internal" 
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" 
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils 
literal notranslate"><span class="pre">Expression</span></code></a> objects is 
by using the
@@ -1849,11 +1849,11 @@ values:</p>
 <span class="gp">In [30]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[30]: </span>
 <span class="go">   a_renamed  b_as_float32    c_1</span>
-<span class="go">0          0      0.193991   True</span>
-<span class="go">1          1     -0.600282  False</span>
-<span class="go">2          2      1.589658   True</span>
-<span class="go">3          3     -0.055857  False</span>
-<span class="go">4          4     -1.857964   True</span>
+<span class="go">0          0      1.787449   True</span>
+<span class="go">1          1     -1.741091  False</span>
+<span class="go">2          2     -0.265143   True</span>
+<span class="go">3          3      1.140438  False</span>
+<span class="go">4          4     -0.045382   True</span>
 </pre></div>
 </div>
 <p>The dictionary also determines the column selection (only the keys in the
@@ -1867,11 +1867,11 @@ build up the dictionary from the dataset schema:</p>
 <span class="gp">In [33]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[33]: </span>
 <span class="go">   a         b  c  b_large</span>
-<span class="go">0  0  0.193991  1    False</span>
-<span class="go">1  1 -0.600282  2    False</span>
-<span class="go">2  2  1.589658  1     True</span>
-<span class="go">3  3 -0.055857  2    False</span>
-<span class="go">4  4 -1.857964  1    False</span>
+<span class="go">0  0  1.787449  1     True</span>
+<span class="go">1  1 -1.741091  2    False</span>
+<span class="go">2  2 -0.265143  1    False</span>
+<span class="go">3  3  1.140438  2     True</span>
+<span class="go">4  4 -0.045382  1    False</span>
 </pre></div>
 </div>
 </section>
@@ -1924,8 +1924,8 @@ should use a hive-like partitioning scheme with the <code 
class="docutils litera
 
 <span class="gp">In [37]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">files</span>
 <span class="gh">Out[37]: </span>
-<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/b9fc69ee5a274ad4bb6f5125052cf21e-0.parquet&#39;,</span>
-<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/b9fc69ee5a274ad4bb6f5125052cf21e-0.parquet&#39;]</span>
+<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/fbe1ce2a97b04f3e88333b53fa4c0318-0.parquet&#39;,</span>
+<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/fbe1ce2a97b04f3e88333b53fa4c0318-0.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>Although the partition fields are not included in the actual Parquet files,
@@ -1933,9 +1933,9 @@ they will be added back to the resulting table when 
scanning this dataset:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span><span 
class="o">.</span><span class="n">head</span><span class="p">(</span><span 
class="mi">3</span><span class="p">)</span>
 <span class="gh">Out[38]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  0  0.065839  1    a</span>
-<span class="go">1  1 -1.117343  2    a</span>
-<span class="go">2  2  1.157464  1    a</span>
+<span class="go">0  0 -0.184165  1    a</span>
+<span class="go">1  1 -0.007663  2    a</span>
+<span class="go">2  2  1.491945  1    a</span>
 </pre></div>
 </div>
 <p>We can now filter on the partition keys, which avoids loading files
@@ -1943,11 +1943,11 @@ altogether if they do not match the filter:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s2">&quot;part&quot;</span><span class="p">)</span> <span 
class="o">==</span> <span class="s2">&qu [...]
 <span class="gh">Out[39]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  5 -0.777627  2    b</span>
-<span class="go">1  6 -1.419573  1    b</span>
-<span class="go">2  7  0.761908  2    b</span>
-<span class="go">3  8  0.356958  1    b</span>
-<span class="go">4  9 -0.048888  2    b</span>
+<span class="go">0  5  0.031678  2    b</span>
+<span class="go">1  6 -1.039508  1    b</span>
+<span class="go">2  7 -0.357785  2    b</span>
+<span class="go">3  8 -0.633656  1    b</span>
+<span class="go">4  9  0.159255  2    b</span>
 </pre></div>
 </div>
 <section id="different-partitioning-schemes">
@@ -2079,19 +2079,19 @@ is materialized as columns when reading the data and 
can be used for filtering:<
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[47]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2018     0  0.674932</span>
-<span class="go">1  2018     1  0.776249</span>
-<span class="go">2  2018     2 -0.337712</span>
-<span class="go">3  2019     0  0.674932</span>
-<span class="go">4  2019     1  0.776249</span>
-<span class="go">5  2019     2 -0.337712</span>
+<span class="go">0  2018     0 -0.328980</span>
+<span class="go">1  2018     1  1.194641</span>
+<span class="go">2  2018     2  0.199928</span>
+<span class="go">3  2019     0 -0.328980</span>
+<span class="go">4  2019     1  1.194641</span>
+<span class="go">5  2019     2  0.199928</span>
 
