This is an automated email from the ASF dual-hosted git repository. github-bot pushed a commit to branch asf-site in repository https://gitbox.apache.org/repos/asf/arrow-site.git
The following commit(s) were added to refs/heads/asf-site by this push: new 3f7c9a9e078 Updating dev docs (build nightly-tests-2025-07-06-0) 3f7c9a9e078 is described below commit 3f7c9a9e078fa6addd475b7a59bbf0df3b7fa111 Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com> AuthorDate: Mon Jul 7 00:38:02 2025 +0000 Updating dev docs (build nightly-tests-2025-07-06-0) --- docs/dev/python/data.html | 46 ++++++------ docs/dev/python/dataset.html | 136 ++++++++++++++++++------------------ docs/dev/python/getstarted.html | 2 +- docs/dev/python/memory.html | 6 +- docs/dev/python/pandas.html | 6 +- docs/dev/python/parquet.html | 12 ++-- docs/dev/r/pkgdown.yml | 2 +- docs/dev/r/reference/to_duckdb.html | 10 +-- docs/dev/r/search.json | 2 +- docs/dev/searchindex.js | 2 +- 10 files changed, 112 insertions(+), 112 deletions(-) diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html index c162fc5f694..31a9e44e231 100644 --- a/docs/dev/python/data.html +++ b/docs/dev/python/data.html @@ -1685,7 +1685,7 @@ for you:</p> <span class="gp">In [29]: </span><span class="n">arr</span> <span class="gh">Out[29]: </span> -<span class="go"><pyarrow.lib.Int64Array object at 0x7fbccae7d0c0></span> +<span class="go"><pyarrow.lib.Int64Array object at 0x7f0fae85d2a0></span> <span class="go">[</span> <span class="go"> 1,</span> <span class="go"> 2,</span> @@ -1697,7 +1697,7 @@ for you:</p> <p>But you may also pass a specific data type to override type inference:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [30]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span class="o">=</span><span class="n">pa</span><span class="o">.</span><span class="n">uint16</span><span class="p">())</span> <span class="gh">Out[30]: </span> -<span class="go"><pyarrow.lib.UInt16Array object at 0x7fbccae7d6c0></span> +<span class="go"><pyarrow.lib.UInt16Array object at 0x7f0fae85d8a0></span> <span class="go">[</span> <span class="go"> 1,</span> <span class="go"> 2</span> @@ -1732,7 +1732,7 @@ nulls:</p> <p>Arrays can be sliced without copying:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [36]: </span><span class="n">arr</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span> <span class="gh">Out[36]: </span> -<span class="go"><pyarrow.lib.Int64Array object at 0x7fbccae7e020></span> +<span class="go"><pyarrow.lib.Int64Array object at 0x7f0fae85e320></span> <span class="go">[</span> <span class="go"> 2,</span> <span class="go"> null</span> @@ -1785,7 +1785,7 @@ This allows for ListView arrays to specify out-of-order offsets:</p> <span class="gp">In [45]: </span><span class="n">arr</span> <span class="gh">Out[45]: </span> -<span class="go"><pyarrow.lib.ListViewArray object at 0x7fbccae7eec0></span> +<span class="go"><pyarrow.lib.ListViewArray object at 0x7f0fae85ee60></span> <span class="go">[</span> <span class="go"> [</span> <span class="go"> 5,</span> @@ -1810,7 +1810,7 @@ This allows for ListView arrays to specify out-of-order offsets:</p> dictionaries:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [46]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span> <span class="kc">True</span><span class="p">},</span> <span class="p">{</span><span class="s1">'z& [...] <span class="gh">Out[46]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbccae7f280></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0fae85f1c0></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- child 0 type: int64</span> <span class="go"> [</span> @@ -1837,7 +1837,7 @@ you must explicitly pass the type:</p> <span class="gp">In [48]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span> <span class="kc">True</span><span class="p">},</span> <span class="p">{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span [...] <span class="gh">Out[48]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbccae7f8e0></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0fae85f7c0></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- child 0 type: int8</span> <span class="go"> [</span> @@ -1852,7 +1852,7 @@ you must explicitly pass the type:</p> <span class="gp">In [49]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([(</span><span class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="kc">False</span><span class="p">)],</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span> <span class="gh">Out[49]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbccae7fa60></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0fae85f940></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- child 0 type: int8</span> <span class="go"> [</span> @@ -1871,7 +1871,7 @@ level and at the individual field level. If initializing from a sequence of Python dicts, a missing dict key is handled as a null value:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [50]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">([{</span><span class="s1">'x'</span><span class="p">:</span> <span class="mi">1</span><span class="p">},</span> <span class="kc">None</span><span class="p">,</span> <span class="p">{</span><span class="s1">'y'</span><span class="p">:</span> <span class="kc">None</s [...] <span class="gh">Out[50]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbccae7f640></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0fae85fa00></span> <span class="go">-- is_valid:</span> <span class="go"> [</span> <span class="go"> true,</span> @@ -1906,7 +1906,7 @@ individual arrays, and no copy is involved:</p> <span class="gp">In [55]: </span><span class="n">arr</span> <span class="gh">Out[55]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbccaeb8460></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0fae8a0160></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- child 0 type: int16</span> <span class="go"> [</span> @@ -1933,7 +1933,7 @@ the type is explicitly passed into <a class="reference internal" href="generated <span class="gp">In [58]: </span><span class="n">pa</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="n">ty</span><span class="p">)</span> <span class="gh">Out[58]: </span> -<span class="go"><pyarrow.lib.MapArray object at 0x7fbccaeb8940></span> +<span class="go"><pyarrow.lib.MapArray object at 0x7f0fae8a0640></span> <span class="go">[</span> <span class="go"> keys:</span> <span class="go"> [</span> @@ -1967,7 +1967,7 @@ their row, use the <a class="reference internal" href="generated/pyarrow.ListArr <span class="gp">In [60]: </span><span class="n">arr</span><span class="o">.</span><span class="n">keys</span> <span class="gh">Out[60]: </span> -<span class="go"><pyarrow.lib.StringArray object at 0x7fbccaeb8c40></span> +<span class="go"><pyarrow.lib.StringArray object at 0x7f0fae8a0940></span> <span class="go">[</span> <span class="go"> "x",</span> <span class="go"> "y",</span> @@ -1976,7 +1976,7 @@ their row, use the <a class="reference internal" href="generated/pyarrow.ListArr <span class="gp">In [61]: </span><span class="n">arr</span><span class="o">.</span><span class="n">items</span> <span class="gh">Out[61]: </span> -<span class="go"><pyarrow.lib.Int64Array object at 0x7fbccaeb8b80></span> +<span class="go"><pyarrow.lib.Int64Array object at 0x7f0fae8a08e0></span> <span class="go">[</span> <span class="go"> 4,</span> <span class="go"> 5,</span> @@ -1985,7 +1985,7 @@ their row, use the <a class="reference internal" href="generated/pyarrow.ListArr <span class="gp">In [62]: </span><span class="n">pa</span><span class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span class="p">,</span> <span class="n">arr</span><span class="o">.</span><span class="n">keys</span><span class="p">)</span> <span class="gh">Out[62]: </span> -<span class="go"><pyarrow.lib.ListArray object at 0x7fbccaeb9000></span> +<span class="go"><pyarrow.lib.ListArray object at 0x7f0fae8a0ca0></span> <span class="go">[</span> <span class="go"> [</span> <span class="go"> "x",</span> @@ -1998,7 +1998,7 @@ their row, use the <a class="reference internal" href="generated/pyarrow.ListArr <span class="gp">In [63]: </span><span class="n">pa</span><span class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span class="n">from_arrays</span><span class="p">(</span><span class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span class="p">,</span> <span class="n">arr</span><span class="o">.</span><span class="n">items</span><span class="p">)</span> <span class="gh">Out[63]: </span> -<span class="go"><pyarrow.lib.ListArray object at 0x7fbccaeb8f40></span> +<span class="go"><pyarrow.lib.ListArray object at 0x7f0fae8a0be0></span> <span class="go">[</span> <span class="go"> [</span> <span class="go"> 4,</span> @@ -2033,7 +2033,7 @@ selected:</p> <span class="gp">In [69]: </span><span class="n">union_arr</span> <span class="gh">Out[69]: </span> -<span class="go"><pyarrow.lib.UnionArray object at 0x7fbccaeb9420></span> +<span class="go"><pyarrow.lib.UnionArray object at 0x7f0fae8a1060></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- type_ids: [</span> <span class="go"> 0,</span> @@ -2072,7 +2072,7 @@ each offset in the selected child array it can be found:</p> <span class="gp">In [76]: </span><span class="n">union_arr</span> <span class="gh">Out[76]: </span> -<span class="go"><pyarrow.lib.UnionArray object at 0x7fbccaeb9fc0></span> +<span class="go"><pyarrow.lib.UnionArray object at 0x7f0fae8a19c0></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- type_ids: [</span> <span class="go"> 0,</span> @@ -2121,7 +2121,7 @@ consider an example:</p> <span class="gp">In [80]: </span><span class="n">dict_array</span> <span class="gh">Out[80]: </span> -<span class="go"><pyarrow.lib.DictionaryArray object at 0x7fbccae8b290></span> +<span class="go"><pyarrow.lib.DictionaryArray object at 0x7f0fae877290></span> <span class="go">-- dictionary:</span> <span class="go"> [</span> @@ -2148,7 +2148,7 @@ consider an example:</p> <span class="gp">In [82]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">indices</span> <span class="gh">Out[82]: </span> -<span class="go"><pyarrow.lib.Int64Array object at 0x7fbccae7d360></span> +<span class="go"><pyarrow.lib.Int64Array object at 0x7f0fae8a23e0></span> <span class="go">[</span> <span class="go"> 0,</span> <span class="go"> 1,</span> @@ -2162,7 +2162,7 @@ consider an example:</p> <span class="gp">In [83]: </span><span class="n">dict_array</span><span class="o">.