Author: blerer
Date: Thu Jan 21 11:14:39 2016
New Revision: 1725905

URL: http://svn.apache.org/viewvc?rev=1725905&view=rev
Log:
Update to the latest version

Modified:
    cassandra/site/publish/doc/cql3/CQL-3.0.html

Modified: cassandra/site/publish/doc/cql3/CQL-3.0.html
URL: 
http://svn.apache.org/viewvc/cassandra/site/publish/doc/cql3/CQL-3.0.html?rev=1725905&r1=1725904&r2=1725905&view=diff
==============================================================================
--- cassandra/site/publish/doc/cql3/CQL-3.0.html (original)
+++ cassandra/site/publish/doc/cql3/CQL-3.0.html Thu Jan 21 11:14:39 2016
@@ -1,6 +1,6 @@
-<?xml version='1.0' encoding='utf-8' ?><!DOCTYPE html PUBLIC "-//W3C//DTD 
XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";><html 
xmlns="http://www.w3.org/1999/xhtml";><head><meta http-equiv="Content-Type" 
content="text/html; charset=utf-8"/><title>CQL</title></head><body><p><link 
rel="StyleSheet" href="CQL.css" type="text/css" media="screen"></p><h1 
id="CassandraQueryLanguageCQLv3.4.0">Cassandra Query Language (CQL) 
v3.4.0</h1><span id="tableOfContents"><ol style="list-style: none;"><li><a 
href="CQL.html#CassandraQueryLanguageCQLv3.4.0">Cassandra Query Language (CQL) 
v3.4.0</a><ol style="list-style: none;"><li><a href="CQL.html#CQLSyntax">CQL 
Syntax</a><ol style="list-style: none;"><li><a 
href="CQL.html#Preamble">Preamble</a></li><li><a 
href="CQL.html#Conventions">Conventions</a></li><li><a 
href="CQL.html#identifiers">Identifiers and keywords</a></li><li><a 
href="CQL.html#constants">Constants</a></li><li><a 
href="CQL.html#Comments">Comments</a></l
 i><li><a href="CQL.html#statements">Statements</a></li><li><a 
href="CQL.html#preparedStatement">Prepared Statement</a></li></ol></li><li><a 
href="CQL.html#dataDefinition">Data Definition</a><ol style="list-style: 
none;"><li><a href="CQL.html#createKeyspaceStmt">CREATE KEYSPACE</a></li><li><a 
href="CQL.html#useStmt">USE</a></li><li><a 
href="CQL.html#alterKeyspaceStmt">ALTER KEYSPACE</a></li><li><a 
href="CQL.html#dropKeyspaceStmt">DROP KEYSPACE</a></li><li><a 
href="CQL.html#createTableStmt">CREATE TABLE</a></li><li><a 
href="CQL.html#alterTableStmt">ALTER TABLE</a></li><li><a 
href="CQL.html#dropTableStmt">DROP TABLE</a></li><li><a 
href="CQL.html#truncateStmt">TRUNCATE</a></li><li><a 
href="CQL.html#createIndexStmt">CREATE INDEX</a></li><li><a 
href="CQL.html#dropIndexStmt">DROP INDEX</a></li><li><a 
href="CQL.html#createMVStmt">CREATE MATERIALIZED VIEW</a></li><li><a 
href="CQL.html#alterMVStmt">ALTER MATERIALIZED VIEW</a></li><li><a 
href="CQL.html#dropMVStmt">DROP MATERIALIZED VIEW</a></l
 i><li><a href="CQL.html#createTypeStmt">CREATE TYPE</a></li><li><a 
href="CQL.html#alterTypeStmt">ALTER TYPE</a></li><li><a 
href="CQL.html#dropTypeStmt">DROP TYPE</a></li><li><a 
href="CQL.html#createTriggerStmt">CREATE TRIGGER</a></li><li><a 
href="CQL.html#dropTriggerStmt">DROP TRIGGER</a></li><li><a 
href="CQL.html#createFunctionStmt">CREATE FUNCTION</a></li><li><a 
href="CQL.html#dropFunctionStmt">DROP FUNCTION</a></li><li><a 
href="CQL.html#createAggregateStmt">CREATE AGGREGATE</a></li><li><a 
href="CQL.html#dropAggregateStmt">DROP AGGREGATE</a></li></ol></li><li><a 
href="CQL.html#dataManipulation">Data Manipulation</a><ol style="list-style: 
none;"><li><a href="CQL.html#insertStmt">INSERT</a></li><li><a 
href="CQL.html#updateStmt">UPDATE</a></li><li><a 
href="CQL.html#deleteStmt">DELETE</a></li><li><a 
href="CQL.html#batchStmt">BATCH</a></li></ol></li><li><a 
href="CQL.html#queries">Queries</a><ol style="list-style: none;"><li><a 
href="CQL.html#selectStmt">SELECT</a></li></ol></li><li><a 
 href="CQL.html#databaseRoles">Database Roles</a><ol style="list-style: 
none;"><li><a href="CQL.html#createRoleStmt">CREATE ROLE</a></li><li><a 
href="CQL.html#alterRoleStmt">ALTER ROLE</a></li><li><a 
href="CQL.html#dropRoleStmt">DROP ROLE</a></li><li><a 
href="CQL.html#grantRoleStmt">GRANT ROLE</a></li><li><a 
href="CQL.html#revokeRoleStmt">REVOKE ROLE</a></li><li><a 
href="CQL.html#createUserStmt">CREATE USER </a></li><li><a 
href="CQL.html#alterUserStmt">ALTER USER </a></li><li><a 
href="CQL.html#dropUserStmt">DROP USER </a></li><li><a 
href="CQL.html#listUsersStmt">LIST USERS</a></li></ol></li><li><a 
href="CQL.html#dataControl">Data Control</a><ol style="list-style: 
none;"><li><a href="CQL.html#permissions">Permissions </a></li><li><a 
href="CQL.html#grantPermissionsStmt">GRANT PERMISSION</a></li><li><a 
href="CQL.html#revokePermissionsStmt">REVOKE 
PERMISSION</a></li></ol></li><li><a href="CQL.html#types">Data Types</a><ol 
style="list-style: none;"><li><a href="CQL.html#usingtimestamps">W
 orking with timestamps</a></li><li><a href="CQL.html#usingdates">Working with 
