This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new a5fd29bcb2a Updating dev docs (build nightly-tests-2025-08-17-0)
a5fd29bcb2a is described below

commit a5fd29bcb2aeb26f4354f4d5d4fe77fd1769751b
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Mon Aug 18 00:38:17 2025 +0000

    Updating dev docs (build nightly-tests-2025-08-17-0)
---
 docs/dev/python/data.html               |  46 +++++------
 docs/dev/python/dataset.html            | 136 ++++++++++++++++----------------
 docs/dev/python/getstarted.html         |   2 +-
 docs/dev/python/memory.html             |   6 +-
 docs/dev/python/pandas.html             |   6 +-
 docs/dev/python/parquet.html            |  12 +--
 docs/dev/r/articles/data_wrangling.html |  24 +++---
 docs/dev/r/pkgdown.yml                  |   2 +-
 docs/dev/r/reference/to_duckdb.html     |   4 +-
 docs/dev/r/search.json                  |   2 +-
 docs/dev/searchindex.js                 |   2 +-
 11 files changed, 121 insertions(+), 121 deletions(-)

diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index c179e4342fd..0aeed20bb17 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1686,7 +1686,7 @@ for you:</p>
 
 <span class="gp">In [29]: </span><span class="n">arr</span>
 <span class="gh">Out[29]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcfa2fdec20&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5f118065c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
@@ -1698,7 +1698,7 @@ for you:</p>
 <p>But you may also pass a specific data type to override type inference:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [30]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">pa</span><span class="o">.</span><span 
class="n">uint16</span><span class="p">())</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7fcfa2fdf160&gt;</span>
+<span class="go">&lt;pyarrow.lib.UInt16Array object at 
0x7f5f11806b00&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2</span>
@@ -1733,7 +1733,7 @@ nulls:</p>
 <p>Arrays can be sliced without copying:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [36]: </span><span 
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span 
class="p">:</span><span class="mi">3</span><span class="p">]</span>
 <span class="gh">Out[36]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcfa2f80400&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5f11807460&gt;</span>
 <span class="go">[</span>
 <span class="go">  2,</span>
 <span class="go">  null</span>
@@ -1786,7 +1786,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 
 <span class="gp">In [45]: </span><span class="n">arr</span>
 <span class="gh">Out[45]: </span>
-<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7fcfa2f82440&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListViewArray object at 
0x7f5f11888100&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    5,</span>
@@ -1811,7 +1811,7 @@ This allows for ListView arrays to specify out-of-order 
offsets:</p>
 dictionaries:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [46]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;z& [...]
 <span class="gh">Out[46]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcfa2f820e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5f118882e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int64</span>
 <span class="go">  [</span>
@@ -1838,7 +1838,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [48]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">1</span><span class="p">,</span> <span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span 
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span 
class="s1">&#39;x&#39;</span><span class="p">:</span> <span 
class="mi">2</span><span class="p">,</span [...]
 <span class="gh">Out[48]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcfa30ec160&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5f118889a0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1853,7 +1853,7 @@ you must explicitly pass the type:</p>
 
 <span class="gp">In [49]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">([(</span><span 
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span 
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span 
class="p">,</span> <span class="kc">False</span><span class="p">)],</span> 
<span class="nb">type</span><span class="o">=</span><span 
class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[49]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcfa30ec280&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5f11888ac0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int8</span>
 <span class="go">  [</span>
@@ -1872,7 +1872,7 @@ level and at the individual field level.  If initializing 
from a sequence
 of Python dicts, a missing dict key is handled as a null value:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [50]: </span><span 
class="n">pa</span><span class="o">.</span><span class="n">array</span><span 
class="p">([{</span><span class="s1">&#39;x&#39;</span><span class="p">:</span> 
<span class="mi">1</span><span class="p">},</span> <span 
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span 
class="s1">&#39;y&#39;</span><span class="p">:</span> <span class="kc">None</s 
[...]
 <span class="gh">Out[50]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcfa30ec2e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5f11888b80&gt;</span>
 <span class="go">-- is_valid:</span>
 <span class="go">  [</span>
 <span class="go">    true,</span>
@@ -1907,7 +1907,7 @@ individual arrays, and no copy is involved:</p>
 
 <span class="gp">In [55]: </span><span class="n">arr</span>
 <span class="gh">Out[55]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcfa30ec700&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5f11889000&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
@@ -1934,7 +1934,7 @@ the type is explicitly passed into <a class="reference 
internal" href="generated
 