</span><span class="n">dictionary</span> <span class="gh">Out[83]: </span> -<span class="go"><pyarrow.lib.StringArray object at 0x7fbccaeba980></span> +<span class="go"><pyarrow.lib.StringArray object at 0x7f0fae8a2440></span> <span class="go">[</span> <span class="go"> "foo",</span> <span class="go"> "bar",</span> @@ -2218,7 +2218,7 @@ instances. Let’s consider a collection of arrays:</p> <span class="gp">In [90]: </span><span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="gh">Out[90]: </span> -<span class="go"><pyarrow.lib.StringArray object at 0x7fbccaebb6a0></span> +<span class="go"><pyarrow.lib.StringArray object at 0x7f0fae8a2ce0></span> <span class="go">[</span> <span class="go"> "foo",</span> <span class="go"> "bar",</span> @@ -2232,7 +2232,7 @@ instances. Let’s consider a collection of arrays:</p> <span class="gp">In [92]: </span><span class="n">batch2</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="gh">Out[92]: </span> -<span class="go"><pyarrow.lib.StringArray object at 0x7fbccaebb9a0></span> +<span class="go"><pyarrow.lib.StringArray object at 0x7f0fae8a3460></span> <span class="go">[</span> <span class="go"> "bar",</span> <span class="go"> "baz",</span> @@ -2276,7 +2276,7 @@ container for one or more arrays of the same type.</p> <span class="gp">In [98]: </span><span class="n">c</span> <span class="gh">Out[98]: </span> -<span class="go"><pyarrow.lib.ChunkedArray object at 0x7fbccaebbe20></span> +<span class="go"><pyarrow.lib.ChunkedArray object at 0x7f0fae8a3760></span> <span class="go">[</span> <span class="go"> [</span> <span class="go"> 1,</span> @@ -2310,7 +2310,7 @@ container for one or more arrays of the same type.</p> <span class="gp">In [100]: </span><span class="n">c</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gh">Out[100]: </span> -<span class="go"><pyarrow.lib.Int64Array object at 0x7fbccaebbd60></span> +<span class="go"><pyarrow.lib.Int64Array object at 0x7f0fae8a3940></span> <span class="go">[</span> <span class="go"> 1,</span> <span class="go"> 2,</span> diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html index 333c23a89f6..866e30d44c7 100644 --- a/docs/dev/python/dataset.html +++ b/docs/dev/python/dataset.html @@ -1571,7 +1571,7 @@ can pass it the path to the directory containing the data files:</p> <span class="gp">In [12]: </span><span class="n">dataset</span> <span class="o">=</span> <span class="n">ds</span><span class="o">.</span><span class="n">dataset</span><span class="p">(</span><span class="n">base</span> <span class="o">/</span> <span class="s2">"parquet_dataset"</span><span class="p">,</span> <span class="nb">format</span><span class="o">=</span><span class="s2">"parquet"</span><span class="p">)</span> <span class="gp">In [13]: </span><span class="n">dataset</span> -<span class="gh">Out[13]: </span><span class="go"><pyarrow._dataset.FileSystemDataset at 0x7fbccad4e020></span> +<span class="gh">Out[13]: </span><span class="go"><pyarrow._dataset.FileSystemDataset at 0x7f0fae7358a0></span> </pre></div> </div> <p>In addition to searching a base directory, <a class="reference internal" href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset" title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a @@ -1580,8 +1580,8 @@ single file or a list of file paths.</p> needed, it only crawls the directory to find all the files:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [14]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">files</span> <span class="gh">Out[14]: </span> -<span class="go">['/tmp/pyarrow-x1lo74f7/parquet_dataset/data1.parquet',</span> -<span class="go"> '/tmp/pyarrow-x1lo74f7/parquet_dataset/data2.parquet']</span> +<span class="go">['/tmp/pyarrow-ebp_rcr2/parquet_dataset/data1.parquet',</span> +<span class="go"> '/tmp/pyarrow-ebp_rcr2/parquet_dataset/data2.parquet']</span> </pre></div> </div> <p>… and infers the dataset’s schema (by default from the first file):</p> @@ -1602,23 +1602,23 @@ this can require a lot of memory, see below on filtering / iterative loading):</ <span class="go">c: int64</span> <span class="gt">----</span> <span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]] -<span class="ne">b</span>: [[-1.5508825868945828,0.4619516073402641,0.9676338341474751,-1.0078723868371955,-1.9403054545258747],[0.3888699592499064,0.019155576262605074,-0.22432428962704565,1.630983111570809,0.23871615881221325]] +<span