dates</a></li><li><a href="CQL.html#usingtime">Working with time</a></li><li><a 
href="CQL.html#counters">Counters</a></li><li><a 
href="CQL.html#collections">Working with collections</a></li></ol></li><li><a 
href="CQL.html#functions">Functions</a><ol style="list-style: none;"><li><a 
href="CQL.html#tokenFun">Token</a></li><li><a 
href="CQL.html#uuidFun">Uuid</a></li><li><a 
href="CQL.html#timeuuidFun">Timeuuid functions</a></li><li><a 
href="CQL.html#timeFun">Time conversion functions</a></li><li><a 
href="CQL.html#blobFun">Blob conversion functions</a></li></ol></li><li><a 
href="CQL.html#aggregates">Aggregates</a><ol style="list-style: none;"><li><a 
href="CQL.html#countFct">Count</a></li><li><a href="CQL.html#maxMinFcts">Max 
and Min</a></li><li><a href="CQL.html#sumFct">Sum</a></li><li><a 
href="CQL.html#avgFct">Avg</a></li></ol></li><li><a 
href="CQL.html#udfs">User-Defined Functions</a></li><li><a href="CQL.htm
 l#udas">User-Defined Aggregates</a></li><li><a href="CQL.html#json">JSON 
Support</a><ol style="list-style: none;"><li><a 
href="CQL.html#selectJson">SELECT JSON</a></li><li><a 
href="CQL.html#insertJson">INSERT JSON</a></li><li><a 
href="CQL.html#jsonEncoding">JSON Encoding of Cassandra Data 
Types</a></li><li><a href="CQL.html#fromJson">The fromJson() 
Function</a></li><li><a href="CQL.html#toJson">The toJson() 
Function</a></li></ol></li><li><a href="CQL.html#appendixA">Appendix A: CQL 
Keywords</a></li><li><a href="CQL.html#appendixB">Appendix B: CQL Reserved 
Types</a></li><li><a href="CQL.html#changes">Changes</a><ol style="list-style: 
none;"><li><a href="CQL.html#a3.4.0">3.4.0</a></li><li><a 
href="CQL.html#a3.3.1">3.3.1</a></li><li><a 
href="CQL.html#a3.3.0">3.3.0</a></li><li><a 
href="CQL.html#a3.2.0">3.2.0</a></li><li><a 
href="CQL.html#a3.1.7">3.1.7</a></li><li><a 
href="CQL.html#a3.1.6">3.1.6</a></li><li><a 
href="CQL.html#a3.1.5">3.1.5</a></li><li><a href="CQL.html#a3.1.4">3.1.4</a></
 li><li><a href="CQL.html#a3.1.3">3.1.3</a></li><li><a 
href="CQL.html#a3.1.2">3.1.2</a></li><li><a 
href="CQL.html#a3.1.1">3.1.1</a></li><li><a 
href="CQL.html#a3.1.0">3.1.0</a></li><li><a 
href="CQL.html#a3.0.5">3.0.5</a></li><li><a 
href="CQL.html#a3.0.4">3.0.4</a></li><li><a 
href="CQL.html#a3.0.3">3.0.3</a></li><li><a 
href="CQL.html#a3.0.2">3.0.2</a></li><li><a 
href="CQL.html#a3.0.1">3.0.1</a></li></ol></li><li><a 
href="CQL.html#Versioning">Versioning</a></li></ol></li></ol></span><h2 
id="CQLSyntax">CQL Syntax</h2><h3 id="Preamble">Preamble</h3><p>This document 
describes the Cassandra Query Language (CQL) version 3. CQL v3 is not backward 
compatible with CQL v2 and differs from it in numerous ways. Note that this 
document describes the last version of the languages. However, the <a 
href="#changes">changes</a> section provides the diff between the different 
versions of CQL v3.</p><p>CQL v3 offers a model very close to SQL in the sense 
that data is put in <em>tables</em> containing <em>
 rows</em> of <em>columns</em>. For that reason, when used in this document, 
these terms (tables, rows and columns) have the same definition than they have 
in SQL. But please note that as such, they do <strong>not</strong> refer to the 
concept of rows and columns found in the internal implementation of Cassandra 
and in the thrift and CQL v2 API.</p><h3 id="Conventions">Conventions</h3><p>To 
aid in specifying the CQL syntax, we will use the following conventions in this 
document:</p><ul><li>Language rules will be given in a <a 
href="http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form";>BNF</a> -like 
notation:</li></ul><pre class="syntax"><pre>&lt;start> ::= TERMINAL 
&lt;non-terminal1> &lt;non-terminal1>
+<?xml version='1.0' encoding='utf-8' ?><!DOCTYPE html PUBLIC "-//W3C//DTD 
XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";><html 
xmlns="http://www.w3.org/1999/xhtml";><head><meta http-equiv="Content-Type" 
content="text/html; charset=utf-8"/><title>CQL-3.0</title></head><body><p><link 
rel="StyleSheet" href="CQL.css" type="text/css" media="screen"></p><h1 
id="CassandraQueryLanguageCQLv3.4.0">Cassandra Query Language (CQL) 
v3.4.0</h1><span id="tableOfContents"><ol style="list-style: none;"><li><a 
href="CQL-3.0.html#CassandraQueryLanguageCQLv3.4.0">Cassandra Query Language 
(CQL) v3.4.0</a><ol style="list-style: none;"><li><a 
href="CQL-3.0.html#CQLSyntax">CQL Syntax</a><ol style="list-style: 
none;"><li><a href="CQL-3.0.html#Preamble">Preamble</a></li><li><a 
href="CQL-3.0.html#Conventions">Conventions</a></li><li><a 
href="CQL-3.0.html#identifiers">Identifiers and keywords</a></li><li><a 
href="CQL-3.0.html#constants">Constants</a></li><li><a href="CQL-3.