 <span class="gp">In [58]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">array</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="o">=</span><span class="n">ty</span><span class="p">)</span>
 <span class="gh">Out[58]: </span>
-<span class="go">&lt;pyarrow.lib.MapArray object at 0x7fcfa30add20&gt;</span>
+<span class="go">&lt;pyarrow.lib.MapArray object at 0x7f5f11889960&gt;</span>
 <span class="go">[</span>
 <span class="go">  keys:</span>
 <span class="go">  [</span>
@@ -1968,7 +1968,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [60]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">keys</span>
 <span class="gh">Out[60]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcfa30ae380&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5f11889c60&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;x&quot;,</span>
 <span class="go">  &quot;y&quot;,</span>
@@ -1977,7 +1977,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [61]: </span><span class="n">arr</span><span 
class="o">.</span><span class="n">items</span>
 <span class="gh">Out[61]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcfa30af2e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5f118896c0&gt;</span>
 <span class="go">[</span>
 <span class="go">  4,</span>
 <span class="go">  5,</span>
@@ -1986,7 +1986,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [62]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">keys</span><span class="p">)</span>
 <span class="gh">Out[62]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fcfa30af4c0&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f5f1188a020&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    &quot;x&quot;,</span>
@@ -1999,7 +1999,7 @@ their row, use the <a class="reference internal" 
href="generated/pyarrow.ListArr
 
 <span class="gp">In [63]: </span><span class="n">pa</span><span 
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span 
class="n">from_arrays</span><span class="p">(</span><span 
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span 
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span 
class="n">items</span><span class="p">)</span>
 <span class="gh">Out[63]: </span>
-<span class="go">&lt;pyarrow.lib.ListArray object at 0x7fcfa30af400&gt;</span>
+<span class="go">&lt;pyarrow.lib.ListArray object at 0x7f5f11889fc0&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    4,</span>
@@ -2034,7 +2034,7 @@ selected:</p>
 
 <span class="gp">In [69]: </span><span class="n">union_arr</span>
 <span class="gh">Out[69]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fcfa2fdd4e0&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f5f1188a6e0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2073,7 +2073,7 @@ each offset in the selected child array it can be 
found:</p>
 
 <span class="gp">In [76]: </span><span class="n">union_arr</span>
 <span class="gh">Out[76]: </span>
-<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7fcfa3058220&gt;</span>
+<span class="go">&lt;pyarrow.lib.UnionArray object at 0x7f5f1188aaa0&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- type_ids:   [</span>
 <span class="go">    0,</span>
@@ -2122,7 +2122,7 @@ consider an example:</p>
 
 <span class="gp">In [80]: </span><span class="n">dict_array</span>
 <span class="gh">Out[80]: </span>
-<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7fcfa2494350&gt;</span>
+<span class="go">&lt;pyarrow.lib.DictionaryArray object at 
0x7f5f1188ec00&gt;</span>
 
 <span class="go">-- dictionary:</span>
 <span class="go">  [</span>
@@ -2149,7 +2149,7 @@ consider an example:</p>
 
 <span class="gp">In [82]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[82]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcfa3058940&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5f1188b220&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -2163,7 +2163,7 @@ consider an example:</p>
 
 <span class="gp">In [83]: </span><span class="n">dict_array</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[83]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcfa3059240&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5f1188b5e0&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2219,7 +2219,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [90]: </span><span class="n">batch</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[90]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcfa310eec0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5f118c0040&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;foo&quot;,</span>
 <span class="go">  &quot;bar&quot;,</span>
@@ -2233,7 +2233,7 @@ instances. Let’s consider a collection of arrays:</p>
 
 <span class="gp">In [92]: </span><span class="n">batch2</span><span 
class="p">[</span><span class="mi">1</span><span class="p">]</span>
 <span class="gh">Out[92]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcfa310e200&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5f118c0220&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;bar&quot;,</span>
 <span class="go">  &quot;baz&quot;,</span>
@@ -2277,7 +2277,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [98]: </span><span class="n">c</span>
 <span class="gh">Out[98]: </span>
-<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7fcfa310f400&gt;</span>
+<span class="go">&lt;pyarrow.lib.ChunkedArray object at 
0x7f5f1188af80&gt;</span>
 <span class="go">[</span>
 <span class="go">  [</span>
 <span class="go">    1,</span>
@@ -2311,7 +2311,7 @@ container for one or more arrays of the same type.</p>
 