class="ne">b</span>: [[0.5868581873633856,0.6189692305218486,-1.0272699238274143,0.1852683843198566,0.18068933997009576],[-0.6233523341001782,-0.2535499315843371,0.26843656888203987,1.1199898278112796,1.352845584036882]] <span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]] <span class="c1"># converting to pandas to see the contents of the scanned table</span> <span class="gp">In [17]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">()</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> <span class="gh">Out[17]: </span> <span class="go"> a b c</span> -<span class="go">0 0 -1.550883 1</span> -<span class="go">1 1 0.461952 2</span> -<span class="go">2 2 0.967634 1</span> -<span class="go">3 3 -1.007872 2</span> -<span class="go">4 4 -1.940305 1</span> -<span class="go">5 5 0.388870 2</span> -<span class="go">6 6 0.019156 1</span> -<span class="go">7 7 -0.224324 2</span> -<span class="go">8 8 1.630983 1</span> -<span class="go">9 9 0.238716 2</span> +<span class="go">0 0 0.586858 1</span> +<span class="go">1 1 0.618969 2</span> +<span class="go">2 2 -1.027270 1</span> +<span class="go">3 3 0.185268 2</span> +<span class="go">4 4 0.180689 1</span> +<span class="go">5 5 -0.623352 2</span> +<span class="go">6 6 -0.253550 1</span> +<span class="go">7 7 0.268437 2</span> +<span class="go">8 8 1.119990 1</span> +<span class="go">9 9 1.352846 2</span> </pre></div> </div> </section> @@ -1641,11 +1641,11 @@ supported; more formats are planned in the future.</p> <span class="gp">In [21]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">()</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> <span class="gh">Out[21]: </span> <span class="go"> a b c</span> -<span class="go">0 0 -1.550883 1</span> -<span class="go">1 1 0.461952 2</span> -<span class="go">2 2 0.967634 1</span> -<span class="go">3 3 -1.007872 2</span> -<span class="go">4 4 -1.940305 1</span> +<span class="go">0 0 0.586858 1</span> +<span class="go">1 1 0.618969 2</span> +<span class="go">2 2 -1.027270 1</span> +<span class="go">3 3 0.185268 2</span> +<span class="go">4 4 0.180689 1</span> </pre></div> </div> </section> @@ -1677,16 +1677,16 @@ supported; more formats are planned in the future.</p> <span class="gp">In [23]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">'a'</span><span class="p">,</span> <span class="s1">'b'</span><span class="p">])</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> <span class="gh">Out[23]: </span> <span class="go"> a b</span> -<span class="go">0 0 -1.550883</span> -<span class="go">1 1 0.461952</span> -<span class="go">2 2 0.967634</span> -<span class="go">3 3 -1.007872</span> -<span class="go">4 4 -1.940305</span> -<span class="go">5 5 0.388870</span> -<span class="go">6 6 0.019156</span> -<span class="go">7 7 -0.224324</span> -<span class="go">8 8 1.630983</span> -<span class="go">9 9 0.238716</span> +<span class="go">0 0 0.586858</span> +<span class="go">1 1 0.618969</span> +<span class="go">2 2 -1.027270</span> +<span class="go">3 3 0.185268</span> +<span class="go">4 4 0.180689</span> +<span class="go">5 5 -0.623352</span> +<span class="go">6 6 -0.253550</span> +<span class="go">7 7 0.268437</span> +<span class="go">8 8 1.119990</span> +<span class="go">9 9 1.352846</span> </pre></div> </div> <p>With the <code class="docutils literal notranslate"><span class="pre">filter</span></code> keyword, rows which do not match the filter predicate will @@ -1695,18 +1695,18 @@ not be included in the returned table. The keyword expects a boolean <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [24]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'a'</span><span class="p">)</span> <span class="o">>=</span> <span class="mi">7</sp [...] <span class="gh">Out[24]: </span> <span class="go"> a b c</span> -<span class="go">0 7 -0.224324 2</span> -<span class="go">1 8 1.630983 1</span> -<span class="go">2 9 0.238716 2</span> +<span class="go">0 7 0.268437 2</span> +<span class="go">1 8 1.119990 1</span> +<span class="go">2 9 1.352846 2</span> <span class="gp">In [25]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'c'</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><spa [...] <span class="gh">Out[25]: </span> <span class="go"> a b c</span> -<span class="go">0 1 0.461952 2</span> -<span class="go">1 3 -1.007872 2</span> -<span class="go">2 5 0.388870 2</span> -<span class="go">3 7 -0.224324 2</span> -<span class="go">4 9 0.238716 2</span> +<span class="go">0 1 0.618969 2</span> +<span class="go">1 3 0.185268 2</span> +<span class="go">2 5 -0.623352 2</span> +<span class="go">3 7 0.268437 2</span> +<span class="go">4 9 1.352846 2</span> </pre></div> </div> <p>The easiest way to construct those <a class="reference internal" href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" title="pyarrow.dataset.Expression"><code class="xref py py-class docutils literal notranslate"><span class="pre">Expression</span></code></a> objects