This is an automated email from the ASF dual-hosted git repository.
github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/arrow-site.git
The following commit(s) were added to refs/heads/asf-site by this push:
new a5fd29bcb2a Updating dev docs (build nightly-tests-2025-08-17-0)
a5fd29bcb2a is described below
commit a5fd29bcb2aeb26f4354f4d5d4fe77fd1769751b
Author: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
AuthorDate: Mon Aug 18 00:38:17 2025 +0000
Updating dev docs (build nightly-tests-2025-08-17-0)
---
docs/dev/python/data.html | 46 +++++------
docs/dev/python/dataset.html | 136 ++++++++++++++++----------------
docs/dev/python/getstarted.html | 2 +-
docs/dev/python/memory.html | 6 +-
docs/dev/python/pandas.html | 6 +-
docs/dev/python/parquet.html | 12 +--
docs/dev/r/articles/data_wrangling.html | 24 +++---
docs/dev/r/pkgdown.yml | 2 +-
docs/dev/r/reference/to_duckdb.html | 4 +-
docs/dev/r/search.json | 2 +-
docs/dev/searchindex.js | 2 +-
11 files changed, 121 insertions(+), 121 deletions(-)
diff --git a/docs/dev/python/data.html b/docs/dev/python/data.html
index c179e4342fd..0aeed20bb17 100644
--- a/docs/dev/python/data.html
+++ b/docs/dev/python/data.html
@@ -1686,7 +1686,7 @@ for you:</p>
<span class="gp">In [29]: </span><span class="n">arr</span>
<span class="gh">Out[29]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fcfa2fdec20></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7f5f118065c0></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
@@ -1698,7 +1698,7 @@ for you:</p>
<p>But you may also pass a specific data type to override type inference:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [30]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([</span><span class="mi">1</span><span class="p">,</span> <span
class="mi">2</span><span class="p">],</span> <span class="nb">type</span><span
class="o">=</span><span class="n">pa</span><span class="o">.</span><span
class="n">uint16</span><span class="p">())</span>
<span class="gh">Out[30]: </span>
-<span class="go"><pyarrow.lib.UInt16Array object at
0x7fcfa2fdf160></span>
+<span class="go"><pyarrow.lib.UInt16Array object at
0x7f5f11806b00></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2</span>
@@ -1733,7 +1733,7 @@ nulls:</p>
<p>Arrays can be sliced without copying:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [36]: </span><span
class="n">arr</span><span class="p">[</span><span class="mi">1</span><span
class="p">:</span><span class="mi">3</span><span class="p">]</span>
<span class="gh">Out[36]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fcfa2f80400></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7f5f11807460></span>
<span class="go">[</span>
<span class="go"> 2,</span>
<span class="go"> null</span>
@@ -1786,7 +1786,7 @@ This allows for ListView arrays to specify out-of-order
offsets:</p>
<span class="gp">In [45]: </span><span class="n">arr</span>
<span class="gh">Out[45]: </span>
-<span class="go"><pyarrow.lib.ListViewArray object at
0x7fcfa2f82440></span>
+<span class="go"><pyarrow.lib.ListViewArray object at
0x7f5f11888100></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 5,</span>
@@ -1811,7 +1811,7 @@ This allows for ListView arrays to specify out-of-order
offsets:</p>
dictionaries:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [46]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([{</span><span class="s1">'x'</span><span class="p">:</span>
<span class="mi">1</span><span class="p">,</span> <span
class="s1">'y'</span><span class="p">:</span> <span
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span
class="s1">'z& [...]
<span class="gh">Out[46]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcfa2f820e0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5f118882e0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int64</span>
<span class="go"> [</span>
@@ -1838,7 +1838,7 @@ you must explicitly pass the type:</p>
<span class="gp">In [48]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">([{</span><span
class="s1">'x'</span><span class="p">:</span> <span
class="mi">1</span><span class="p">,</span> <span
class="s1">'y'</span><span class="p">:</span> <span
class="kc">True</span><span class="p">},</span> <span class="p">{</span><span
class="s1">'x'</span><span class="p">:</span> <span
class="mi">2</span><span class="p">,</span [...]
<span class="gh">Out[48]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcfa30ec160></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5f118889a0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
@@ -1853,7 +1853,7 @@ you must explicitly pass the type:</p>
<span class="gp">In [49]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">([(</span><span
class="mi">3</span><span class="p">,</span> <span class="kc">True</span><span
class="p">),</span> <span class="p">(</span><span class="mi">4</span><span
class="p">,</span> <span class="kc">False</span><span class="p">)],</span>
<span class="nb">type</span><span class="o">=</span><span
class="n">ty</span><span class="p">)</span>
<span class="gh">Out[49]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcfa30ec280></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5f11888ac0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int8</span>
<span class="go"> [</span>
@@ -1872,7 +1872,7 @@ level and at the individual field level. If initializing
from a sequence
of Python dicts, a missing dict key is handled as a null value:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [50]: </span><span
class="n">pa</span><span class="o">.</span><span class="n">array</span><span
class="p">([{</span><span class="s1">'x'</span><span class="p">:</span>
<span class="mi">1</span><span class="p">},</span> <span
class="kc">None</span><span class="p">,</span> <span class="p">{</span><span
class="s1">'y'</span><span class="p">:</span> <span class="kc">None</s
[...]