 <span class="gp">In [100]: </span><span class="n">c</span><span 
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[100]: </span>
-<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7fcfa310f460&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int64Array object at 0x7f5f11807940&gt;</span>
 <span class="go">[</span>
 <span class="go">  1,</span>
 <span class="go">  2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index ccd27a09c59..8505384664c 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1572,7 +1572,7 @@ can pass it the path to the directory containing the data 
files:</p>
 <span class="gp">In [12]: </span><span class="n">dataset</span> <span 
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span 
class="n">dataset</span><span class="p">(</span><span class="n">base</span> 
<span class="o">/</span> <span 
class="s2">&quot;parquet_dataset&quot;</span><span class="p">,</span> <span 
class="nb">format</span><span class="o">=</span><span 
class="s2">&quot;parquet&quot;</span><span class="p">)</span>
 
 <span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7fcfa34a7040&gt;</span>
+<span class="gh">Out[13]: </span><span 
class="go">&lt;pyarrow._dataset.FileSystemDataset at 0x7f5f118f6e60&gt;</span>
 </pre></div>
 </div>
 <p>In addition to searching a base directory, <a class="reference internal" 
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset" 
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal 
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1581,8 +1581,8 @@ single file or a list of file paths.</p>
 needed, it only crawls the directory to find all the files:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span 
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
 <span class="gh">Out[14]: </span>
-<span 
class="go">[&#39;/tmp/pyarrow-fnhmq8lf/parquet_dataset/data1.parquet&#39;,</span>
-<span class="go"> 
&#39;/tmp/pyarrow-fnhmq8lf/parquet_dataset/data2.parquet&#39;]</span>
+<span 
class="go">[&#39;/tmp/pyarrow-_vc9tnqw/parquet_dataset/data1.parquet&#39;,</span>
+<span class="go"> 
&#39;/tmp/pyarrow-_vc9tnqw/parquet_dataset/data2.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1603,23 +1603,23 @@ this can require a lot of memory, see below on 
filtering / iterative loading):</
 <span class="go">c: int64</span>
 <span class="gt">----</span>
 <span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>: 
[[0.1355258534162473,1.2611765393597079,-0.35565256865802386,-1.300868899050261,-1.6109761249252097],[-0.48202154229356253,-0.4748664480947764,1.0860920273717602,-1.1466996979233959,0.9434947492920146]]
+<span class="ne">b</span>: 
[[-0.5900200296841848,1.1745192416125334,-1.906856190226352,-0.8329791949261004,-0.06309156005000637],[-2.131535981438517,1.7766412403917338,0.1527242571656579,-1.710644237231753,-0.304397996083419]]
 <span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
 
 <span class="c1"># converting to pandas to see the contents of the scanned 
table</span>
 <span class="gp">In [17]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[17]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.135526  1</span>
-<span class="go">1  1  1.261177  2</span>
-<span class="go">2  2 -0.355653  1</span>
-<span class="go">3  3 -1.300869  2</span>
-<span class="go">4  4 -1.610976  1</span>
-<span class="go">5  5 -0.482022  2</span>
-<span class="go">6  6 -0.474866  1</span>
-<span class="go">7  7  1.086092  2</span>
-<span class="go">8  8 -1.146700  1</span>
-<span class="go">9  9  0.943495  2</span>
+<span class="go">0  0 -0.590020  1</span>
+<span class="go">1  1  1.174519  2</span>
+<span class="go">2  2 -1.906856  1</span>
+<span class="go">3  3 -0.832979  2</span>
+<span class="go">4  4 -0.063092  1</span>
+<span class="go">5  5 -2.131536  2</span>
+<span class="go">6  6  1.776641  1</span>
+<span class="go">7  7  0.152724  2</span>
+<span class="go">8  8 -1.710644  1</span>
+<span class="go">9  9 -0.304398  2</span>
 </pre></div>
 </div>
 </section>
@@ -1642,11 +1642,11 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [21]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[21]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  0  0.135526  1</span>
-<span class="go">1  1  1.261177  2</span>
-<span class="go">2  2 -0.355653  1</span>
-<span class="go">3  3 -1.300869  2</span>
-<span class="go">4  4 -1.610976  1</span>
+<span class="go">0  0 -0.590020  1</span>
+<span class="go">1  1  1.174519  2</span>
+<span class="go">2  2 -1.906856  1</span>
+<span class="go">3  3 -0.832979  2</span>
+<span class="go">4  4 -0.063092  1</span>
 </pre></div>
 </div>
 </section>
@@ -1678,16 +1678,16 @@ supported; more formats are planned in the future.</p>
 <span class="gp">In [23]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span class="p">[</span><span 
class="s1">&#39;a&#39;</span><span class="p">,</span> <span 
class="s1">&#39;b&#39;</span><span class="p">])</span><span 
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[23]: </span>
 <span class="go">   a         b</span>
-<span class="go">0  0  0.135526</span>
-<span class="go">1  1  1.261177</span>
-<span class="go">2  2 -0.355653</span>
-<span class="go">3  3 -1.300869</span>
-<span class="go">4  4 -1.610976</span>
-<span class="go">5  5 -0.482022</span>
-<span class="go">6  6 -0.474866</span>
-<span class="go">7  7  1.086092</span>
-<span class="go">8  8 -1.146700</span>
-<span class="go">9  9  0.943495</span>
+<span class="go">0  0 -0.590020</span>
+<span class="go">1  1  1.174519</span>
+<span class="go">2  2 -1.906856</span>
+<span class="go">3  3 -0.832979</span>
+<span class="go">4  4 -0.063092</span>
+<span class="go">5  5 -2.131536</span>
+<span class="go">6  6  1.776641</span>
+<span class="go">7  7  0.152724</span>
+<span class="go">8  8 -1.710644</span>
+<span class="go">9  9 -0.304398</span>
 </pre></div>
 </div>
 <p>With the <code class="docutils literal notranslate"><span 
class="pre">filter</span></code> keyword, rows which do not match the filter 
predicate will
@@ -1696,18 +1696,18 @@ not be included in the returned table. The keyword 
expects a boolean
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;a&#39;</span><span class="p">)</span> <span 
class="o">&gt;=</span> <span class="mi">7</sp [...]
 <span class="gh">Out[24]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  7  1.086092  2</span>
-<span class="go">1  8 -1.146700  1</span>
-<span class="go">2  9  0.943495  2</span>
+<span class="go">0  7  0.152724  2</span>
+<span class="go">1  8 -1.710644  1</span>
+<span class="go">2  9 -0.304398  2</span>
 