is by using the @@ -1751,11 +1751,11 @@ values:</p> <span class="gp">In [30]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="n">columns</span><span class="o">=</span><span class="n">projection</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> <span class="gh">Out[30]: </span> <span class="go"> a_renamed b_as_float32 c_1</span> -<span class="go">0 0 -1.550883 True</span> -<span class="go">1 1 0.461952 False</span> -<span class="go">2 2 0.967634 True</span> -<span class="go">3 3 -1.007872 False</span> -<span class="go">4 4 -1.940305 True</span> +<span class="go">0 0 0.586858 True</span> +<span class="go">1 1 0.618969 False</span> +<span class="go">2 2 -1.027270 True</span> +<span class="go">3 3 0.185268 False</span> +<span class="go">4 4 0.180689 True</span> </pre></div> </div> <p>The dictionary also determines the column selection (only the keys in the @@ -1769,11 +1769,11 @@ build up the dictionary from the dataset schema:</p> <span class="gp">In [33]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="n">columns</span><span class="o">=</span><span class="n">projection</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">head</span><span class="p">()</span> <span class="gh">Out[33]: </span> <span class="go"> a b c b_large</span> -<span class="go">0 0 -1.550883 1 False</span> -<span class="go">1 1 0.461952 2 False</span> -<span class="go">2 2 0.967634 1 False</span> -<span class="go">3 3 -1.007872 2 False</span> -<span class="go">4 4 -1.940305 1 False</span> +<span class="go">0 0 0.586858 1 False</span> +<span class="go">1 1 0.618969 2 False</span> +<span class="go">2 2 -1.027270 1 False</span> +<span class="go">3 3 0.185268 2 False</span> +<span class="go">4 4 0.180689 1 False</span> </pre></div> </div> </section> @@ -1826,8 +1826,8 @@ should use a hive-like partitioning scheme with the <code class="docutils litera <span class="gp">In [37]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">files</span> <span class="gh">Out[37]: </span> -<span class="go">['parquet_dataset_partitioned/part=a/0afab988b86d4387b956c460b56c8cfc-0.parquet',</span> -<span class="go"> 'parquet_dataset_partitioned/part=b/0afab988b86d4387b956c460b56c8cfc-0.parquet']</span> +<span class="go">['parquet_dataset_partitioned/part=a/e1ca2aa0c1a14df2a62c5f99e004e31c-0.parquet',</span> +<span class="go"> 'parquet_dataset_partitioned/part=b/e1ca2aa0c1a14df2a62c5f99e004e31c-0.parquet']</span> </pre></div> </div> <p>Although the partition fields are not included in the actual Parquet files, @@ -1835,9 +1835,9 @@ they will be added back to the resulting table when scanning this dataset:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [38]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">()</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span><span class="o">.</span><span class="n">head</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span> <span class="gh">Out[38]: </span> <span class="go"> a b c part</span> -<span class="go">0 0 -1.213455 1 a</span> -<span class="go">1 1 -1.101675 2 a</span> -<span class="go">2 2 -0.714892 1 a</span> +<span class="go">0 0 0.361993 1 a</span> +<span class="go">1 1 1.081140 2 a</span> +<span class="go">2 2 -1.338426 1 a</span> </pre></div> </div> <p>We can now filter on the partition keys, which avoids loading files @@ -1845,11 +1845,11 @@ altogether if they do not match the filter:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [39]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s2">"part"</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&qu [...] <span class="gh">Out[39]: </span> <span class="go"> a b c part</span> -<span class="go">0 5 -1.462209 2 b</span> -<span class="go">1 6 -1.365225 1 b</span> -<span class="go">2 7 -0.322173 2 b</span> -<span class="go">3 8 0.448351 1 b</span> -<span class="go">4 9 0.678461 2 b</span> +<span class="go">0 5 0.076543 2 b</span> +<span class="go">1 6 -0.262385 1 b</span> +<span class="go">2 7 1.108006 2 b</span> +<span class="go">3 8 0.258402 1 b</span> +<span class="go">4 9 0.300451 2 b</span> </pre></div> </div> <section id="different-partitioning-schemes"> @@ -1981,19 +1981,19 @@ is materialized as columns when reading the data and can be used for filtering:< <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [47]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">()</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span> <span class="gh">Out[47]: </span> <span class="go"> year col1 col2</span> -<span class="go">0 2018 0 -0.591372</span> -<span class="go">1 2018 1 -1.723943</span> -<span class="go">2 2018 2 -1.141440</span> -<span class="go">3 2019 0 -0.591372</span> -<span class="go">4 2019 1 -1.723943</span> -<span class="go">5 2019 2 -1.141440</span> +<span class="go">0 2018 0 0.022905</span> +<span class="go">1 2018 1 -0.213899</span> +<span class="go">2 2018 2 -0.163938</span> +<span class="go">3 2019 0 0.022905</span> +<span class="go">4 2019 1 -0.213899</span> +<span class="go">5 2019 2 -0.163938</span> <span class="gp">In [48]: </span><span class="n">dataset</span><span class="o">.