 <span class="gp">In [48]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;year&#39;</span><span class="p">)</span> <span 
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</spa [...]
 <span class="gh">Out[48]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2019     0  0.674932</span>
-<span class="go">1  2019     1  0.776249</span>
-<span class="go">2  2019     2 -0.337712</span>
+<span class="go">0  2019     0 -0.328980</span>
+<span class="go">1  2019     1  1.194641</span>
+<span class="go">2  2019     2  0.199928</span>
 </pre></div>
 </div>
 <p>Another benefit of manually listing the files is that the order of the files
@@ -2343,7 +2343,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="gp">   ....: </span>
 <span class="go">path=dataset_visited/c=1/part-0.parquet</span>
 <span class="go">size=816 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f2693125580&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f02656d1940&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
@@ -2352,7 +2352,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="go">  serialized_size: 0</span>
 <span class="go">path=dataset_visited/c=2/part-0.parquet</span>
 <span class="go">size=818 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f2693125580&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f0265624fe0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 583ddfa9211..65675e6803b 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1694,7 +1694,7 @@ it’s possible to apply transformations to the data</p>
 
 <span class="gp">In [12]: </span><span class="n">pc</span><span 
class="o">.</span><span class="n">value_counts</span><span 
class="p">(</span><span class="n">birthdays_table</span><span 
class="p">[</span><span class="s2">&quot;years&quot;</span><span 
class="p">])</span>
 <span class="gh">Out[12]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f26636a1420&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f0235c993c0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 0fbe0ed8449..546ea8c2c54 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1643,7 +1643,7 @@ a bytes object:</p>
 <span class="gp">In [3]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span 
class="n">py_buffer</span><span class="p">(</span><span 
class="n">data</span><span class="p">)</span>
 
 <span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7f2661f04610 size=26 is_cpu=True is_mutable=False&gt;</span>
+<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7f02356db2d0 size=26 is_cpu=True is_mutable=False&gt;</span>
 
 <span class="gp">In [5]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">size</span>
 <span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1656,7 +1656,7 @@ referenced using the <a class="reference internal" 
href="generated/pyarrow.forei
 <p>Buffers can be used in circumstances where a Python buffer or memoryview is
 required, and such conversions are zero-copy:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span 
class="nb">memoryview</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7f2662459d80&gt;</span>
+<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7f0235a35d80&gt;</span>
 </pre></div>
 </div>
 <p>The Buffer’s <a class="reference internal" 
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes" 
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal 
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts 
the Buffer’s data to a
@@ -1855,7 +1855,7 @@ into Arrow Buffer objects, use <code class="docutils 
literal notranslate"><span
 <span class="gp">In [32]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span 
class="n">read_buffer</span><span class="p">(</span><span 
class="mi">4</span><span class="p">)</span>
 
 <span class="gp">In [33]: </span><span class="nb">print</span><span 
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go">&lt;pyarrow.Buffer address=0x7f26fbbf4000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
+<span class="go">&lt;pyarrow.Buffer address=0x7f02ce27b000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
 
 <span class="gp">In [34]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
 <span class="gh">Out[34]: </span><span class="go">b&#39;some&#39;</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index aea08b37ed7..9ba9d1b7749 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1817,7 +1817,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [10]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[10]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f2661ec95a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f0235c985e0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;a&quot;,</span>
 <span class="go">  &quot;b&quot;,</span>
@@ -1826,7 +1826,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [11]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[11]: </span>
-<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7f2661ec9120&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7f02b3f891e0&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -1952,7 +1952,7 @@ converted to an Arrow <code class="docutils literal 
notranslate"><span class="pr
 