 <span class="gp">In [25]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;c&#39;</span><span class="p">)</span> <span class="o">==</span> 
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span 
class="n">to_pandas</span><spa [...]
 <span class="gh">Out[25]: </span>
 <span class="go">   a         b  c</span>
-<span class="go">0  1  1.261177  2</span>
-<span class="go">1  3 -1.300869  2</span>
-<span class="go">2  5 -0.482022  2</span>
-<span class="go">3  7  1.086092  2</span>
-<span class="go">4  9  0.943495  2</span>
+<span class="go">0  1  1.174519  2</span>
+<span class="go">1  3 -0.832979  2</span>
+<span class="go">2  5 -2.131536  2</span>
+<span class="go">3  7  0.152724  2</span>
+<span class="go">4  9 -0.304398  2</span>
 </pre></div>
 </div>
 <p>The easiest way to construct those <a class="reference internal" 
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression" 
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils 
literal notranslate"><span class="pre">Expression</span></code></a> objects is 
by using the
@@ -1752,11 +1752,11 @@ values:</p>
 <span class="gp">In [30]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[30]: </span>
 <span class="go">   a_renamed  b_as_float32    c_1</span>
-<span class="go">0          0      0.135526   True</span>
-<span class="go">1          1      1.261177  False</span>
-<span class="go">2          2     -0.355653   True</span>
-<span class="go">3          3     -1.300869  False</span>
-<span class="go">4          4     -1.610976   True</span>
+<span class="go">0          0     -0.590020   True</span>
+<span class="go">1          1      1.174519  False</span>
+<span class="go">2          2     -1.906856   True</span>
+<span class="go">3          3     -0.832979  False</span>
+<span class="go">4          4     -0.063092   True</span>
 </pre></div>
 </div>
 <p>The dictionary also determines the column selection (only the keys in the
@@ -1770,11 +1770,11 @@ build up the dictionary from the dataset schema:</p>
 <span class="gp">In [33]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="n">columns</span><span class="o">=</span><span 
class="n">projection</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</span><span 
class="p">()</span><span class="o">.</span><span class="n">head</span><span 
class="p">()</span>
 <span class="gh">Out[33]: </span>
 <span class="go">   a         b  c  b_large</span>
-<span class="go">0  0  0.135526  1    False</span>
-<span class="go">1  1  1.261177  2     True</span>
-<span class="go">2  2 -0.355653  1    False</span>
-<span class="go">3  3 -1.300869  2    False</span>
-<span class="go">4  4 -1.610976  1    False</span>
+<span class="go">0  0 -0.590020  1    False</span>
+<span class="go">1  1  1.174519  2     True</span>
+<span class="go">2  2 -1.906856  1    False</span>
+<span class="go">3  3 -0.832979  2    False</span>
+<span class="go">4  4 -0.063092  1    False</span>
 </pre></div>
 </div>
 </section>
@@ -1827,8 +1827,8 @@ should use a hive-like partitioning scheme with the <code 
class="docutils litera
 