 0.html#Comments">Comments</a></li><li><a 
href="CQL-3.0.html#statements">Statements</a></li><li><a 
href="CQL-3.0.html#preparedStatement">Prepared 
Statement</a></li></ol></li><li><a href="CQL-3.0.html#dataDefinition">Data 
Definition</a><ol style="list-style: none;"><li><a 
href="CQL-3.0.html#createKeyspaceStmt">CREATE KEYSPACE</a></li><li><a 
href="CQL-3.0.html#useStmt">USE</a></li><li><a 
href="CQL-3.0.html#alterKeyspaceStmt">ALTER KEYSPACE</a></li><li><a 
href="CQL-3.0.html#dropKeyspaceStmt">DROP KEYSPACE</a></li><li><a 
href="CQL-3.0.html#createTableStmt">CREATE TABLE</a></li><li><a 
href="CQL-3.0.html#alterTableStmt">ALTER TABLE</a></li><li><a 
href="CQL-3.0.html#dropTableStmt">DROP TABLE</a></li><li><a 
href="CQL-3.0.html#truncateStmt">TRUNCATE</a></li><li><a 
href="CQL-3.0.html#createIndexStmt">CREATE INDEX</a></li><li><a 
href="CQL-3.0.html#dropIndexStmt">DROP INDEX</a></li><li><a 
href="CQL-3.0.html#createMVStmt">CREATE MATERIALIZED VIEW</a></li><li><a 
href="CQL-3.0.html#alterMVStmt">ALT
 ER MATERIALIZED VIEW</a></li><li><a href="CQL-3.0.html#dropMVStmt">DROP 
MATERIALIZED VIEW</a></li><li><a href="CQL-3.0.html#createTypeStmt">CREATE 
TYPE</a></li><li><a href="CQL-3.0.html#alterTypeStmt">ALTER TYPE</a></li><li><a 
href="CQL-3.0.html#dropTypeStmt">DROP TYPE</a></li><li><a 
href="CQL-3.0.html#createTriggerStmt">CREATE TRIGGER</a></li><li><a 
href="CQL-3.0.html#dropTriggerStmt">DROP TRIGGER</a></li><li><a 
href="CQL-3.0.html#createFunctionStmt">CREATE FUNCTION</a></li><li><a 
href="CQL-3.0.html#dropFunctionStmt">DROP FUNCTION</a></li><li><a 
href="CQL-3.0.html#createAggregateStmt">CREATE AGGREGATE</a></li><li><a 
href="CQL-3.0.html#dropAggregateStmt">DROP AGGREGATE</a></li></ol></li><li><a 
href="CQL-3.0.html#dataManipulation">Data Manipulation</a><ol 
style="list-style: none;"><li><a 
href="CQL-3.0.html#insertStmt">INSERT</a></li><li><a 
href="CQL-3.0.html#updateStmt">UPDATE</a></li><li><a 
href="CQL-3.0.html#deleteStmt">DELETE</a></li><li><a 
href="CQL-3.0.html#batchStmt">BATCH</a><
 /li></ol></li><li><a href="CQL-3.0.html#queries">Queries</a><ol 
style="list-style: none;"><li><a 
href="CQL-3.0.html#selectStmt">SELECT</a></li></ol></li><li><a 
href="CQL-3.0.html#databaseRoles">Database Roles</a><ol style="list-style: 
none;"><li><a href="CQL-3.0.html#createRoleStmt">CREATE ROLE</a></li><li><a 
href="CQL-3.0.html#alterRoleStmt">ALTER ROLE</a></li><li><a 
href="CQL-3.0.html#dropRoleStmt">DROP ROLE</a></li><li><a 
href="CQL-3.0.html#grantRoleStmt">GRANT ROLE</a></li><li><a 
href="CQL-3.0.html#revokeRoleStmt">REVOKE ROLE</a></li><li><a 
href="CQL-3.0.html#createUserStmt">CREATE USER </a></li><li><a 
href="CQL-3.0.html#alterUserStmt">ALTER USER </a></li><li><a 
href="CQL-3.0.html#dropUserStmt">DROP USER </a></li><li><a 
href="CQL-3.0.html#listUsersStmt">LIST USERS</a></li></ol></li><li><a 
href="CQL-3.0.html#dataControl">Data Control</a><ol style="list-style: 
none;"><li><a href="CQL-3.0.html#permissions">Permissions </a></li><li><a 
href="CQL-3.0.html#grantPermissionsStmt">GRANT P
 ERMISSION</a></li><li><a href="CQL-3.0.html#revokePermissionsStmt">REVOKE 
PERMISSION</a></li></ol></li><li><a href="CQL-3.0.html#types">Data Types</a><ol 
style="list-style: none;"><li><a href="CQL-3.0.html#usingtimestamps">Working 
with timestamps</a></li><li><a href="CQL-3.0.html#usingdates">Working with 
dates</a></li><li><a href="CQL-3.0.html#usingtime">Working with 
time</a></li><li><a href="CQL-3.0.html#counters">Counters</a></li><li><a 
href="CQL-3.0.html#collections">Working with 
collections</a></li></ol></li><li><a 
href="CQL-3.0.html#functions">Functions</a><ol style="list-style: none;"><li><a 
href="CQL-3.0.html#tokenFun">Token</a></li><li><a 
href="CQL-3.0.html#uuidFun">Uuid</a></li><li><a 
href="CQL-3.0.html#timeuuidFun">Timeuuid functions</a></li><li><a 
href="CQL-3.0.html#timeFun">Time conversion functions</a></li><li><a 
href="CQL-3.0.html#blobFun">Blob conversion functions</a></li></ol></li><li><a 
href="CQL-3.0.html#aggregates">Aggregates</a><ol style="list-style: none;"><li><
 a href="CQL-3.0.html#countFct">Count</a></li><li><a 
href="CQL-3.0.html#maxMinFcts">Max and Min</a></li><li><a 
href="CQL-3.0.html#sumFct">Sum</a></li><li><a 
href="CQL-3.0.html#avgFct">Avg</a></li></ol></li><li><a 
href="CQL-3.0.html#udfs">User-Defined Functions</a></li><li><a 
href="CQL-3.0.html#udas">User-Defined Aggregates</a></li><li><a 
href="CQL-3.0.html#json">JSON Support</a><ol style="list-style: none;"><li><a 
href="CQL-3.0.html#selectJson">SELECT JSON</a></li><li><a 
href="CQL-3.0.html#insertJson">INSERT JSON</a></li><li><a 
href="CQL-3.0.html#jsonEncoding">JSON Encoding of Cassandra Data 
Types</a></li><li><a href="CQL-3.0.html#fromJson">The fromJson() 
Function</a></li><li><a href="CQL-3.0.html#toJson">The toJson() 
Function</a></li></ol></li><li><a href="CQL-3.0.html#appendixA">Appendix A: CQL 
Keywords</a></li><li><a href="CQL-3.0.html#appendixB">Appendix B: CQL Reserved 
Types</a></li><li><a href="CQL-3.0.html#changes">Changes</a><ol 
style="list-style: none;"><li><a href="CQL-3.0.