</span><span class="n">to_table</span><span class="p">(</span><span class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span class="o">.</span><span class="n">field</span><span class="p">(</span><span class="s1">'year'</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span class="o">.</span><span class="n">to_pandas</spa [...] <span class="gh">Out[48]: </span> <span class="go"> year col1 col2</span> -<span class="go">0 2019 0 -0.591372</span> -<span class="go">1 2019 1 -1.723943</span> -<span class="go">2 2019 2 -1.141440</span> +<span class="go">0 2019 0 0.022905</span> +<span class="go">1 2019 1 -0.213899</span> +<span class="go">2 2019 2 -0.163938</span> </pre></div> </div> <p>Another benefit of manually listing the files is that the order of the files @@ -2245,7 +2245,7 @@ to supply a visitor that will be called as each file is created:</p> <span class="gp"> ....: </span> <span class="go">path=dataset_visited/c=1/part-0.parquet</span> <span class="go">size=816 bytes</span> -<span class="go">metadata=<pyarrow._parquet.FileMetaData object at 0x7fbccadf34c0></span> +<span class="go">metadata=<pyarrow._parquet.FileMetaData object at 0x7f0fae7d3060></span> <span class="go"> created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span> <span class="go"> num_columns: 2</span> <span class="go"> num_rows: 5</span> @@ -2254,7 +2254,7 @@ to supply a visitor that will be called as each file is created:</p> <span class="go"> serialized_size: 0</span> <span class="go">path=dataset_visited/c=2/part-0.parquet</span> <span class="go">size=818 bytes</span> -<span class="go">metadata=<pyarrow._parquet.FileMetaData object at 0x7fbccaee1f80></span> +<span class="go">metadata=<pyarrow._parquet.FileMetaData object at 0x7f0fae7d3060></span> <span class="go"> created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span> <span class="go"> num_columns: 2</span> <span class="go"> num_rows: 5</span> diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html index af8d6805d3a..53af42b1980 100644 --- a/docs/dev/python/getstarted.html +++ b/docs/dev/python/getstarted.html @@ -1596,7 +1596,7 @@ it’s possible to apply transformations to the data</p> <span class="gp">In [12]: </span><span class="n">pc</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">birthdays_table</span><span class="p">[</span><span class="s2">"years"</span><span class="p">])</span> <span class="gh">Out[12]: </span> -<span class="go"><pyarrow.lib.StructArray object at 0x7fbca06fe560></span> +<span class="go"><pyarrow.lib.StructArray object at 0x7f0f840e2620></span> <span class="go">-- is_valid: all not null</span> <span class="go">-- child 0 type: int16</span> <span class="go"> [</span> diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html index 5e845fef97d..3f97d1282c0 100644 --- a/docs/dev/python/memory.html +++ b/docs/dev/python/memory.html @@ -1545,7 +1545,7 @@ a bytes object:</p> <span class="gp">In [3]: </span><span class="n">buf</span> <span class="o">=</span> <span class="n">pa</span><span class="o">.</span><span class="n">py_buffer</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="gp">In [4]: </span><span class="n">buf</span> -<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer address=0x7fbc9e03da10 size=26 is_cpu=True is_mutable=False></span> +<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer address=0x7f0f81a08ad0 size=26 is_cpu=True is_mutable=False></span> <span class="gp">In [5]: </span><span class="n">buf</span><span class="o">.</span><span class="n">size</span> <span class="gh">Out[5]: </span><span class="go">26</span> @@ -1558,7 +1558,7 @@ referenced using the <a class="reference internal" href="generated/pyarrow.forei <p>Buffers can be used in circumstances where a Python buffer or memoryview is required, and such conversions are zero-copy:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [6]: </span><span class="nb">memoryview</span><span class="p">(</span><span class="n">buf</span><span class="p">)</span> -<span class="gh">Out[6]: </span><span class="go"><memory at 0x7fbca05a6140></span> +<span class="gh">Out[6]: </span><span class="go"><memory at 0x7f0f81f7a140></span> </pre></div> </div> <p>The Buffer’s <a class="reference internal" href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes" title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal notranslate"><span class="pre">to_pybytes()</span></code></a> method converts the Buffer’s data to a @@ -1757,7 +1757,7 @@ into Arrow Buffer objects, use <code class="docutils literal notranslate"><span <span class="gp">In [32]: </span><span class="n">buf</span> <span class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span class="n">read_buffer</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span> <span class="gp">In [33]: </span><span class="nb">print</span><span class="p">(</span><span class="n">buf</span><span class="p">)</span> -<span class="go"><pyarrow.Buffer address=0x7fbd35637000 size=4 is_cpu=True is_mutable=False></span> +<span class="go"><pyarrow.Buffer address=0x7f1018c9c000 size=4 is_cpu=True is_mutable=False></span> <span class="gp">In [34]: </span><span class="n">buf</span><span class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span> <span class="gh">Out[34]: </span><span class="go">b'some'</span> diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html index f1e676c3277..a02c53713f0 100644 --- a/docs/dev/python/pandas.html +++ b/docs/dev/python/pandas.html @@ -1719,7 +1719,7 @@ same categories of the Pandas DataFrame.