<span class="gh">Out[50]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcfa30ec2e0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5f11888b80></span>
<span class="go">-- is_valid:</span>
<span class="go"> [</span>
<span class="go"> true,</span>
@@ -1907,7 +1907,7 @@ individual arrays, and no copy is involved:</p>
<span class="gp">In [55]: </span><span class="n">arr</span>
<span class="gh">Out[55]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcfa30ec700></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5f11889000></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int16</span>
<span class="go"> [</span>
@@ -1934,7 +1934,7 @@ the type is explicitly passed into <a class="reference
internal" href="generated
<span class="gp">In [58]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">array</span><span class="p">(</span><span
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span
class="o">=</span><span class="n">ty</span><span class="p">)</span>
<span class="gh">Out[58]: </span>
-<span class="go"><pyarrow.lib.MapArray object at 0x7fcfa30add20></span>
+<span class="go"><pyarrow.lib.MapArray object at 0x7f5f11889960></span>
<span class="go">[</span>
<span class="go"> keys:</span>
<span class="go"> [</span>
@@ -1968,7 +1968,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [60]: </span><span class="n">arr</span><span
class="o">.</span><span class="n">keys</span>
<span class="gh">Out[60]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fcfa30ae380></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7f5f11889c60></span>
<span class="go">[</span>
<span class="go"> "x",</span>
<span class="go"> "y",</span>
@@ -1977,7 +1977,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [61]: </span><span class="n">arr</span><span
class="o">.</span><span class="n">items</span>
<span class="gh">Out[61]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fcfa30af2e0></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7f5f118896c0></span>
<span class="go">[</span>
<span class="go"> 4,</span>
<span class="go"> 5,</span>
@@ -1986,7 +1986,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [62]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span
class="n">from_arrays</span><span class="p">(</span><span
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span
class="n">keys</span><span class="p">)</span>
<span class="gh">Out[62]: </span>
-<span class="go"><pyarrow.lib.ListArray object at 0x7fcfa30af4c0></span>
+<span class="go"><pyarrow.lib.ListArray object at 0x7f5f1188a020></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> "x",</span>
@@ -1999,7 +1999,7 @@ their row, use the <a class="reference internal"
href="generated/pyarrow.ListArr
<span class="gp">In [63]: </span><span class="n">pa</span><span
class="o">.</span><span class="n">ListArray</span><span class="o">.</span><span
class="n">from_arrays</span><span class="p">(</span><span
class="n">arr</span><span class="o">.</span><span class="n">offsets</span><span
class="p">,</span> <span class="n">arr</span><span class="o">.</span><span
class="n">items</span><span class="p">)</span>
<span class="gh">Out[63]: </span>
-<span class="go"><pyarrow.lib.ListArray object at 0x7fcfa30af400></span>
+<span class="go"><pyarrow.lib.ListArray object at 0x7f5f11889fc0></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 4,</span>
@@ -2034,7 +2034,7 @@ selected:</p>
<span class="gp">In [69]: </span><span class="n">union_arr</span>
<span class="gh">Out[69]: </span>
-<span class="go"><pyarrow.lib.UnionArray object at 0x7fcfa2fdd4e0></span>
+<span class="go"><pyarrow.lib.UnionArray object at 0x7f5f1188a6e0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
@@ -2073,7 +2073,7 @@ each offset in the selected child array it can be
found:</p>
<span class="gp">In [76]: </span><span class="n">union_arr</span>
<span class="gh">Out[76]: </span>
-<span class="go"><pyarrow.lib.UnionArray object at 0x7fcfa3058220></span>
+<span class="go"><pyarrow.lib.UnionArray object at 0x7f5f1188aaa0></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- type_ids: [</span>
<span class="go"> 0,</span>
@@ -2122,7 +2122,7 @@ consider an example:</p>
<span class="gp">In [80]: </span><span class="n">dict_array</span>
<span class="gh">Out[80]: </span>
-<span class="go"><pyarrow.lib.DictionaryArray object at
0x7fcfa2494350></span>
+<span class="go"><pyarrow.lib.DictionaryArray object at
0x7f5f1188ec00></span>
<span class="go">-- dictionary:</span>
<span class="go"> [</span>
@@ -2149,7 +2149,7 @@ consider an example:</p>
<span class="gp">In [82]: </span><span class="n">dict_array</span><span
class="o">.</span><span class="n">indices</span>
<span class="gh">Out[82]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fcfa3058940></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7f5f1188b220></span>
<span class="go">[</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
@@ -2163,7 +2163,7 @@ consider an example:</p>
<span class="gp">In [83]: </span><span class="n">dict_array</span><span
class="o">.</span><span class="n">dictionary</span>
<span class="gh">Out[83]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fcfa3059240></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7f5f1188b5e0></span>
<span class="go">[</span>
<span class="go"> "foo",</span>
<span class="go"> "bar",</span>
@@ -2219,7 +2219,7 @@ instances. Let’s consider a collection of arrays:</p>
<span class="gp">In [90]: </span><span class="n">batch</span><span
class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[90]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fcfa310eec0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7f5f118c0040></span>
<span class="go">[</span>
<span class="go"> "foo",</span>
<span class="go"> "bar",</span>
@@ -2233,7 +2233,7 @@ instances. Let’s consider a collection of arrays:</p>
<span class="gp">In [92]: </span><span class="n">batch2</span><span
class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gh">Out[92]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fcfa310e200></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7f5f118c0220></span>