 html#a3.4.0">3.4.0</a></li><li><a 
href="CQL-3.0.html#a3.3.1">3.3.1</a></li><li><a 
href="CQL-3.0.html#a3.3.0">3.3.0</a></li><li><a 
href="CQL-3.0.html#a3.2.0">3.2.0</a></li><li><a 
href="CQL-3.0.html#a3.1.7">3.1.7</a></li><li><a 
href="CQL-3.0.html#a3.1.6">3.1.6</a></li><li><a 
href="CQL-3.0.html#a3.1.5">3.1.5</a></li><li><a 
href="CQL-3.0.html#a3.1.4">3.1.4</a></li><li><a 
href="CQL-3.0.html#a3.1.3">3.1.3</a></li><li><a 
href="CQL-3.0.html#a3.1.2">3.1.2</a></li><li><a 
href="CQL-3.0.html#a3.1.1">3.1.1</a></li><li><a 
href="CQL-3.0.html#a3.1.0">3.1.0</a></li><li><a 
href="CQL-3.0.html#a3.0.5">3.0.5</a></li><li><a 
href="CQL-3.0.html#a3.0.4">3.0.4</a></li><li><a 
href="CQL-3.0.html#a3.0.3">3.0.3</a></li><li><a 
href="CQL-3.0.html#a3.0.2">3.0.2</a></li><li><a 
href="CQL-3.0.html#a3.0.1">3.0.1</a></li></ol></li><li><a 
href="CQL-3.0.html#Versioning">Versioning</a></li></ol></li></ol></span><h2 
id="CQLSyntax">CQL Syntax</h2><h3 id="Preamble">Preamble</h3><p>This document 
describes the Cassandra Query L
 anguage (CQL) version 3. CQL v3 is not backward compatible with CQL v2 and 
differs from it in numerous ways. Note that this document describes the last 
version of the languages. However, the <a href="#changes">changes</a> section 
provides the diff between the different versions of CQL v3.</p><p>CQL v3 offers 
a model very close to SQL in the sense that data is put in <em>tables</em> 
containing <em>rows</em> of <em>columns</em>. For that reason, when used in 
this document, these terms (tables, rows and columns) have the same definition 
than they have in SQL. But please note that as such, they do 
<strong>not</strong> refer to the concept of rows and columns found in the 
internal implementation of Cassandra and in the thrift and CQL v2 API.</p><h3 
id="Conventions">Conventions</h3><p>To aid in specifying the CQL syntax, we 
will use the following conventions in this document:</p><ul><li>Language rules 
will be given in a <a 
href="http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form";>BNF</
 a> -like notation:</li></ul><pre class="syntax"><pre>&lt;start> ::= TERMINAL 
&lt;non-terminal1> &lt;non-terminal1>
 </pre></pre><ul><li>Nonterminal symbols will have <code>&lt;angle 
brackets></code>.</li><li>As additional shortcut notations to BNF, we&#8217;ll 
use traditional regular expression&#8217;s symbols (<code>?</code>, 
<code>+</code> and <code>*</code>) to signify that a given symbol is optional 
and/or can be repeated. We&#8217;ll also allow parentheses to group symbols and 
the <code>[&lt;characters>]</code> notation to represent any one of 
<code>&lt;characters></code>.</li><li>The grammar is provided for documentation 
purposes and leave some minor details out. For instance, the last column 
definition in a <code>CREATE TABLE</code> statement is optional but supported 
if present even though the provided grammar in this document suggest it is not 
supported. </li><li>Sample code will be provided in a code block:</li></ul><pre 
class="sample"><pre>SELECT sample_usage FROM cql;
-</pre></pre><ul><li>References to keywords or pieces of CQL code in running 
text will be shown in a <code>fixed-width font</code>.</li></ul><h3 
id="identifiers">Identifiers and keywords</h3><p>The CQL language uses 
<em>identifiers</em> (or <em>names</em>) to identify tables, columns and other 
objects. An identifier is a token matching the regular expression 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code>.</p><p>A number of 
such identifiers, like <code>SELECT</code> or <code>WITH</code>, are 
<em>keywords</em>. They have a fixed meaning for the language and most are 
reserved. The list of those keywords can be found in <a 
href="#appendixA">Appendix A</a>.</p><p>Identifiers and (unquoted) keywords are 
case insensitive. Thus <code>SELECT</code> is the same than <code>select</code> 
or <code>sElEcT</code>, and <code>myId</code> is the same than 
<code>myid</code> or <code>MYID</code> for instance. A convention often used 
(in particular by the samples of this documentation) is t
 o use upper case for keywords and lower case for other 
identifiers.</p><p>There is a second kind of identifiers called <em>quoted 
identifiers</em> defined by enclosing an arbitrary sequence of characters in 
double-quotes(<code>"</code>). Quoted identifiers are never keywords. Thus 
<code>"select"</code> is not a reserved keyword and can be used to refer to a 
column, while <code>select</code> would raise a parse error. Also, contrarily 
to unquoted identifiers and keywords, quoted identifiers are case sensitive 
(<code>"My Quoted Id"</code> is <em>different</em> from <code>"my quoted 
id"</code>). A fully lowercase quoted identifier that matches 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code> is equivalent to 
the unquoted identifier obtained by removing the double-quote (so 
<code>"myid"</code> is equivalent to <code>myid</code> and to <code>myId</code> 
but different from <code>"myId"</code>). Inside a quoted identifier, the 
double-quote character can be repeated to escape it
 , so <code>"foo "" bar"</code> is a valid identifier.</p><h3 
id="constants">Constants</h3><p>CQL defines the following kind of 
<em>constants</em>: strings, integers, floats, booleans, uuids and 
blobs:</p><ul><li>A string constant is an arbitrary sequence of characters 
characters enclosed by single-quote(<code>'</code>). One can include a 
single-quote in a string by repeating it, e.g. <code>'It''s raining 
today'</code>. Those are not to be confused with quoted identifiers that use 
double-quotes.</li><li>An integer constant is defined by 
<code>'-'?[0-9]+</code>.</li><li>A float constant is defined by 
<code>'-'?[0-9]+('.'[0-9]*)?([eE][+-]?[0-9+])?</code>. On top of that, 
<code>NaN</code> and <code>Infinity</code> are also float constants.</li><li>A 
boolean constant is either <code>true</code> or <code>false</code> up to 
case-insensitivity (i.e. <code>True</code> is a valid boolean 
constant).</li><li>A <a 
href="http://en.wikipedia.org/wiki/Universally_unique_identifier";>UUID</a> 
constan
 t is defined by <code>hex{8}-hex{4}-hex{4}-hex{4}-hex{12}</code> where 
<code>hex</code> is an hexadecimal character, e.g. <code>[0-9a-fA-F]</code> and 
<code>{4}</code> is the number of such characters.</li><li>A blob constant is 
an hexadecimal number defined by <code>0[xX](hex)+</code> where 
<code>hex</code> is an hexadecimal character, e.g. 