 <span class="gp">In [33]: </span><span class="n">arr</span>
 <span class="gh">Out[33]: </span>
-<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7f2661fbbfa0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7f02b3f8afe0&gt;</span>
 <span class="go">[</span>
 <span class="go">  01:01:01.000000,</span>
 <span class="go">  02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index 822071719f8..e3697f38218 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1788,7 +1788,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [20]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">metadata</span>
 <span class="gh">Out[20]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f26636ba430&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f0235c9e2f0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1798,7 +1798,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [21]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">schema</span>
 <span class="gh">Out[21]: </span>
-<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7f2661efad80&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7f0236343100&gt;</span>
 <span class="go">required group field_id=-1 schema {</span>
 <span class="go">  optional double field_id=-1 one;</span>
 <span class="go">  optional binary field_id=-1 two (String);</span>
@@ -1856,7 +1856,7 @@ concatenate them into a single table. You can read 
individual row groups with
 
 <span class="gp">In [30]: </span><span class="n">metadata</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f26e1b79530&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f0235d4a980&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1870,7 +1870,7 @@ concatenate them into a single table. You can read 
individual row groups with
 such as the row groups and column chunk metadata and statistics:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span 
class="n">metadata</span><span class="o">.</span><span 
class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[31]: </span>
-<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7f266208d0d0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7f02b3e904a0&gt;</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
 <span class="go">  total_byte_size: 282</span>
@@ -1878,7 +1878,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 
 <span class="gp">In [32]: </span><span class="n">metadata</span><span 
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span><span class="o">.</span><span 
class="n">column</span><span class="p">(</span><span class="mi">0</span><span 
class="p">)</span>
 <span class="gh">Out[32]: </span>
-<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7f26e1bc53a0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7f02b3e90810&gt;</span>
 <span class="go">  file_offset: 0</span>
 <span class="go">  file_path: </span>
 <span class="go">  physical_type: DOUBLE</span>
@@ -1886,7 +1886,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 <span class="go">  path_in_schema: one</span>
 <span class="go">  is_stats_set: True</span>
 <span class="go">  statistics:</span>
-<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7f26e1bc53f0&gt;</span>
+<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7f02b3e908b0&gt;</span>
 <span class="go">      has_min_max: True</span>
 <span class="go">      min: -1.0</span>
 <span class="go">      max: 2.5</span>
diff --git a/docs/dev/r/articles/data_wrangling.html 
b/docs/dev/r/articles/data_wrangling.html
index 2edc9e7d90c..7e319010e3c 100644
--- a/docs/dev/r/articles/data_wrangling.html
+++ b/docs/dev/r/articles/data_wrangling.html
@@ -411,16 +411,16 @@ paying a performance penalty using the helper function
 <pre><code><span><span class="co">## <span style="color: #949494;"># A tibble: 
28 x 4</span></span></span>
 <span><span class="co">##    name                    height  mass 
hair_color</span></span>
 <span><span class="co">##    <span style="color: #949494; font-style: 
italic;">&lt;chr&gt;</span>                    <span style="color: #949494; 
font-style: italic;">&lt;int&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;chr&gt;</span>     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> <span 
style="color: #949494;">"</span>Yoda<span style="color: #949494;">"</span>      
                66    17 white     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> <span 
style="color: #949494;">"</span>Leia Organa<span style="color: 
#949494;">"</span>              150    49 brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> <span 
style="color: #949494;">"</span>Beru Whitesun Lars<span style="color: 
#949494;">"</span>       165    75 brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> <span 
style="color: #949494;">"</span>Wedge Antilles<span style="color: 
#949494;">"</span>           170    77 brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> <span 
style="color: #949494;">"</span>Wicket Systri Warrick<span style="color: 
#949494;">"</span>     88    20 brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> <span 
style="color: #949494;">"</span>Cord\u00e9<span style="color: 
#949494;">"</span>               157    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> <span 
style="color: #949494;">"</span>Dorm\u00e9<span style="color: 
#949494;">"</span>               165    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> <span 
style="color: #949494;">"</span>R4-P17<span style="color: #949494;">"</span>    
                96    <span style="color: #BB0000;">NA</span> none      
</span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> <span 
style="color: #949494;">"</span>Lobot<span style="color: #949494;">"</span>     
               175    79 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">10</span> <span 
style="color: #949494;">"</span>Ackbar<span style="color: #949494;">"</span>    