 <span class="gp">In [37]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">files</span>
 <span class="gh">Out[37]: </span>
-<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/88623054dfed41899dbb60239b11ed94-0.parquet&#39;,</span>
-<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/88623054dfed41899dbb60239b11ed94-0.parquet&#39;]</span>
+<span 
class="go">[&#39;parquet_dataset_partitioned/part=a/07c6474b45424e478f23a07f808ee70f-0.parquet&#39;,</span>
+<span class="go"> 
&#39;parquet_dataset_partitioned/part=b/07c6474b45424e478f23a07f808ee70f-0.parquet&#39;]</span>
 </pre></div>
 </div>
 <p>Although the partition fields are not included in the actual Parquet files,
@@ -1836,9 +1836,9 @@ they will be added back to the resulting table when 
scanning this dataset:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span><span 
class="o">.</span><span class="n">head</span><span class="p">(</span><span 
class="mi">3</span><span class="p">)</span>
 <span class="gh">Out[38]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  0  0.010924  1    a</span>
-<span class="go">1  1 -0.928104  2    a</span>
-<span class="go">2  2 -1.476091  1    a</span>
+<span class="go">0  0 -2.728951  1    a</span>
+<span class="go">1  1  0.698277  2    a</span>
+<span class="go">2  2  0.295373  1    a</span>
 </pre></div>
 </div>
 <p>We can now filter on the partition keys, which avoids loading files
@@ -1846,11 +1846,11 @@ altogether if they do not match the filter:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s2">&quot;part&quot;</span><span class="p">)</span> <span 
class="o">==</span> <span class="s2">&qu [...]
 <span class="gh">Out[39]: </span>
 <span class="go">   a         b  c part</span>
-<span class="go">0  5 -0.816079  2    b</span>
-<span class="go">1  6 -0.836481  1    b</span>
-<span class="go">2  7 -1.749659  2    b</span>
-<span class="go">3  8 -0.154157  1    b</span>
-<span class="go">4  9 -0.203584  2    b</span>
+<span class="go">0  5  0.618681  2    b</span>
+<span class="go">1  6  1.443237  1    b</span>
+<span class="go">2  7  0.686447  2    b</span>
+<span class="go">3  8 -1.443182  1    b</span>
+<span class="go">4  9 -1.455151  2    b</span>
 </pre></div>
 </div>
 <section id="different-partitioning-schemes">
@@ -1982,19 +1982,19 @@ is materialized as columns when reading the data and 
can be used for filtering:<
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span 
class="n">dataset</span><span class="o">.</span><span 
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span 
class="n">to_pandas</span><span class="p">()</span>
 <span class="gh">Out[47]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2018     0 -1.961877</span>
-<span class="go">1  2018     1  2.016109</span>
-<span class="go">2  2018     2  0.135842</span>
-<span class="go">3  2019     0 -1.961877</span>
-<span class="go">4  2019     1  2.016109</span>
-<span class="go">5  2019     2  0.135842</span>
+<span class="go">0  2018     0 -0.214176</span>
+<span class="go">1  2018     1 -2.079007</span>
+<span class="go">2  2018     2 -0.026262</span>
+<span class="go">3  2019     0 -0.214176</span>
+<span class="go">4  2019     1 -2.079007</span>
+<span class="go">5  2019     2 -0.026262</span>
 
 <span class="gp">In [48]: </span><span class="n">dataset</span><span 
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span 
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span 
class="o">.</span><span class="n">field</span><span class="p">(</span><span 
class="s1">&#39;year&#39;</span><span class="p">)</span> <span 
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span 
class="o">.</span><span class="n">to_pandas</spa [...]
 <span class="gh">Out[48]: </span>
 <span class="go">   year  col1      col2</span>
-<span class="go">0  2019     0 -1.961877</span>
-<span class="go">1  2019     1  2.016109</span>
-<span class="go">2  2019     2  0.135842</span>
+<span class="go">0  2019     0 -0.214176</span>
+<span class="go">1  2019     1 -2.079007</span>
+<span class="go">2  2019     2 -0.026262</span>
 </pre></div>
 </div>
 <p>Another benefit of manually listing the files is that the order of the files
@@ -2246,7 +2246,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="gp">   ....: </span>
 <span class="go">path=dataset_visited/c=1/part-0.parquet</span>
 <span class="go">size=816 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fcfa0d790d0&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f5f117e09a0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
@@ -2255,7 +2255,7 @@ to supply a visitor that will be called as each file is 
created:</p>
 <span class="go">  serialized_size: 0</span>
 <span class="go">path=dataset_visited/c=2/part-0.parquet</span>
 <span class="go">size=818 bytes</span>
-<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7fcfa37c8310&gt;</span>
+<span class="go">metadata=&lt;pyarrow._parquet.FileMetaData object at 
0x7f5f117be7a0&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 2</span>
 <span class="go">  num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 4939cf68190..0d5fbf40c8e 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1597,7 +1597,7 @@ it’s possible to apply transformations to the data</p>
 