<code>[0-9a-fA-F]</code>.</li></ul><p>For how these constants are typed, see 
the <a href="#types">data types section</a>.</p><h3 
id="Comments">Comments</h3><p>A comment in CQL is a line beginning by either 
double dashes (<code>--</code>) or double slash 
(<code>//</code>).</p><p>Multi-line comments are also supported through 
enclosure within <code>/*</code> and <code>*/</code> (but nesting is not 
supported).</p><pre class="sample"><pre>-- This is a comment
+</pre></pre><ul><li>References to keywords or pieces of CQL code in running 
text will be shown in a <code>fixed-width font</code>.</li></ul><h3 
id="identifiers">Identifiers and keywords</h3><p>The CQL language uses 
<em>identifiers</em> (or <em>names</em>) to identify tables, columns and other 
objects. An identifier is a token matching the regular expression 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code>.</p><p>A number of 
such identifiers, like <code>SELECT</code> or <code>WITH</code>, are 
<em>keywords</em>. They have a fixed meaning for the language and most are 
reserved. The list of those keywords can be found in <a 
href="#appendixA">Appendix A</a>.</p><p>Identifiers and (unquoted) keywords are 
case insensitive. Thus <code>SELECT</code> is the same than <code>select</code> 
or <code>sElEcT</code>, and <code>myId</code> is the same than 
<code>myid</code> or <code>MYID</code> for instance. A convention often used 
(in particular by the samples of this documentation) is t
 o use upper case for keywords and lower case for other 
identifiers.</p><p>There is a second kind of identifiers called <em>quoted 
identifiers</em> defined by enclosing an arbitrary sequence of characters in 
double-quotes(<code>"</code>). Quoted identifiers are never keywords. Thus 
<code>"select"</code> is not a reserved keyword and can be used to refer to a 
column, while <code>select</code> would raise a parse error. Also, contrarily 
to unquoted identifiers and keywords, quoted identifiers are case sensitive 
(<code>"My Quoted Id"</code> is <em>different</em> from <code>"my quoted 
id"</code>). A fully lowercase quoted identifier that matches 
<code>[a-zA-Z]</code><code>[a-zA-Z0-9_]</code><code>*</code> is equivalent to 
the unquoted identifier obtained by removing the double-quote (so 
<code>"myid"</code> is equivalent to <code>myid</code> and to <code>myId</code> 
but different from <code>"myId"</code>). Inside a quoted identifier, the 
double-quote character can be repeated to escape it
 , so <code>"foo "" bar"</code> is a valid 
identifier.</p><p><strong>Warning</strong>: <em>quoted identifiers</em> allows 
to declare columns with arbitrary names, and those can sometime clash with 
specific names used by the server. For instance, when using conditional update, 
the server will respond with a result-set containing a special result named 
<code>"[applied]"</code>. If you&#8217;ve declared a column with such a name, 
this could potentially confuse some tools and should be avoided. In general, 
unquoted identifiers should be preferred but if you use quoted identifiers, it 
is strongly advised to avoid any name enclosed by squared brackets (like 
<code>"[applied]"</code>) and any name that looks like a function call (like 
<code>"f(x)"</code>).</p><h3 id="constants">Constants</h3><p>CQL defines the 
following kind of <em>constants</em>: strings, integers, floats, booleans, 
uuids and blobs:</p><ul><li>A string constant is an arbitrary sequence of 
characters characters enclosed by s
 ingle-quote(<code>'</code>). One can include a single-quote in a string by 
repeating it, e.g. <code>'It''s raining today'</code>. Those are not to be 
confused with quoted identifiers that use double-quotes.</li><li>An integer 
constant is defined by <code>'-'?[0-9]+</code>.</li><li>A float constant is 
defined by <code>'-'?[0-9]+('.'[0-9]*)?([eE][+-]?[0-9+])?</code>. On top of 
that, <code>NaN</code> and <code>Infinity</code> are also float 
constants.</li><li>A boolean constant is either <code>true</code> or 
<code>false</code> up to case-insensitivity (i.e. <code>True</code> is a valid 
boolean constant).</li><li>A <a 
href="http://en.wikipedia.org/wiki/Universally_unique_identifier";>UUID</a> 
constant is defined by <code>hex{8}-hex{4}-hex{4}-hex{4}-hex{12}</code> where 
<code>hex</code> is an hexadecimal character, e.g. <code>[0-9a-fA-F]</code> and 
<code>{4}</code> is the number of such characters.</li><li>A blob constant is 
an hexadecimal number defined by <code>0[xX](hex)+</code> where 
 <code>hex</code> is an hexadecimal character, e.g. 
<code>[0-9a-fA-F]</code>.</li></ul><p>For how these constants are typed, see 
the <a href="#types">data types section</a>.</p><h3 
id="Comments">Comments</h3><p>A comment in CQL is a line beginning by either 
double dashes (<code>--</code>) or double slash 
(<code>//</code>).</p><p>Multi-line comments are also supported through 
enclosure within <code>/*</code> and <code>*/</code> (but nesting is not 
supported).</p><pre class="sample"><pre>-- This is a comment
 // This is a comment too
 /* This is
    a multi-line comment */
@@ -94,7 +94,7 @@ CREATE TABLE timeline (
     other text,
     PRIMARY KEY (k)
 )
-</pre></pre><h4 id="createTablepartitionClustering">Partition key and 
clustering columns</h4><p>In CQL, the order in which columns are defined for 
the <code>PRIMARY KEY</code> matters. The first column of the key is called the 
<i>partition key</i>. It has the property that all the rows sharing the same 
partition key (even across table in fact) are stored on the same physical node. 
Also, insertion/update/deletion on rows sharing the same partition key for a 
given table are performed <i>atomically</i> and in <i>isolation</i>. Note that 
it is possible to have a composite partition key, i.e. a partition key formed 
of multiple columns, using an extra set of parentheses to define which columns 
forms the partition key.</p><p>The remaining columns of the <code>PRIMARY 
KEY</code> definition, if any, are called __clustering columns. On a given 
physical node, rows for a given partition key are stored in the order induced 
by the clustering columns, making the retrieval of rows in that clusterin
 g order particularly efficient (see <a 
href="#selectStmt"><tt>SELECT</tt></a>).</p><h4 
id="createTableStatic"><code>STATIC</code> columns</h4><p>Some columns can be 
declared as <code>STATIC</code> in a table definition. A column that is static 
will be &#8220;shared&#8221; by all the rows belonging to the same partition 
(having the same partition key). For instance, in:</p><pre 
class="sample"><pre>CREATE TABLE test (
+</pre></pre><h4 id="createTablepartitionClustering">Partition key and 
clustering columns</h4><p>In CQL, the order in which columns are defined for 
the <code>PRIMARY KEY</code> matters. The first column of the key is called the 
<i>partition key</i>. It has the property that all the rows sharing the same 
partition key (even across table in fact) are stored on the same physical node. 