<span class="go">[</span>
<span class="go"> "bar",</span>
<span class="go"> "baz",</span>
@@ -2277,7 +2277,7 @@ container for one or more arrays of the same type.</p>
<span class="gp">In [98]: </span><span class="n">c</span>
<span class="gh">Out[98]: </span>
-<span class="go"><pyarrow.lib.ChunkedArray object at
0x7fcfa310f400></span>
+<span class="go"><pyarrow.lib.ChunkedArray object at
0x7f5f1188af80></span>
<span class="go">[</span>
<span class="go"> [</span>
<span class="go"> 1,</span>
@@ -2311,7 +2311,7 @@ container for one or more arrays of the same type.</p>
<span class="gp">In [100]: </span><span class="n">c</span><span
class="o">.</span><span class="n">chunk</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span>
<span class="gh">Out[100]: </span>
-<span class="go"><pyarrow.lib.Int64Array object at 0x7fcfa310f460></span>
+<span class="go"><pyarrow.lib.Int64Array object at 0x7f5f11807940></span>
<span class="go">[</span>
<span class="go"> 1,</span>
<span class="go"> 2,</span>
diff --git a/docs/dev/python/dataset.html b/docs/dev/python/dataset.html
index ccd27a09c59..8505384664c 100644
--- a/docs/dev/python/dataset.html
+++ b/docs/dev/python/dataset.html
@@ -1572,7 +1572,7 @@ can pass it the path to the directory containing the data
files:</p>
<span class="gp">In [12]: </span><span class="n">dataset</span> <span
class="o">=</span> <span class="n">ds</span><span class="o">.</span><span
class="n">dataset</span><span class="p">(</span><span class="n">base</span>
<span class="o">/</span> <span
class="s2">"parquet_dataset"</span><span class="p">,</span> <span
class="nb">format</span><span class="o">=</span><span
class="s2">"parquet"</span><span class="p">)</span>
<span class="gp">In [13]: </span><span class="n">dataset</span>
-<span class="gh">Out[13]: </span><span
class="go"><pyarrow._dataset.FileSystemDataset at 0x7fcfa34a7040></span>
+<span class="gh">Out[13]: </span><span
class="go"><pyarrow._dataset.FileSystemDataset at 0x7f5f118f6e60></span>
</pre></div>
</div>
<p>In addition to searching a base directory, <a class="reference internal"
href="generated/pyarrow.dataset.dataset.html#pyarrow.dataset.dataset"
title="pyarrow.dataset.dataset"><code class="xref py py-func docutils literal
notranslate"><span class="pre">dataset()</span></code></a> accepts a path to a
@@ -1581,8 +1581,8 @@ single file or a list of file paths.</p>
needed, it only crawls the directory to find all the files:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [14]: </span><span
class="n">dataset</span><span class="o">.</span><span class="n">files</span>
<span class="gh">Out[14]: </span>
-<span
class="go">['/tmp/pyarrow-fnhmq8lf/parquet_dataset/data1.parquet',</span>
-<span class="go">
'/tmp/pyarrow-fnhmq8lf/parquet_dataset/data2.parquet']</span>
+<span
class="go">['/tmp/pyarrow-_vc9tnqw/parquet_dataset/data1.parquet',</span>
+<span class="go">
'/tmp/pyarrow-_vc9tnqw/parquet_dataset/data2.parquet']</span>
</pre></div>
</div>
<p>… and infers the dataset’s schema (by default from the first file):</p>
@@ -1603,23 +1603,23 @@ this can require a lot of memory, see below on
filtering / iterative loading):</
<span class="go">c: int64</span>
<span class="gt">----</span>
<span class="ne">a</span>: [[0,1,2,3,4],[5,6,7,8,9]]
-<span class="ne">b</span>:
[[0.1355258534162473,1.2611765393597079,-0.35565256865802386,-1.300868899050261,-1.6109761249252097],[-0.48202154229356253,-0.4748664480947764,1.0860920273717602,-1.1466996979233959,0.9434947492920146]]
+<span class="ne">b</span>:
[[-0.5900200296841848,1.1745192416125334,-1.906856190226352,-0.8329791949261004,-0.06309156005000637],[-2.131535981438517,1.7766412403917338,0.1527242571656579,-1.710644237231753,-0.304397996083419]]
<span class="ne">c</span>: [[1,2,1,2,1],[2,1,2,1,2]]
<span class="c1"># converting to pandas to see the contents of the scanned
table</span>
<span class="gp">In [17]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[17]: </span>
<span class="go"> a b c</span>
-<span class="go">0 0 0.135526 1</span>
-<span class="go">1 1 1.261177 2</span>
-<span class="go">2 2 -0.355653 1</span>
-<span class="go">3 3 -1.300869 2</span>
-<span class="go">4 4 -1.610976 1</span>
-<span class="go">5 5 -0.482022 2</span>
-<span class="go">6 6 -0.474866 1</span>
-<span class="go">7 7 1.086092 2</span>
-<span class="go">8 8 -1.146700 1</span>
-<span class="go">9 9 0.943495 2</span>
+<span class="go">0 0 -0.590020 1</span>
+<span class="go">1 1 1.174519 2</span>
+<span class="go">2 2 -1.906856 1</span>
+<span class="go">3 3 -0.832979 2</span>
+<span class="go">4 4 -0.063092 1</span>
+<span class="go">5 5 -2.131536 2</span>
+<span class="go">6 6 1.776641 1</span>
+<span class="go">7 7 0.152724 2</span>
+<span class="go">8 8 -1.710644 1</span>
+<span class="go">9 9 -0.304398 2</span>
</pre></div>
</div>
</section>
@@ -1642,11 +1642,11 @@ supported; more formats are planned in the future.</p>
<span class="gp">In [21]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">()</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[21]: </span>
<span class="go"> a b c</span>
-<span class="go">0 0 0.135526 1</span>
-<span class="go">1 1 1.261177 2</span>
-<span class="go">2 2 -0.355653 1</span>
-<span class="go">3 3 -1.300869 2</span>
-<span class="go">4 4 -1.610976 1</span>
+<span class="go">0 0 -0.590020 1</span>
+<span class="go">1 1 1.174519 2</span>
+<span class="go">2 2 -1.906856 1</span>
+<span class="go">3 3 -0.832979 2</span>
+<span class="go">4 4 -0.063092 1</span>
</pre></div>
</div>
</section>
@@ -1678,16 +1678,16 @@ supported; more formats are planned in the future.</p>
<span class="gp">In [23]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span class="p">[</span><span
class="s1">'a'</span><span class="p">,</span> <span
class="s1">'b'</span><span class="p">])</span><span
class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[23]: </span>
<span class="go"> a b</span>
-<span class="go">0 0 0.135526</span>
-<span class="go">1 1 1.261177</span>
-<span class="go">2 2 -0.355653</span>
