This is an automated email from the ASF dual-hosted git repository.

vterentev pushed a commit to branch oss-image-cpu
in repository https://gitbox.apache.org/repos/asf/beam.git


The following commit(s) were added to refs/heads/oss-image-cpu by this push:
     new 285327b4e9a Add Looker ids
285327b4e9a is described below

commit 285327b4e9a2c16ee85d3e0f590abccddc2db5aa
Author: Vitaly Terentyev <[email protected]>
AuthorDate: Thu Jan 22 13:31:56 2026 +0400

    Add Looker ids
---
 .../beam_Inference_Python_Benchmarks_Dataflow.yml  |  4 ++--
 .test-infra/tools/refresh_looker_metrics.py        |  6 +++---
 website/www/site/data/performance.yaml             | 24 +++++++++++-----------
 3 files changed, 17 insertions(+), 17 deletions(-)

diff --git a/.github/workflows/beam_Inference_Python_Benchmarks_Dataflow.yml 
b/.github/workflows/beam_Inference_Python_Benchmarks_Dataflow.yml
index a10ca530217..fa1bb91f62f 100644
--- a/.github/workflows/beam_Inference_Python_Benchmarks_Dataflow.yml
+++ b/.github/workflows/beam_Inference_Python_Benchmarks_Dataflow.yml
@@ -98,7 +98,7 @@ jobs:
       # The env variables are created and populated in the 
test-arguments-action as 
"<github.job>_test_arguments_<argument_file_paths_index>"
       - name: get current time
         run: echo "NOW_UTC=$(date '+%m%d%H%M%S' --utc)" >> $GITHUB_ENV
-      - name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Batch
+      - name: run PyTorch Image Object Detection Faster R-CNN ResNet-50 Batch 
GPU
         uses: ./.github/actions/gradle-command-self-hosted-action
         timeout-minutes: 180
         with:
@@ -109,7 +109,7 @@ jobs:
             -PpythonVersion=3.10 \
             
-PloadTest.requirementsTxtFile=apache_beam/ml/inference/pytorch_image_object_detection_requirements.txt
 \
             '-PloadTest.args=${{ 
env.beam_Inference_Python_Benchmarks_Dataflow_test_arguments_10 }} --mode=batch 
--job_name=benchmark-tests-pytorch-image-object-detection-batch-${{env.NOW_UTC}}
 
--output_table=apache-beam-testing.beam_run_inference.result_torch_inference_image_object_detection_batch'
 \
-      - name: run PyTorch Image Captioning BLIP + CLIP Batch
+      - name: run PyTorch Image Captioning BLIP + CLIP Batch GPU
         uses: ./.github/actions/gradle-command-self-hosted-action
         timeout-minutes: 180
         with:
diff --git a/.test-infra/tools/refresh_looker_metrics.py 
b/.test-infra/tools/refresh_looker_metrics.py
index 87564d5d65e..5f92e5a0593 100644
--- a/.test-infra/tools/refresh_looker_metrics.py
+++ b/.test-infra/tools/refresh_looker_metrics.py
@@ -43,9 +43,9 @@ LOOKS_TO_DOWNLOAD = [
     ("82", ["263", "264", "265", "266", "267"]),  # PyTorch Sentiment 
Streaming DistilBERT base uncased
     ("85", ["268", "269", "270", "271", "272"]),  # PyTorch Sentiment Batch 
DistilBERT base uncased
     ("86", ["284", "285", "286", "287", "288"]),  # VLLM Batch Gemma
-    ("92", ["289", "290", "291", "292", "293"]),  # PyTorch Image 
Classification EfficientNet-B0 Streaming (Right-fitting)
-    #TODO: PyTorch Image Object Detection Faster R-CNN ResNet-50 Batch
-    #TODO: PyTorch Image Captioning BLIP + CLIP Batch
+    ("92", ["289", "290", "291", "292", "293"]),  # PyTorch Image 
Classification EfficientNet-B0 Streaming (Right-fit)
+    ("93", ["294", "295", "296", "298", "299"]),  # PyTorch Image Object 
Detection Faster R-CNN ResNet-50 Batch GPU
+    ("94", ["297", "300", "301", "302", "303"]),  # PyTorch Image Captioning 
BLIP + CLIP Batch GPU
 ]
 
 
diff --git a/website/www/site/data/performance.yaml 
b/website/www/site/data/performance.yaml
index c50feeee5f2..348b48a5b99 100644
--- a/website/www/site/data/performance.yaml
+++ b/website/www/site/data/performance.yaml
@@ -268,33 +268,33 @@ looks:
           title: AvgThroughputElementsPerSec by Version
   pytorchimageobjectdetectionbatchgpu:
     write:
-      folder: #TODO
+      folder: 93
       cost:
-        - id: #TODO
+        - id: XGPVSYhVbZGJHQCtMPW4nRGynxXpdzdh
           title: RunTime and EstimatedCost
       date:
-        - id: #TODO
+        - id: ZW48KBPBxShGgWx53vjfvgqp6cVmHCNB
           title: AvgThroughputBytesPerSec by Date
-        - id: #TODO
+        - id: BjMWg26F3gNHQyZSsg8HjhTg3mCh6jFJ
           title: AvgThroughputElementsPerSec by Date
       version:
-        - id: #TODO
+        - id: kbF7Gnqjsjnvh3MKvYszSgWFbgDYYTWR
           title: AvgThroughputBytesPerSec by Version
-        - id: #TODO
+        - id: cTxrpY3KGrCb35dq7fnjvdsDnd7t85pJ
           title: AvgThroughputElementsPerSec by Version
   pytorchimagecaptioningbatchgpu:
     write:
-      folder: #TODO
+      folder: 94
       cost:
-        - id: #TODO
+        - id: nhYggnCYJzfgDyTXZRGJwpSyYKvBpfhV
           title: RunTime and EstimatedCost
       date:
-        - id: #TODO
+        - id: qzjkYQJCrxjc8GPcBF7dFJSFdTXQKxmR
           title: AvgThroughputBytesPerSec by Date
-        - id: #TODO
+        - id: kgkdbBCbkhDHpb2rHNGQDxcwGqzykwqD
           title: AvgThroughputElementsPerSec by Date
       version:
-        - id: #TODO
+        - id: 4p7b4HWVMRC8HXDZYMXbVYf2VPzYQ2kz
           title: AvgThroughputBytesPerSec by Version
-        - id: #TODO
+        - id: xQZRDYJRvmV7qMhb3j2XTrPmC8TP4DTr
           title: AvgThroughputElementsPerSec by Version

Reply via email to