Also, insertion/update/deletion on rows sharing the same partition key for a 
given table are performed <i>atomically</i> and in <i>isolation</i>. Note that 
it is possible to have a composite partition key, i.e. a partition key formed 
of multiple columns, using an extra set of parentheses to define which columns 
forms the partition key.</p><p>The remaining columns of the <code>PRIMARY 
KEY</code> definition, if any, are called __clustering columns. On a given 
physical node, rows for a given partition key are stored in the order induced 
by the clustering columns, making the retrieval of rows in that clusterin
 g order particularly efficient (see <a 
href="#selectStmt"><tt>SELECT</tt></a>).</p><h4 
id="createTableStatic"><code>STATIC</code> columns</h4><p>Some columns can be 
declared as <code>STATIC</code> in a table definition. A column that is static 
will be &#171;shared&#187; by all the rows belonging to the same partition 
(having the same partition key). For instance, in:</p><pre 
class="sample"><pre>CREATE TABLE test (
     pk int,
     t int,
     v text,
@@ -104,7 +104,7 @@ CREATE TABLE timeline (
 INSERT INTO test(pk, t, v, s) VALUES (0, 0, 'val0', 'static0');
 INSERT INTO test(pk, t, v, s) VALUES (0, 1, 'val1', 'static1');
 SELECT * FROM test WHERE pk=0 AND t=0;
-</pre></pre><p>the last query will return <code>'static1'</code> as value for 
<code>s</code>, since <code>s</code> is static and thus the 2nd insertion 
modified this &#8220;shared&#8221; value. Note however that static columns are 
only static within a given partition, and if in the example above both rows 
where from different partitions (i.e. if they had different value for 
<code>pk</code>), then the 2nd insertion would not have modified the value of 
<code>s</code> for the first row.</p><p>A few restrictions applies to when 
static columns are allowed:</p><ul><li>tables with the <code>COMPACT 
STORAGE</code> option (see below) cannot have them</li><li>a table without 
clustering columns cannot have static columns (in a table without clustering 
columns, every partition has only one row, and so every column is inherently 
static).</li><li>only non <code>PRIMARY KEY</code> columns can be 
static</li></ul><h4 id="createTableOptions"><code>&lt;option></code></h4><p>The 
<code>CREATE TABLE</cod
 e> statement supports a number of options that controls the configuration of a 
new table. These options can be specified after the <code>WITH</code> 
keyword.</p><p>The first of these option is <code>COMPACT STORAGE</code>. This 
option is mainly targeted towards backward compatibility for definitions 
created before CQL3 (see <a 
href="http://www.datastax.com/dev/blog/thrift-to-cql3";>www.datastax.com/dev/blog/thrift-to-cql3</a>
 for more details).  The option also provides a slightly more compact layout of 
data on disk but at the price of diminished flexibility and extensibility for 
the table.  Most notably, <code>COMPACT STORAGE</code> tables cannot have 
collections nor static columns and a <code>COMPACT STORAGE</code> table with at 
least one clustering column supports exactly one (as in not 0 nor more than 1) 
column not part of the <code>PRIMARY KEY</code> definition (which imply in 
particular that you cannot add nor remove columns after creation). For those 
reasons, <code>COMPACT STO
 RAGE</code> is not recommended outside of the backward compatibility reason 
evoked above.</p><p>Another option is <code>CLUSTERING ORDER</code>. It allows 
to define the ordering of rows on disk. It takes the list of the clustering 
column names with, for each of them, the on-disk order (Ascending or 
descending). Note that this option affects <a href="#selectOrderBy">what 
<code>ORDER BY</code> are allowed during <code>SELECT</code></a>.</p><p>Table 
creation supports the following other 
<code>&lt;property></code>:</p><table><tr><th>option                    
</th><th>kind   </th><th>default   
</th><th>description</th></tr><tr><td><code>comment</code>                    
</td><td><em>simple</em> </td><td>none        </td><td>A free-form, 
human-readable comment.</td></tr><tr><td><code>read_repair_chance</code>        
 </td><td><em>simple</em> </td><td>0.1         </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) for the purpos
 e of read repairs.</td></tr><tr><td><code>dclocal_read_repair_chance</code> 
</td><td><em>simple</em> </td><td>0           </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) belonging to the same data center than the read coordinator for the 
purpose of read repairs.</td></tr><tr><td><code>gc_grace_seconds</code>         
  </td><td><em>simple</em> </td><td>864000      </td><td>Time to wait before 
garbage collecting tombstones (deletion 
markers).</td></tr><tr><td><code>bloom_filter_fp_chance</code>     
</td><td><em>simple</em> </td><td>0.00075     </td><td>The target probability 
of false positive of the sstable bloom filters. Said bloom filters will be 
sized to provide the provided probability (thus lowering this value impact the 
size of bloom filters in-memory and 
on-disk)</td></tr><tr><td><code>default_time_to_live</code>       
</td><td><em>simple</em> </td><td>0           </td><td>The default expiration 
time (&#8220;TTL&
 #8221;) in seconds for a table.</td></tr><tr><td><code>compaction</code>       
          </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Compaction options, see <a 
href="#compactionOptions">below</a>.</td></tr><tr><td><code>compression</code>  
              </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Compression options, see <a 
href="#compressionOptions">below</a>.</td></tr><tr><td><code>caching</code>     
               </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Caching options, see <a 
href="#cachingOptions">below</a>.</td></tr></table><h4 
id="compactionOptions">Compaction options</h4><p>The <code>compaction</code> 
property must at least define the <code>'class'</code> sub-option, that defines 
the compaction strategy class to use. The default supported class are 
<code>'SizeTieredCompactionStrategy'</code>, 
<code>'LeveledCompactionStrategy'</code> and 
<code>'DateTieredCompactionStrategy'</code>. Custom strategy can be provided by 
sp
 ecifying the full class name as a <a href="#constants">string constant</a>. 
The rest of the sub-options depends on the chosen class. The sub-options 
supported by the default classes are:</p><table><tr><th>option                  
       </th><th>supported compaction strategy </th><th>default    
</th><th>description </th></tr><tr><td><code>enabled</code>                     
   </td><td><em>all</em>                           </td><td>true         
</td><td>A boolean denoting whether compaction should be enabled or 
not.</td></tr><tr><td><code>tombstone_threshold</code>            
</td><td><em>all</em>                           </td><td>0.2          
</td><td>A ratio such that if a sstable has more than this ratio of gcable 
tombstones over all contained columns, the sstable will be compacted (with no 
other sstables) for the purpose of purging those tombstones. 
</td></tr><tr><td><code>tombstone_compaction_interval</code>  
</td><td><em>all</em>                           </td><td>1 day       
  </td><td>The minimum time to wait after an sstable creation time before 
considering it for &#8220;tombstone compaction&#8221;, where &#8220;tombstone 
compaction&#8221; is the compaction triggered if the sstable has more gcable 
tombstones than <code>tombstone_threshold</code>. 