-<span class="go">3 3 -1.300869</span>
-<span class="go">4 4 -1.610976</span>
-<span class="go">5 5 -0.482022</span>
-<span class="go">6 6 -0.474866</span>
-<span class="go">7 7 1.086092</span>
-<span class="go">8 8 -1.146700</span>
-<span class="go">9 9 0.943495</span>
+<span class="go">0 0 -0.590020</span>
+<span class="go">1 1 1.174519</span>
+<span class="go">2 2 -1.906856</span>
+<span class="go">3 3 -0.832979</span>
+<span class="go">4 4 -0.063092</span>
+<span class="go">5 5 -2.131536</span>
+<span class="go">6 6 1.776641</span>
+<span class="go">7 7 0.152724</span>
+<span class="go">8 8 -1.710644</span>
+<span class="go">9 9 -0.304398</span>
</pre></div>
</div>
<p>With the <code class="docutils literal notranslate"><span
class="pre">filter</span></code> keyword, rows which do not match the filter
predicate will
@@ -1696,18 +1696,18 @@ not be included in the returned table. The keyword
expects a boolean
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [24]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'a'</span><span class="p">)</span> <span
class="o">>=</span> <span class="mi">7</sp [...]
<span class="gh">Out[24]: </span>
<span class="go"> a b c</span>
-<span class="go">0 7 1.086092 2</span>
-<span class="go">1 8 -1.146700 1</span>
-<span class="go">2 9 0.943495 2</span>
+<span class="go">0 7 0.152724 2</span>
+<span class="go">1 8 -1.710644 1</span>
+<span class="go">2 9 -0.304398 2</span>
<span class="gp">In [25]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'c'</span><span class="p">)</span> <span class="o">==</span>
<span class="mi">2</span><span class="p">)</span><span class="o">.</span><span
class="n">to_pandas</span><spa [...]
<span class="gh">Out[25]: </span>
<span class="go"> a b c</span>
-<span class="go">0 1 1.261177 2</span>
-<span class="go">1 3 -1.300869 2</span>
-<span class="go">2 5 -0.482022 2</span>
-<span class="go">3 7 1.086092 2</span>
-<span class="go">4 9 0.943495 2</span>
+<span class="go">0 1 1.174519 2</span>
+<span class="go">1 3 -0.832979 2</span>
+<span class="go">2 5 -2.131536 2</span>
+<span class="go">3 7 0.152724 2</span>
+<span class="go">4 9 -0.304398 2</span>
</pre></div>
</div>
<p>The easiest way to construct those <a class="reference internal"
href="generated/pyarrow.dataset.Expression.html#pyarrow.dataset.Expression"
title="pyarrow.dataset.Expression"><code class="xref py py-class docutils
literal notranslate"><span class="pre">Expression</span></code></a> objects is
by using the
@@ -1752,11 +1752,11 @@ values:</p>
<span class="gp">In [30]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span
class="n">projection</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[30]: </span>
<span class="go"> a_renamed b_as_float32 c_1</span>
-<span class="go">0 0 0.135526 True</span>
-<span class="go">1 1 1.261177 False</span>
-<span class="go">2 2 -0.355653 True</span>
-<span class="go">3 3 -1.300869 False</span>
-<span class="go">4 4 -1.610976 True</span>
+<span class="go">0 0 -0.590020 True</span>
+<span class="go">1 1 1.174519 False</span>
+<span class="go">2 2 -1.906856 True</span>
+<span class="go">3 3 -0.832979 False</span>
+<span class="go">4 4 -0.063092 True</span>
</pre></div>
</div>
<p>The dictionary also determines the column selection (only the keys in the
@@ -1770,11 +1770,11 @@ build up the dictionary from the dataset schema:</p>
<span class="gp">In [33]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="n">columns</span><span class="o">=</span><span
class="n">projection</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</span><span
class="p">()</span><span class="o">.</span><span class="n">head</span><span
class="p">()</span>
<span class="gh">Out[33]: </span>
<span class="go"> a b c b_large</span>
-<span class="go">0 0 0.135526 1 False</span>
-<span class="go">1 1 1.261177 2 True</span>
-<span class="go">2 2 -0.355653 1 False</span>
-<span class="go">3 3 -1.300869 2 False</span>
-<span class="go">4 4 -1.610976 1 False</span>
+<span class="go">0 0 -0.590020 1 False</span>
+<span class="go">1 1 1.174519 2 True</span>
+<span class="go">2 2 -1.906856 1 False</span>
+<span class="go">3 3 -0.832979 2 False</span>
+<span class="go">4 4 -0.063092 1 False</span>
</pre></div>
</div>
</section>
@@ -1827,8 +1827,8 @@ should use a hive-like partitioning scheme with the <code
class="docutils litera
<span class="gp">In [37]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">files</span>
<span class="gh">Out[37]: </span>
-<span
class="go">['parquet_dataset_partitioned/part=a/88623054dfed41899dbb60239b11ed94-0.parquet',</span>
-<span class="go">
'parquet_dataset_partitioned/part=b/88623054dfed41899dbb60239b11ed94-0.parquet']</span>
+<span
class="go">['parquet_dataset_partitioned/part=a/07c6474b45424e478f23a07f808ee70f-0.parquet',</span>
+<span class="go">
'parquet_dataset_partitioned/part=b/07c6474b45424e478f23a07f808ee70f-0.parquet']</span>
</pre></div>
</div>
<p>Although the partition fields are not included in the actual Parquet files,
@@ -1836,9 +1836,9 @@ they will be added back to the resulting table when
scanning this dataset:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [38]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span
class="n">to_pandas</span><span class="p">()</span><span
class="o">.</span><span class="n">head</span><span class="p">(</span><span
class="mi">3</span><span class="p">)</span>
<span class="gh">Out[38]: </span>
<span class="go"> a b c part</span>
-<span class="go">0 0 0.010924 1 a</span>
-<span class="go">1 1 -0.928104 2 a</span>
-<span class="go">2 2 -1.476091 1 a</span>
+<span class="go">0 0 -2.728951 1 a</span>
+<span class="go">1 1 0.698277 2 a</span>
+<span class="go">2 2 0.295373 1 a</span>
</pre></div>
</div>
<p>We can now filter on the partition keys, which avoids loading files
@@ -1846,11 +1846,11 @@ altogether if they do not match the filter:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [39]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s2">"part"</span><span class="p">)</span> <span
class="o">==</span> <span class="s2">&qu [...]