 <span class="gp">In [12]: </span><span class="n">pc</span><span 
class="o">.</span><span class="n">value_counts</span><span 
class="p">(</span><span class="n">birthdays_table</span><span 
class="p">[</span><span class="s2">&quot;years&quot;</span><span 
class="p">])</span>
 <span class="gh">Out[12]: </span>
-<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7fcf710a5cc0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StructArray object at 
0x7f5ee14e7940&gt;</span>
 <span class="go">-- is_valid: all not null</span>
 <span class="go">-- child 0 type: int16</span>
 <span class="go">  [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 4ab07876cd7..7336221488c 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1546,7 +1546,7 @@ a bytes object:</p>
 <span class="gp">In [3]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span 
class="n">py_buffer</span><span class="p">(</span><span 
class="n">data</span><span class="p">)</span>
 
 <span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7fcf6d2bf650 size=26 is_cpu=True is_mutable=False&gt;</span>
+<span class="gh">Out[4]: </span><span class="go">&lt;pyarrow.Buffer 
address=0x7f5edac3ea90 size=26 is_cpu=True is_mutable=False&gt;</span>
 
 <span class="gp">In [5]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">size</span>
 <span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1559,7 +1559,7 @@ referenced using the <a class="reference internal" 
href="generated/pyarrow.forei
 <p>Buffers can be used in circumstances where a Python buffer or memoryview is
 required, and such conversions are zero-copy:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span 
class="nb">memoryview</span><span class="p">(</span><span 
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7fcf6fba1300&gt;</span>
+<span class="gh">Out[6]: </span><span class="go">&lt;memory at 
0x7f5edaeb9840&gt;</span>
 </pre></div>
 </div>
 <p>The Buffer’s <a class="reference internal" 
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes" 
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal 
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts 
the Buffer’s data to a
@@ -1758,7 +1758,7 @@ into Arrow Buffer objects, use <code class="docutils 
literal notranslate"><span
 <span class="gp">In [32]: </span><span class="n">buf</span> <span 
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span 
class="n">read_buffer</span><span class="p">(</span><span 
class="mi">4</span><span class="p">)</span>
 
 <span class="gp">In [33]: </span><span class="nb">print</span><span 
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go">&lt;pyarrow.Buffer address=0x7fd00afde000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
+<span class="go">&lt;pyarrow.Buffer address=0x7f5f7bb6f000 size=4 is_cpu=True 
is_mutable=False&gt;</span>
 
 <span class="gp">In [34]: </span><span class="n">buf</span><span 
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
 <span class="gh">Out[34]: </span><span class="go">b&#39;some&#39;</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index f9053009cbd..d93e94ab3a5 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1720,7 +1720,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [10]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">dictionary</span>
 <span class="gh">Out[10]: </span>
-<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7fcfee5755a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.StringArray object at 
0x7f5ed856fd60&gt;</span>
 <span class="go">[</span>
 <span class="go">  &quot;a&quot;,</span>
 <span class="go">  &quot;b&quot;,</span>
@@ -1729,7 +1729,7 @@ same categories of the Pandas DataFrame.</p>
 
 <span class="gp">In [11]: </span><span class="n">chunk</span><span 
class="o">.</span><span class="n">indices</span>
 <span class="gh">Out[11]: </span>
-<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7fcfee574d60&gt;</span>
+<span class="go">&lt;pyarrow.lib.Int8Array object at 0x7f5ed856fd00&gt;</span>
 <span class="go">[</span>
 <span class="go">  0,</span>
 <span class="go">  1,</span>
@@ -1855,7 +1855,7 @@ converted to an Arrow <code class="docutils literal 
notranslate"><span class="pr
 