</td></tr><tr><td><code>unchecked_tombstone_compaction</code> 
</td><td><em>all</em>                           </td><td>false        
</td><td>Setting this to true enables more aggressive tombstone compactions 
&#8211; single sstable tombstone compactions will run without checking how 
likely it is that they will be successful. 
</td></tr><tr><td><code>min_sstable_size</code>               
</td><td>SizeTieredCompactionStrategy    </td><td>50MB         </td><td>The 
size tiered strategy groups SSTables to compact in buckets. A bucket groups 
SSTables that differs from less than 50% in size.  However, for small sizes, 
this would result in a bucketing that is too fine grained. 
<code>min_sstable_size</code> defines a siz
 e threshold (in bytes) below which all SSTables belong to one unique 
bucket</td></tr><tr><td><code>min_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>4            </td><td>Minimum 
number of SSTables needed to start a minor 
compaction.</td></tr><tr><td><code>max_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>32           </td><td>Maximum 
number of SSTables processed by one minor 
compaction.</td></tr><tr><td><code>bucket_low</code>                     
</td><td>SizeTieredCompactionStrategy    </td><td>0.5          </td><td>Size 
tiered consider sstables to be within the same bucket if their size is within 
[average_size * <code>bucket_low</code>, average_size * 
<code>bucket_high</code> ] (i.e the default groups sstable whose sizes diverges 
by at most 50%)</td></tr><tr><td><code>bucket_high</code>                    
</td><td>SizeTieredCompactionStrategy    </td><td>1.5          </td><td>Size 
tiered consider sstables
  to be within the same bucket if their size is within [average_size * 
<code>bucket_low</code>, average_size * <code>bucket_high</code> ] (i.e the 
default groups sstable whose sizes diverges by at most 
50%).</td></tr><tr><td><code>sstable_size_in_mb</code>             
</td><td>LeveledCompactionStrategy       </td><td>5MB          </td><td>The 
target size (in MB) for sstables in the leveled strategy. Note that while 
sstable sizes should stay less or equal to <code>sstable_size_in_mb</code>, it 
is possible to exceptionally have a larger sstable as during compaction, data 
for a given partition key are never split into 2 
sstables</td></tr><tr><td><code>timestamp_resolution</code>           
</td><td>DateTieredCompactionStrategy    </td><td>MICROSECONDS </td><td>The 
timestamp resolution used when inserting data, could be MILLISECONDS, 
MICROSECONDS etc (should be understandable by Java 
TimeUnit)</td></tr><tr><td><code>base_time_seconds</code>              
</td><td>DateTieredCompactionStrate
 gy    </td><td>60           </td><td>The base size of the time windows. 
</td></tr><tr><td><code>max_sstable_age_days</code>           
</td><td>DateTieredCompactionStrategy    </td><td>365          
</td><td>SSTables only containing data that is older than this will never be 
compacted. </td></tr></table><h4 id="compressionOptions">Compression 
options</h4><p>For the <code>compression</code> property, the following 
sub-options are available:</p><table><tr><th>option                 
</th><th>default        </th><th>description 
</th></tr><tr><td><code>class</code>                  </td><td>LZ4Compressor    
</td><td>The compression algorithm to use. Default compressor are: 
LZ4Compressor, SnappyCompressor and DeflateCompressor. Use <code>'enabled' : 
false</code> to disable compression. Custom compressor can be provided by 
specifying the full class name as a <a href="#constants">string 
constant</a>.</td></tr><tr><td><code>enabled</code>                
</td><td>true             </td><td>By de
 fault compression is enabled. To disable it, set <code>enabled</code> to 
<code>false</code></td></tr><tr><td><code>chunk_length_in_kb</code>     
</td><td>64KB             </td><td>On disk SSTables are compressed by block (to 
allow random reads). This defines the size (in KB) of said block. Bigger values 
may improve the compression rate, but increases the minimum size of data to be 
read from disk for a read </td></tr><tr><td><code>crc_check_chance</code>       
</td><td>1.0              </td><td>When compression is enabled, each compressed 
block includes a checksum of that block for the purpose of detecting disk 
bitrot and avoiding the propagation of corruption to other replica. This option 
defines the probability with which those checksums are checked during read. By 
default they are always checked. Set to 0 to disable checksum checking and to 
0.5 for instance to check them every other read</td></tr></table><h4 
id="cachingOptions">Caching options</h4><p>For the <code>caching</code> p
 roperty, the following sub-options are available:</p><table><tr><th>option     
         </th><th>default        </th><th>description 
</th></tr><tr><td><code>keys</code>                 </td><td>ALL   
</td><td>Whether to cache keys (&#8220;key cache&#8221;) for this table. Valid 
values are: <code>ALL</code> and 
<code>NONE</code>.</td></tr><tr><td><code>rows_per_partition</code>   
</td><td>NONE   </td><td>The amount of rows to cache per partition (&#8220;row 
cache&#8221;). If an integer <code>n</code> is specified, the first 
<code>n</code> queried rows of a partition will be cached. Other possible 
options are <code>ALL</code>, to cache all rows of a queried partition, or 
<code>NONE</code> to disable row caching.</td></tr></table><h4 
id="Otherconsiderations">Other considerations:</h4><ul><li>When <a 
href="#insertStmt">inserting</a> / <a href="#updateStmt">updating</a> a given 
row, not all columns needs to be defined (except for those part of the key), 
and missing columns occupy no spac
 e on disk. Furthermore, adding new columns (see &lt;a 
href=#alterStmt><tt>ALTER TABLE</tt></a>) is a constant time operation. There 
is thus no need to try to anticipate future usage (or to cry when you 
haven&#8217;t) when creating a table.</li></ul><h3 id="alterTableStmt">ALTER 
TABLE</h3><p><i>Syntax:</i></p><pre class="syntax"><pre>&lt;alter-table-stmt> 
::= ALTER (TABLE | COLUMNFAMILY) &lt;tablename> &lt;instruction>
+</pre></pre><p>the last query will return <code>'static1'</code> as value for 
<code>s</code>, since <code>s</code> is static and thus the 2nd insertion 
modified this &#171;shared&#187; value. Note however that static columns are 
only static within a given partition, and if in the example above both rows 
where from different partitions (i.e. if they had different value for 
<code>pk</code>), then the 2nd insertion would not have modified the value of 
<code>s</code> for the first row.</p><p>A few restrictions applies to when 
static columns are allowed:</p><ul><li>tables with the <code>COMPACT 
STORAGE</code> option (see below) cannot have them</li><li>a table without 
clustering columns cannot have static columns (in a table without clustering 
columns, every partition has only one row, and so every column is inherently 