<span class="gh">Out[39]: </span>
<span class="go"> a b c part</span>
-<span class="go">0 5 -0.816079 2 b</span>
-<span class="go">1 6 -0.836481 1 b</span>
-<span class="go">2 7 -1.749659 2 b</span>
-<span class="go">3 8 -0.154157 1 b</span>
-<span class="go">4 9 -0.203584 2 b</span>
+<span class="go">0 5 0.618681 2 b</span>
+<span class="go">1 6 1.443237 1 b</span>
+<span class="go">2 7 0.686447 2 b</span>
+<span class="go">3 8 -1.443182 1 b</span>
+<span class="go">4 9 -1.455151 2 b</span>
</pre></div>
</div>
<section id="different-partitioning-schemes">
@@ -1982,19 +1982,19 @@ is materialized as columns when reading the data and
can be used for filtering:<
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [47]: </span><span
class="n">dataset</span><span class="o">.</span><span
class="n">to_table</span><span class="p">()</span><span class="o">.</span><span
class="n">to_pandas</span><span class="p">()</span>
<span class="gh">Out[47]: </span>
<span class="go"> year col1 col2</span>
-<span class="go">0 2018 0 -1.961877</span>
-<span class="go">1 2018 1 2.016109</span>
-<span class="go">2 2018 2 0.135842</span>
-<span class="go">3 2019 0 -1.961877</span>
-<span class="go">4 2019 1 2.016109</span>
-<span class="go">5 2019 2 0.135842</span>
+<span class="go">0 2018 0 -0.214176</span>
+<span class="go">1 2018 1 -2.079007</span>
+<span class="go">2 2018 2 -0.026262</span>
+<span class="go">3 2019 0 -0.214176</span>
+<span class="go">4 2019 1 -2.079007</span>
+<span class="go">5 2019 2 -0.026262</span>
<span class="gp">In [48]: </span><span class="n">dataset</span><span
class="o">.</span><span class="n">to_table</span><span class="p">(</span><span
class="nb">filter</span><span class="o">=</span><span class="n">ds</span><span
class="o">.</span><span class="n">field</span><span class="p">(</span><span
class="s1">'year'</span><span class="p">)</span> <span
class="o">==</span> <span class="mi">2019</span><span class="p">)</span><span
class="o">.</span><span class="n">to_pandas</spa [...]
<span class="gh">Out[48]: </span>
<span class="go"> year col1 col2</span>
-<span class="go">0 2019 0 -1.961877</span>
-<span class="go">1 2019 1 2.016109</span>
-<span class="go">2 2019 2 0.135842</span>
+<span class="go">0 2019 0 -0.214176</span>
+<span class="go">1 2019 1 -2.079007</span>
+<span class="go">2 2019 2 -0.026262</span>
</pre></div>
</div>
<p>Another benefit of manually listing the files is that the order of the files
@@ -2246,7 +2246,7 @@ to supply a visitor that will be called as each file is
created:</p>
<span class="gp"> ....: </span>
<span class="go">path=dataset_visited/c=1/part-0.parquet</span>
<span class="go">size=816 bytes</span>
-<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fcfa0d790d0></span>
+<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7f5f117e09a0></span>
<span class="go"> created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 2</span>
<span class="go"> num_rows: 5</span>
@@ -2255,7 +2255,7 @@ to supply a visitor that will be called as each file is
created:</p>
<span class="go"> serialized_size: 0</span>
<span class="go">path=dataset_visited/c=2/part-0.parquet</span>
<span class="go">size=818 bytes</span>
-<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7fcfa37c8310></span>
+<span class="go">metadata=<pyarrow._parquet.FileMetaData object at
0x7f5f117be7a0></span>
<span class="go"> created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 2</span>
<span class="go"> num_rows: 5</span>
diff --git a/docs/dev/python/getstarted.html b/docs/dev/python/getstarted.html
index 4939cf68190..0d5fbf40c8e 100644
--- a/docs/dev/python/getstarted.html
+++ b/docs/dev/python/getstarted.html
@@ -1597,7 +1597,7 @@ it’s possible to apply transformations to the data</p>
<span class="gp">In [12]: </span><span class="n">pc</span><span
class="o">.</span><span class="n">value_counts</span><span
class="p">(</span><span class="n">birthdays_table</span><span
class="p">[</span><span class="s2">"years"</span><span
class="p">])</span>
<span class="gh">Out[12]: </span>
-<span class="go"><pyarrow.lib.StructArray object at
0x7fcf710a5cc0></span>
+<span class="go"><pyarrow.lib.StructArray object at
0x7f5ee14e7940></span>
<span class="go">-- is_valid: all not null</span>
<span class="go">-- child 0 type: int16</span>
<span class="go"> [</span>
diff --git a/docs/dev/python/memory.html b/docs/dev/python/memory.html
index 4ab07876cd7..7336221488c 100644
--- a/docs/dev/python/memory.html
+++ b/docs/dev/python/memory.html
@@ -1546,7 +1546,7 @@ a bytes object:</p>
<span class="gp">In [3]: </span><span class="n">buf</span> <span
class="o">=</span> <span class="n">pa</span><span class="o">.</span><span
class="n">py_buffer</span><span class="p">(</span><span
class="n">data</span><span class="p">)</span>
<span class="gp">In [4]: </span><span class="n">buf</span>
-<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer
address=0x7fcf6d2bf650 size=26 is_cpu=True is_mutable=False></span>
+<span class="gh">Out[4]: </span><span class="go"><pyarrow.Buffer
address=0x7f5edac3ea90 size=26 is_cpu=True is_mutable=False></span>