 <span class="gp">In [33]: </span><span class="n">arr</span>
 <span class="gh">Out[33]: </span>
-<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7fcfee5776a0&gt;</span>
+<span class="go">&lt;pyarrow.lib.Time64Array object at 
0x7f5f5e741de0&gt;</span>
 <span class="go">[</span>
 <span class="go">  01:01:01.000000,</span>
 <span class="go">  02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index ae9bce1df3b..3c1609cc18d 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1691,7 +1691,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [20]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">metadata</span>
 <span class="gh">Out[20]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fcfdf47d210&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f5f5e74d210&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1701,7 +1701,7 @@ you may choose to omit it by passing <code 
class="docutils literal notranslate">
 
 <span class="gp">In [21]: </span><span class="n">parquet_file</span><span 
class="o">.</span><span class="n">schema</span>
 <span class="gh">Out[21]: </span>
-<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7fcfee43d500&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ParquetSchema object at 
0x7f5f5e607280&gt;</span>
 <span class="go">required group field_id=-1 schema {</span>
 <span class="go">  optional double field_id=-1 one;</span>
 <span class="go">  optional binary field_id=-1 two (String);</span>
@@ -1759,7 +1759,7 @@ concatenate them into a single table. You can read 
individual row groups with
 
 <span class="gp">In [30]: </span><span class="n">metadata</span>
 <span class="gh">Out[30]: </span>
-<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7fcfee45a2f0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.FileMetaData object at 
0x7f5f5e628810&gt;</span>
 <span class="go">  created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
@@ -1773,7 +1773,7 @@ concatenate them into a single table. You can read 
individual row groups with
 such as the row groups and column chunk metadata and statistics:</p>
 <div class="highlight-ipython notranslate"><div 
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span 
class="n">metadata</span><span class="o">.</span><span 
class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span>
 <span class="gh">Out[31]: </span>
-<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7fcf6d334630&gt;</span>
+<span class="go">&lt;pyarrow._parquet.RowGroupMetaData object at 
0x7f5f5e628fe0&gt;</span>
 <span class="go">  num_columns: 4</span>
 <span class="go">  num_rows: 3</span>
 <span class="go">  total_byte_size: 282</span>
@@ -1781,7 +1781,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 
 <span class="gp">In [32]: </span><span class="n">metadata</span><span 
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span 
class="mi">0</span><span class="p">)</span><span class="o">.</span><span 
class="n">column</span><span class="p">(</span><span class="mi">0</span><span 
class="p">)</span>
 <span class="gh">Out[32]: </span>
-<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7fcfee45aed0&gt;</span>
+<span class="go">&lt;pyarrow._parquet.ColumnChunkMetaData object at 
0x7f5f5e6292b0&gt;</span>
 <span class="go">  file_offset: 0</span>
 <span class="go">  file_path: </span>
 <span class="go">  physical_type: DOUBLE</span>
@@ -1789,7 +1789,7 @@ such as the row groups and column chunk metadata and 
statistics:</p>
 <span class="go">  path_in_schema: one</span>
 <span class="go">  is_stats_set: True</span>
 <span class="go">  statistics:</span>
-<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7fcfee45af70&gt;</span>
+<span class="go">    &lt;pyarrow._parquet.Statistics object at 
0x7f5f5e629350&gt;</span>
 <span class="go">      has_min_max: True</span>
 <span class="go">      min: -1.0</span>
 <span class="go">      max: 2.5</span>
diff --git a/docs/dev/r/articles/data_wrangling.html 
b/docs/dev/r/articles/data_wrangling.html
index 3e8cc89dd45..ea0dad1e948 100644
--- a/docs/dev/r/articles/data_wrangling.html
+++ b/docs/dev/r/articles/data_wrangling.html
@@ -409,18 +409,18 @@ paying a performance penalty using the helper function
 <span>  <span class="co"># perform other arrow operations...</span></span>
 <span>  <span class="fu"><a 
href="https://dplyr.tidyverse.org/reference/compute.html"; 
class="external-link">collect</a></span><span class="op">(</span><span 
class="op">)</span></span></code></pre></div>
 <pre><code><span><span class="co">## <span style="color: #949494;"># A tibble: 
28 x 4</span></span></span>
-<span><span class="co">##    name         height  mass hair_color</span></span>
-<span><span class="co">##    <span style="color: #949494; font-style: 
italic;">&lt;chr&gt;</span>         <span style="color: #949494; font-style: 
italic;">&lt;int&gt;</span> <span style="color: #949494; font-style: 
italic;">&lt;dbl&gt;</span> <span style="color: #949494; font-style: 
italic;">&lt;chr&gt;</span>     </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> R4-P17       
    96    <span style="color: #BB0000;">NA</span> none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> Lobot        
   175    79 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> Ackbar       
   180    83 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> Nien Nunb    
   160    68 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> Sebulba      
   112    40 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> Bib Fortuna  
   180    <span style="color: #BB0000;">NA</span> none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> Ayla Secura  
   178    55 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> Ratts Tyerel 
    79    15 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> Dud Bolt     
    94    45 none      </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">10</span> Gasgano      