               180    83 none      </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> <span 
style="color: #949494;">"</span>Leia Organa<span style="color: 
#949494;">"</span>              150    49 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> <span 
style="color: #949494;">"</span>Beru Whitesun Lars<span style="color: 
#949494;">"</span>       165    75 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> <span 
style="color: #949494;">"</span>Wedge Antilles<span style="color: 
#949494;">"</span>           170    77 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> <span 
style="color: #949494;">"</span>Wicket Systri Warrick<span style="color: 
#949494;">"</span>     88    20 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> <span 
style="color: #949494;">"</span>Cord\u00e9<span style="color: 
#949494;">"</span>               157    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> <span 
style="color: #949494;">"</span>Dorm\u00e9<span style="color: 
#949494;">"</span>               165    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> <span 
style="color: #949494;">"</span>R4-P17<span style="color: #949494;">"</span>    
                96    <span style="color: #BB0000;">NA</span> none      
</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> <span 
style="color: #949494;">"</span>Lobot<span style="color: #949494;">"</span>     
               175    79 none      </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> <span 
style="color: #949494;">"</span>Ackbar<span style="color: #949494;">"</span>    
               180    83 none      </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">10</span> <span 
style="color: #949494;">"</span>Nien Nunb<span style="color: #949494;">"</span> 
               160    68 none      </span></span>
 <span><span class="co">## <span style="color: #949494;"># i 18 more 
rows</span></span></span></code></pre>
 </div>
 <div class="section level2">
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index b2a2a381c7e..cd8f7008bf0 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
   read_write: read_write.html
   developers/setup: developers/setup.html
   developers/workflow: developers/workflow.html
-last_built: 2025-05-24T01:12Z
+last_built: 2025-05-25T01:19Z
 urls:
   reference: https://arrow.apache.org/docs/r/reference
   article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/r/reference/to_duckdb.html 
b/docs/dev/r/reference/to_duckdb.html
index e7513043499..8c5d21414dc 100644
--- a/docs/dev/r/reference/to_duckdb.html
+++ b/docs/dev/r/reference/to_duckdb.html
@@ -145,11 +145,11 @@ using them.</p>
 <span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#949494;"># Groups:   cyl</span></span>
 <span class="r-out co"><span class="r-pr">#&gt;</span>     mpg   cyl  disp    
hp  drat    wt  qsec    vs    am  gear  carb</span>
 <span class="r-out co"><span class="r-pr">#&gt;</span>   <span style="color: 
#949494; font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: # [...]
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">1</span>  16.4     8  276.   180  3.07  4.07  17.4     0     0     3  
   3</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">2</span>  17.3     8  276.   180  3.07  3.73  17.6     0     0     3  
   3</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">3</span>  15.2     8  276.   180  3.07  3.78  18       0     0     3  
   3</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">4</span>  19.7     6  145    175  3.62  2.77  15.5     0     1     5  
   6</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">5</span>  27.3     4   79     66  4.08  1.94  18.9     1     1     4  
   1</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">1</span>  27.3     4   79     66  4.08  1.94  18.9     1     1     4  
   1</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">2</span>  16.4     8  276.   180  3.07  4.07  17.4     0     0     3  
   3</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">3</span>  17.3     8  276.   180  3.07  3.73  17.6     0     0     3  
   3</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">4</span>  15.2     8  276.   180  3.07  3.78  18       0     0     3  
   3</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">5</span>  19.7     6  145    175  3.62  2.77  15.5     0     1     5  
   6</span>
 </code></pre></div>
     </div>
   </main><aside class="col-md-3"><nav id="toc" aria-label="Table of 
contents"><h2>On this page</h2>
diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json
index 6b81319bcbe..2ab3885aaaf 100644
--- a/docs/dev/r/search.json
+++ b/docs/dev/r/search.json
@@ -1 +1 @@
-[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 Checklist for CRAN Release","title":"Packaging Checklist for CRAN 
Release","text":"high-level overview Arrow release process see Apache Arrow 
Release Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
 the Arrow Release Candidate Is Create [...]
+[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 Checklist for CRAN Release","title":"Packaging Checklist for CRAN 
Release","text":"high-level overview Arrow release process see Apache Arrow 
Release Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
 the Arrow Release Candidate Is Create [...]
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index dcc42505cdb..f40a3e0e2d9 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", 
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", 
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", 
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file
+Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", 
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", 
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", 
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file

Reply via email to