<span class="gp">In [5]: </span><span class="n">buf</span><span
class="o">.</span><span class="n">size</span>
<span class="gh">Out[5]: </span><span class="go">26</span>
@@ -1559,7 +1559,7 @@ referenced using the <a class="reference internal"
href="generated/pyarrow.forei
<p>Buffers can be used in circumstances where a Python buffer or memoryview is
required, and such conversions are zero-copy:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [6]: </span><span
class="nb">memoryview</span><span class="p">(</span><span
class="n">buf</span><span class="p">)</span>
-<span class="gh">Out[6]: </span><span class="go"><memory at
0x7fcf6fba1300></span>
+<span class="gh">Out[6]: </span><span class="go"><memory at
0x7f5edaeb9840></span>
</pre></div>
</div>
<p>The Buffer’s <a class="reference internal"
href="generated/pyarrow.Buffer.html#pyarrow.Buffer.to_pybytes"
title="pyarrow.Buffer.to_pybytes"><code class="xref py py-meth docutils literal
notranslate"><span class="pre">to_pybytes()</span></code></a> method converts
the Buffer’s data to a
@@ -1758,7 +1758,7 @@ into Arrow Buffer objects, use <code class="docutils
literal notranslate"><span
<span class="gp">In [32]: </span><span class="n">buf</span> <span
class="o">=</span> <span class="n">mmap</span><span class="o">.</span><span
class="n">read_buffer</span><span class="p">(</span><span
class="mi">4</span><span class="p">)</span>
<span class="gp">In [33]: </span><span class="nb">print</span><span
class="p">(</span><span class="n">buf</span><span class="p">)</span>
-<span class="go"><pyarrow.Buffer address=0x7fd00afde000 size=4 is_cpu=True
is_mutable=False></span>
+<span class="go"><pyarrow.Buffer address=0x7f5f7bb6f000 size=4 is_cpu=True
is_mutable=False></span>
<span class="gp">In [34]: </span><span class="n">buf</span><span
class="o">.</span><span class="n">to_pybytes</span><span class="p">()</span>
<span class="gh">Out[34]: </span><span class="go">b'some'</span>
diff --git a/docs/dev/python/pandas.html b/docs/dev/python/pandas.html
index f9053009cbd..d93e94ab3a5 100644
--- a/docs/dev/python/pandas.html
+++ b/docs/dev/python/pandas.html
@@ -1720,7 +1720,7 @@ same categories of the Pandas DataFrame.</p>
<span class="gp">In [10]: </span><span class="n">chunk</span><span
class="o">.</span><span class="n">dictionary</span>
<span class="gh">Out[10]: </span>
-<span class="go"><pyarrow.lib.StringArray object at
0x7fcfee5755a0></span>
+<span class="go"><pyarrow.lib.StringArray object at
0x7f5ed856fd60></span>
<span class="go">[</span>
<span class="go"> "a",</span>
<span class="go"> "b",</span>
@@ -1729,7 +1729,7 @@ same categories of the Pandas DataFrame.</p>
<span class="gp">In [11]: </span><span class="n">chunk</span><span
class="o">.</span><span class="n">indices</span>
<span class="gh">Out[11]: </span>
-<span class="go"><pyarrow.lib.Int8Array object at 0x7fcfee574d60></span>
+<span class="go"><pyarrow.lib.Int8Array object at 0x7f5ed856fd00></span>
<span class="go">[</span>
<span class="go"> 0,</span>
<span class="go"> 1,</span>
@@ -1855,7 +1855,7 @@ converted to an Arrow <code class="docutils literal
notranslate"><span class="pr
<span class="gp">In [33]: </span><span class="n">arr</span>
<span class="gh">Out[33]: </span>
-<span class="go"><pyarrow.lib.Time64Array object at
0x7fcfee5776a0></span>
+<span class="go"><pyarrow.lib.Time64Array object at
0x7f5f5e741de0></span>
<span class="go">[</span>
<span class="go"> 01:01:01.000000,</span>
<span class="go"> 02:02:02.000000</span>
diff --git a/docs/dev/python/parquet.html b/docs/dev/python/parquet.html
index ae9bce1df3b..3c1609cc18d 100644
--- a/docs/dev/python/parquet.html
+++ b/docs/dev/python/parquet.html
@@ -1691,7 +1691,7 @@ you may choose to omit it by passing <code
class="docutils literal notranslate">
<span class="gp">In [20]: </span><span class="n">parquet_file</span><span
class="o">.</span><span class="n">metadata</span>
<span class="gh">Out[20]: </span>
-<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fcfdf47d210></span>
+<span class="go"><pyarrow._parquet.FileMetaData object at
0x7f5f5e74d210></span>
<span class="go"> created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
@@ -1701,7 +1701,7 @@ you may choose to omit it by passing <code
class="docutils literal notranslate">
<span class="gp">In [21]: </span><span class="n">parquet_file</span><span
class="o">.</span><span class="n">schema</span>
<span class="gh">Out[21]: </span>
-<span class="go"><pyarrow._parquet.ParquetSchema object at
0x7fcfee43d500></span>
+<span class="go"><pyarrow._parquet.ParquetSchema object at
0x7f5f5e607280></span>
<span class="go">required group field_id=-1 schema {</span>
<span class="go"> optional double field_id=-1 one;</span>
<span class="go"> optional binary field_id=-1 two (String);</span>
@@ -1759,7 +1759,7 @@ concatenate them into a single table. You can read
individual row groups with
<span class="gp">In [30]: </span><span class="n">metadata</span>
<span class="gh">Out[30]: </span>
-<span class="go"><pyarrow._parquet.FileMetaData object at
0x7fcfee45a2f0></span>