</p> <span class="gp">In [10]: </span><span class="n">chunk</span><span class="o">.</span><span class="n">dictionary</span> <span class="gh">Out[10]: </span> -<span class="go"><pyarrow.lib.StringArray object at 0x7fbc9df6f0a0></span> +<span class="go"><pyarrow.lib.StringArray object at 0x7f0ffbf12c80></span> <span class="go">[</span> <span class="go"> "a",</span> <span class="go"> "b",</span> @@ -1728,7 +1728,7 @@ same categories of the Pandas DataFrame.</p> <span class="gp">In [11]: </span><span class="n">chunk</span><span class="o">.</span><span class="n">indices</span> <span class="gh">Out[11]: </span> -<span class="go"><pyarrow.lib.Int8Array object at 0x7fbc9df6f040></span> +<span class="go"><pyarrow.lib.Int8Array object at 0x7f0ffbf12980></span> <span class="go">[</span> <span class="go"> 0,</span> <span class="go"> 1,</span> @@ -1854,7 +1854,7 @@ converted to an Arrow <code class="docutils literal notranslate"><span class="pr <span class="gp">In [33]: </span><span class="n">arr</span> <span class="gh">Out[33]: </span> -<span class="go"><pyarrow.lib.Time64Array object at 0x7fbc9dfe8820></span> +<span class="go"><pyarrow.lib.Time64Array object at 0x7f0ffbfb8a60></span> <span class="go">[</span> <span class="go"> 01:01:01.000000,</span> <span class="go"> 02:02:02.000000</span> diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html index 685c44dd54d..6d566d6cf55 100644 --- a/docs/dev/python/parquet.html +++ b/docs/dev/python/parquet.html @@ -1690,7 +1690,7 @@ you may choose to omit it by passing <code class="docutils literal notranslate"> <span class="gp">In [20]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">metadata</span> <span class="gh">Out[20]: </span> -<span class="go"><pyarrow._parquet.FileMetaData object at 0x7fbca0503380></span> +<span class="go"><pyarrow._parquet.FileMetaData object at 0x7f0f84017bf0></span> <span class="go"> created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span> <span class="go"> num_columns: 4</span> <span class="go"> num_rows: 3</span> @@ -1700,7 +1700,7 @@ you may choose to omit it by passing <code class="docutils literal notranslate"> <span class="gp">In [21]: </span><span class="n">parquet_file</span><span class="o">.</span><span class="n">schema</span> <span class="gh">Out[21]: </span> -<span class="go"><pyarrow._parquet.ParquetSchema object at 0x7fbd17f9a8c0></span> +<span class="go"><pyarrow._parquet.ParquetSchema object at 0x7f0ffbe6ab80></span> <span class="go">required group field_id=-1 schema {</span> <span class="go"> optional double field_id=-1 one;</span> <span class="go"> optional binary field_id=-1 two (String);</span> @@ -1758,7 +1758,7 @@ concatenate them into a single table. You can read individual row groups with <span class="gp">In [30]: </span><span class="n">metadata</span> <span class="gh">Out[30]: </span> -<span class="go"><pyarrow._parquet.FileMetaData object at 0x7fbca0500e50></span> +<span class="go"><pyarrow._parquet.FileMetaData object at 0x7f0ffbe6e070></span> <span class="go"> created_by: parquet-cpp-arrow version 21.0.0-SNAPSHOT</span> <span class="go"> num_columns: 4</span> <span class="go"> num_rows: 3</span> @@ -1772,7 +1772,7 @@ concatenate them into a single table. You can read individual row groups with such as the row groups and column chunk metadata and statistics:</p> <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="gp">In [31]: </span><span class="n">metadata</span><span class="o">.</span><span class="n">row_group</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gh">Out[31]: </span> -<span class="go"><pyarrow._parquet.RowGroupMetaData object at 0x7fbd17fb17b0></span> +<span class="go"><pyarrow._parquet.RowGroupMetaData object at 0x7f0ffbe6ebb0></span> <span class="go"> num_columns: 4</span> <span class="go"> num_rows: 3</span> <span class="go"> total_byte_size: 282</span> @@ -1780,7 +1780,7 @@ such as the row groups and column chunk metadata and statistics:</p> <span class="gp">In [32]: </span><span class="n">metadata</span><span class="o">.