   122    <span style="color: #BB0000;">NA</span> none      </span></span>
+<span><span class="co">##    name                    height  mass 
hair_color</span></span>
+<span><span class="co">##    <span style="color: #949494; font-style: 
italic;">&lt;chr&gt;</span>                    <span style="color: #949494; 
font-style: italic;">&lt;int&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;dbl&gt;</span> <span style="color: #949494; 
font-style: italic;">&lt;chr&gt;</span>     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> <span 
style="color: #949494;">"</span>Yoda<span style="color: #949494;">"</span>      
                66    17 white     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> <span 
style="color: #949494;">"</span>Leia Organa<span style="color: 
#949494;">"</span>              150    49 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> <span 
style="color: #949494;">"</span>Beru Whitesun Lars<span style="color: 
#949494;">"</span>       165    75 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> <span 
style="color: #949494;">"</span>Wedge Antilles<span style="color: 
#949494;">"</span>           170    77 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> <span 
style="color: #949494;">"</span>Wicket Systri Warrick<span style="color: 
#949494;">"</span>     88    20 brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> <span 
style="color: #949494;">"</span>Cord\u00e9<span style="color: 
#949494;">"</span>               157    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> <span 
style="color: #949494;">"</span>Dorm\u00e9<span style="color: 
#949494;">"</span>               165    <span style="color: #BB0000;">NA</span> 
brown     </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> <span 
style="color: #949494;">"</span>R4-P17<span style="color: #949494;">"</span>    
                96    <span style="color: #BB0000;">NA</span> none      
</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> <span 
style="color: #949494;">"</span>Lobot<span style="color: #949494;">"</span>     
               175    79 none      </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">10</span> <span 
style="color: #949494;">"</span>Ackbar<span style="color: #949494;">"</span>    
               180    83 none      </span></span>
 <span><span class="co">## <span style="color: #949494;"># i 18 more 
rows</span></span></span></code></pre>
 </div>
 <div class="section level2">
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index f98a3eca2ae..03a281b63ab 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
   read_write: read_write.html
   developers/setup: developers/setup.html
   developers/workflow: developers/workflow.html
-last_built: 2025-08-16T01:16Z
+last_built: 2025-08-17T01:24Z
 urls:
   reference: https://arrow.apache.org/docs/r/reference
   article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/r/reference/to_duckdb.html 
b/docs/dev/r/reference/to_duckdb.html
index 88f527d7791..5a4814efb3d 100644
--- a/docs/dev/r/reference/to_duckdb.html
+++ b/docs/dev/r/reference/to_duckdb.html
@@ -148,8 +148,8 @@ using them.</p>
 <span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">1</span>  16.4     8  276.   180  3.07  4.07  17.4     0     0     3  
   3</span>
 <span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">2</span>  17.3     8  276.   180  3.07  3.73  17.6     0     0     3  
   3</span>
 <span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">3</span>  15.2     8  276.   180  3.07  3.78  18       0     0     3  
   3</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">4</span>  19.7     6  145    175  3.62  2.77  15.5     0     1     5  
   6</span>
-<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">5</span>  27.3     4   79     66  4.08  1.94  18.9     1     1     4  
   1</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">4</span>  27.3     4   79     66  4.08  1.94  18.9     1     1     4  
   1</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> <span style="color: 
#BCBCBC;">5</span>  19.7     6  145    175  3.62  2.77  15.5     0     1     5  
   6</span>
 </code></pre></div>
     </div>
   </main><aside class="col-md-3"><nav id="toc" aria-label="Table of 
contents"><h2>On this page</h2>
diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json
index b5a0c856f08..bcf8054921b 100644
--- a/docs/dev/r/search.json
+++ b/docs/dev/r/search.json
@@ -1 +1 @@
-[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 Checklist for CRAN Release","title":"Packaging Checklist for CRAN 
Release","text":"high-level overview Arrow release process see Apache Arrow 
Release Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
 the Arrow Release Candidate Is Create [...]
+[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
 Checklist for CRAN Release","title":"Packaging Checklist for CRAN 
Release","text":"high-level overview Arrow release process see Apache Arrow 
Release Management 
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
 the Arrow Release Candidate Is Create [...]
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index 60400ef76af..84956033d7b 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", 
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", 
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", 
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file
+Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index", 
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index", 
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index", 
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index", 
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait", 
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array", 
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute", 
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file

Reply via email to