+<span class="go"><pyarrow._parquet.FileMetaData object at
0x7f5f5e628810></span>
<span class="go"> created_by: parquet-cpp-arrow version 22.0.0-SNAPSHOT</span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
@@ -1773,7 +1773,7 @@ concatenate them into a single table. You can read
individual row groups with
such as the row groups and column chunk metadata and statistics:</p>
<div class="highlight-ipython notranslate"><div
class="highlight"><pre><span></span><span class="gp">In [31]: </span><span
class="n">metadata</span><span class="o">.</span><span
class="n">row_group</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span>
<span class="gh">Out[31]: </span>
-<span class="go"><pyarrow._parquet.RowGroupMetaData object at
0x7fcf6d334630></span>
+<span class="go"><pyarrow._parquet.RowGroupMetaData object at
0x7f5f5e628fe0></span>
<span class="go"> num_columns: 4</span>
<span class="go"> num_rows: 3</span>
<span class="go"> total_byte_size: 282</span>
@@ -1781,7 +1781,7 @@ such as the row groups and column chunk metadata and
statistics:</p>
<span class="gp">In [32]: </span><span class="n">metadata</span><span
class="o">.</span><span class="n">row_group</span><span class="p">(</span><span
class="mi">0</span><span class="p">)</span><span class="o">.</span><span
class="n">column</span><span class="p">(</span><span class="mi">0</span><span
class="p">)</span>
<span class="gh">Out[32]: </span>
-<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at
0x7fcfee45aed0></span>
+<span class="go"><pyarrow._parquet.ColumnChunkMetaData object at
0x7f5f5e6292b0></span>
<span class="go"> file_offset: 0</span>
<span class="go"> file_path: </span>
<span class="go"> physical_type: DOUBLE</span>
@@ -1789,7 +1789,7 @@ such as the row groups and column chunk metadata and
statistics:</p>
<span class="go"> path_in_schema: one</span>
<span class="go"> is_stats_set: True</span>
<span class="go"> statistics:</span>
-<span class="go"> <pyarrow._parquet.Statistics object at
0x7fcfee45af70></span>
+<span class="go"> <pyarrow._parquet.Statistics object at
0x7f5f5e629350></span>
<span class="go"> has_min_max: True</span>
<span class="go"> min: -1.0</span>
<span class="go"> max: 2.5</span>
diff --git a/docs/dev/r/articles/data_wrangling.html
b/docs/dev/r/articles/data_wrangling.html
index 3e8cc89dd45..ea0dad1e948 100644
--- a/docs/dev/r/articles/data_wrangling.html
+++ b/docs/dev/r/articles/data_wrangling.html
@@ -409,18 +409,18 @@ paying a performance penalty using the helper function
<span> <span class="co"># perform other arrow operations...</span></span>
<span> <span class="fu"><a
href="https://dplyr.tidyverse.org/reference/compute.html"
class="external-link">collect</a></span><span class="op">(</span><span
class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## <span style="color: #949494;"># A tibble:
28 x 4</span></span></span>
-<span><span class="co">## name height mass hair_color</span></span>
-<span><span class="co">## <span style="color: #949494; font-style:
italic;"><chr></span> <span style="color: #949494; font-style:
italic;"><int></span> <span style="color: #949494; font-style:
italic;"><dbl></span> <span style="color: #949494; font-style:
italic;"><chr></span> </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> R4-P17
96 <span style="color: #BB0000;">NA</span> none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> Lobot
175 79 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> Ackbar
180 83 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> Nien Nunb
160 68 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> Sebulba
112 40 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> Bib Fortuna
180 <span style="color: #BB0000;">NA</span> none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> Ayla Secura
178 55 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> Ratts Tyerel
79 15 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> Dud Bolt
94 45 none </span></span>
-<span><span class="co">## <span style="color: #BCBCBC;">10</span> Gasgano
122 <span style="color: #BB0000;">NA</span> none </span></span>
+<span><span class="co">## name height mass
hair_color</span></span>
+<span><span class="co">## <span style="color: #949494; font-style:
italic;"><chr></span> <span style="color: #949494;
font-style: italic;"><int></span> <span style="color: #949494;
font-style: italic;"><dbl></span> <span style="color: #949494;
font-style: italic;"><chr></span> </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 1</span> <span
style="color: #949494;">"</span>Yoda<span style="color: #949494;">"</span>
66 17 white </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 2</span> <span
style="color: #949494;">"</span>Leia Organa<span style="color:
#949494;">"</span> 150 49 brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 3</span> <span
style="color: #949494;">"</span>Beru Whitesun Lars<span style="color:
#949494;">"</span> 165 75 brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 4</span> <span
style="color: #949494;">"</span>Wedge Antilles<span style="color:
#949494;">"</span> 170 77 brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 5</span> <span
style="color: #949494;">"</span>Wicket Systri Warrick<span style="color:
#949494;">"</span> 88 20 brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 6</span> <span
style="color: #949494;">"</span>Cord\u00e9<span style="color:
#949494;">"</span> 157 <span style="color: #BB0000;">NA</span>
brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 7</span> <span
style="color: #949494;">"</span>Dorm\u00e9<span style="color:
#949494;">"</span> 165 <span style="color: #BB0000;">NA</span>
brown </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 8</span> <span
style="color: #949494;">"</span>R4-P17<span style="color: #949494;">"</span>
96 <span style="color: #BB0000;">NA</span> none
</span></span>
+<span><span class="co">## <span style="color: #BCBCBC;"> 9</span> <span
style="color: #949494;">"</span>Lobot<span style="color: #949494;">"</span>
175 79 none </span></span>
+<span><span class="co">## <span style="color: #BCBCBC;">10</span> <span
style="color: #949494;">"</span>Ackbar<span style="color: #949494;">"</span>
180 83 none </span></span>
<span><span class="co">## <span style="color: #949494;"># i 18 more
rows</span></span></span></code></pre>
</div>
<div class="section level2">
diff --git a/docs/dev/r/pkgdown.yml b/docs/dev/r/pkgdown.yml
index f98a3eca2ae..03a281b63ab 100644
--- a/docs/dev/r/pkgdown.yml
+++ b/docs/dev/r/pkgdown.yml
@@ -21,7 +21,7 @@ articles:
read_write: read_write.html
developers/setup: developers/setup.html
developers/workflow: developers/workflow.html
-last_built: 2025-08-16T01:16Z
+last_built: 2025-08-17T01:24Z
urls:
reference: https://arrow.apache.org/docs/r/reference
article: https://arrow.apache.org/docs/r/articles
diff --git a/docs/dev/r/reference/to_duckdb.html
b/docs/dev/r/reference/to_duckdb.html
index 88f527d7791..5a4814efb3d 100644
--- a/docs/dev/r/reference/to_duckdb.html
+++ b/docs/dev/r/reference/to_duckdb.html
@@ -148,8 +148,8 @@ using them.</p>
<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">1</span> 16.4 8 276. 180 3.07 4.07 17.4 0 0 3
3</span>
<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">2</span> 17.3 8 276. 180 3.07 3.73 17.6 0 0 3
3</span>
<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">3</span> 15.2 8 276. 180 3.07 3.78 18 0 0 3
3</span>
-<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">4</span> 19.7 6 145 175 3.62 2.77 15.5 0 1 5
6</span>
-<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">5</span> 27.3 4 79 66 4.08 1.94 18.9 1 1 4
1</span>
+<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">4</span> 27.3 4 79 66 4.08 1.94 18.9 1 1 4
1</span>
+<span class="r-out co"><span class="r-pr">#></span> <span style="color:
#BCBCBC;">5</span> 19.7 6 145 175 3.62 2.77 15.5 0 1 5
6</span>
</code></pre></div>
</div>
</main><aside class="col-md-3"><nav id="toc" aria-label="Table of
contents"><h2>On this page</h2>
diff --git a/docs/dev/r/search.json b/docs/dev/r/search.json
index b5a0c856f08..bcf8054921b 100644
--- a/docs/dev/r/search.json
+++ b/docs/dev/r/search.json
@@ -1 +1 @@
-[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
Checklist for CRAN Release","title":"Packaging Checklist for CRAN
Release","text":"high-level overview Arrow release process see Apache Arrow
Release Management
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
the Arrow Release Candidate Is Create [...]
+[{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":null,"dir":"","previous_headings":"","what":"Packaging
Checklist for CRAN Release","title":"Packaging Checklist for CRAN
Release","text":"high-level overview Arrow release process see Apache Arrow
Release Management
Guide.","code":""},{"path":"https://arrow.apache.org/docs/r/PACKAGING.html","id":"before-the-arrow-release-candidate-is-created","dir":"","previous_headings":"","what":"Before
the Arrow Release Candidate Is Create [...]
diff --git a/docs/dev/searchindex.js b/docs/dev/searchindex.js
index 60400ef76af..84956033d7b 100644
--- a/docs/dev/searchindex.js
+++ b/docs/dev/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index",
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index",
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index",
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index",
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait",
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array",
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute",
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file
+Search.setIndex({"docnames": ["c_glib/arrow-cuda-glib/index",
"c_glib/arrow-dataset-glib/index", "c_glib/arrow-flight-glib/index",
"c_glib/arrow-flight-sql-glib/index", "c_glib/arrow-glib/index",
"c_glib/gandiva-glib/index", "c_glib/index", "c_glib/parquet-glib/index",
"cpp/acero", "cpp/acero/overview", "cpp/acero/substrait",
"cpp/acero/user_guide", "cpp/api", "cpp/api/acero", "cpp/api/array",
"cpp/api/async", "cpp/api/builder", "cpp/api/c_abi", "cpp/api/compute",
"cpp/api/cuda", "cpp/ap [...]
\ No newline at end of file