</span><span class="n">row_group</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">column</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="gh">Out[32]: </span> -<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at 0x7fbd17fb1c10></span> +<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at 0x7f0ffbe6ed90></span> <span class="go"> file_offset: 0</span> <span class="go"> file_path: </span> <span class="go"> physical_type: DOUBLE</span> @@ -1788,7 +1788,7 @@ such as the row groups and column chunk metadata and statistics:</p> <span class="go"> path_in_schema: one</span> <span class="go"> is_stats_set: True</span> <span class="go"> statistics:</span> -<span class="go"> <pyarrow._parquet.Statistics object at 0x7fbca0500310></span> +<span class="go"> <pyarrow._parquet.Statistics object at 0x7f0ffbe38310></span> <span class="go"> has_min_max: True</span> <span class="go"> min: -1.0</span> <span class="go"> max: 2.5</span> diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml index ecd3a0dfb6b..3f5ed68cd68 100644 --- a/docs/dev/r/pkgdown.yml +++ b/docs/dev/r/pkgdown.yml @@ -21,7 +21,7 @@ articles: read_write: read_write.html developers/setup: developers/setup.html developers/workflow: developers/workflow.html -last_built: 2025-07-05T01:17Z +last_built: 2025-07-06T01:22Z urls: reference: https://arrow.apache.org/docs/r/reference article: https://arrow.apache.org/docs/r/articles diff --git a/docs/dev/r/reference/to_duckdb.html b/docs/dev/r/reference/to_duckdb.html index ecd03f2c330..ad0b87e008e 100644 --- a/docs/dev/r/reference/to_duckdb.html +++ b/docs/dev/r/reference/to_duckdb.html @@ -145,11 +145,11 @@ using them.</p> <span class="r-out co"><span class="r-pr">#></span> <span style="color: #949494;"># Groups: cyl</span></span> <span class="r-out co"><span class="r-pr">#></span> mpg cyl disp hp drat wt qsec vs am gear carb</span> <span class="r-out co"><span class="r-pr">#></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: #949494; font-style: italic;"><dbl></span> <span style="color: # [...] -<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">1</span> 16.4 8 276. 180 3.07 4.07 17.4 0 0 3 3</span> -<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">2</span> 17.3 8 276. 180 3.07 3.73 17.6 0 0 3 3</span> -<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">3</span> 15.2 8 276. 180 3.07 3.78 18 0 0 3 3</span> -<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">4</span> 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1</span> -<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">5</span> 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6</span> +<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">1</span> 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6</span> +<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">2</span> 16.4 8 276. 180 3.07 4.07 17.4 0 0 3 3</span> +<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">3</span> 17.3 8 276. 180 3.07 3.73 17.6 0 0 3 3</span> +<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">4</span> 15.2 8 276. 180 3.07 3.78 18 0 0 3 3</span> +<span class="r-out co"><span class="r-pr">#></span> <span style="color: #BCBCBC;">5</span> 27.3 4 79 66 4.08 1.94 18.9 1 1 4 1</span> </code></pre></div> </div> </main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2> diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json index 7007cadaf99..233e795f430 100644 --- a/docs/dev/r/search.json +++ b/docs/dev/r/search.json @@ -1 +1 @@ -[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging Checklist for CRAN Release","title":"Packaging Checklist for CRAN Release","text":"high-level overview Arrow release process see Apache Arrow Release Management Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before the Arrow Release Candidate Is Create [...] +[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging Checklist for CRAN Release","title":"Packaging Checklist for CRAN Release","text":"high-level overview Arrow release process see Apache Arrow Release Management Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before the Arrow Release Candidate Is Create [...] diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js index 58f21e973e2..611f7c10fcc 100644 --- a/docs/dev/searchindex.js +++ b/docs/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", "c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", "c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", "c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", "cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", "cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", "cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", "cpp/api/cuda", "cpp/ap [...] \ No newline at end of file +Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", "c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", "c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", "c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", "cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", "cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", "cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", "cpp/api/cuda", "cpp/ap [...] \ No newline at end of file