static).</li><li>only non <code>PRIMARY KEY</code> columns can be 
static</li></ul><h4 id="createTableOptions"><code>&lt;option></code></h4><p>The 
<code>CREATE TABLE</code>
  statement supports a number of options that controls the configuration of a 
new table. These options can be specified after the <code>WITH</code> 
keyword.</p><p>The first of these option is <code>COMPACT STORAGE</code>. This 
option is mainly targeted towards backward compatibility for definitions 
created before CQL3 (see <a 
href="http://www.datastax.com/dev/blog/thrift-to-cql3";>www.datastax.com/dev/blog/thrift-to-cql3</a>
 for more details).  The option also provides a slightly more compact layout of 
data on disk but at the price of diminished flexibility and extensibility for 
the table.  Most notably, <code>COMPACT STORAGE</code> tables cannot have 
collections nor static columns and a <code>COMPACT STORAGE</code> table with at 
least one clustering column supports exactly one (as in not 0 nor more than 1) 
column not part of the <code>PRIMARY KEY</code> definition (which imply in 
particular that you cannot add nor remove columns after creation). For those 
reasons, <code>COMPACT STORA
 GE</code> is not recommended outside of the backward compatibility reason 
evoked above.</p><p>Another option is <code>CLUSTERING ORDER</code>. It allows 
to define the ordering of rows on disk. It takes the list of the clustering 
column names with, for each of them, the on-disk order (Ascending or 
descending). Note that this option affects <a href="#selectOrderBy">what 
<code>ORDER BY</code> are allowed during <code>SELECT</code></a>.</p><p>Table 
creation supports the following other 
<code>&lt;property></code>:</p><table><tr><th>option                    
</th><th>kind   </th><th>default   
</th><th>description</th></tr><tr><td><code>comment</code>                    
</td><td><em>simple</em> </td><td>none        </td><td>A free-form, 
human-readable comment.</td></tr><tr><td><code>read_repair_chance</code>        
 </td><td><em>simple</em> </td><td>0.1         </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) for the purpose 
 of read repairs.</td></tr><tr><td><code>dclocal_read_repair_chance</code> 
</td><td><em>simple</em> </td><td>0           </td><td>The probability with 
which to query extra nodes (e.g. more nodes than required by the consistency 
level) belonging to the same data center than the read coordinator for the 
purpose of read repairs.</td></tr><tr><td><code>gc_grace_seconds</code>         
  </td><td><em>simple</em> </td><td>864000      </td><td>Time to wait before 
garbage collecting tombstones (deletion 
markers).</td></tr><tr><td><code>bloom_filter_fp_chance</code>     
</td><td><em>simple</em> </td><td>0.00075     </td><td>The target probability 
of false positive of the sstable bloom filters. Said bloom filters will be 
sized to provide the provided probability (thus lowering this value impact the 
size of bloom filters in-memory and 
on-disk)</td></tr><tr><td><code>default_time_to_live</code>       
</td><td><em>simple</em> </td><td>0           </td><td>The default expiration 
time (&#171;TTL&#18
 7;) in seconds for a table.</td></tr><tr><td><code>compaction</code>           
      </td><td><em>map</em>    </td><td><em>see below</em> </td><td>Compaction 
options, see <a 
href="#compactionOptions">below</a>.</td></tr><tr><td><code>compression</code>  
              </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Compression options, see <a 
href="#compressionOptions">below</a>.</td></tr><tr><td><code>caching</code>     
               </td><td><em>map</em>    </td><td><em>see below</em> 
</td><td>Caching options, see <a 
href="#cachingOptions">below</a>.</td></tr></table><h4 
id="compactionOptions">Compaction options</h4><p>The <code>compaction</code> 
property must at least define the <code>'class'</code> sub-option, that defines 
the compaction strategy class to use. The default supported class are 
<code>'SizeTieredCompactionStrategy'</code>, 
<code>'LeveledCompactionStrategy'</code> and 
<code>'DateTieredCompactionStrategy'</code>. Custom strategy can be provided by 
specif
 ying the full class name as a <a href="#constants">string constant</a>. The 
rest of the sub-options depends on the chosen class. The sub-options supported 
by the default classes are:</p><table><tr><th>option                         
</th><th>supported compaction strategy </th><th>default    </th><th>description 
</th></tr><tr><td><code>enabled</code>                        
</td><td><em>all</em>                           </td><td>true         
</td><td>A boolean denoting whether compaction should be enabled or 
not.</td></tr><tr><td><code>tombstone_threshold</code>            
</td><td><em>all</em>                           </td><td>0.2          
</td><td>A ratio such that if a sstable has more than this ratio of gcable 
tombstones over all contained columns, the sstable will be compacted (with no 
other sstables) for the purpose of purging those tombstones. 
</td></tr><tr><td><code>tombstone_compaction_interval</code>  
</td><td><em>all</em>                           </td><td>1 day        </t
 d><td>The minimum time to wait after an sstable creation time before 
considering it for &#171;tombstone compaction&#187;, where &#171;tombstone 
compaction&#187; is the compaction triggered if the sstable has more gcable 
tombstones than <code>tombstone_threshold</code>. 
</td></tr><tr><td><code>unchecked_tombstone_compaction</code> 
</td><td><em>all</em>                           </td><td>false        
</td><td>Setting this to true enables more aggressive tombstone compactions 
&#8211; single sstable tombstone compactions will run without checking how 
likely it is that they will be successful. 
</td></tr><tr><td><code>min_sstable_size</code>               
</td><td>SizeTieredCompactionStrategy    </td><td>50MB         </td><td>The 
size tiered strategy groups SSTables to compact in buckets. A bucket groups 
SSTables that differs from less than 50% in size.  However, for small sizes, 
this would result in a bucketing that is too fine grained. 
<code>min_sstable_size</code> defines a size thresh
 old (in bytes) below which all SSTables belong to one unique 
bucket</td></tr><tr><td><code>min_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>4            </td><td>Minimum 
number of SSTables needed to start a minor 
compaction.</td></tr><tr><td><code>max_threshold</code>                  
</td><td>SizeTieredCompactionStrategy    </td><td>32           </td><td>Maximum 
number of SSTables processed by one minor 
compaction.</td></tr><tr><td><code>bucket_low</code>                     
</td><td>SizeTieredCompactionStrategy    </td><td>0.5          </td><td>Size 
tiered consider sstables to be within the same bucket if their size is within 
[average_size * <code>bucket_low</code>, average_size * 
<code>bucket_high</code> ] (i.e the default groups sstable whose sizes diverges 
by at most 50%)</td></tr><tr><td><code>bucket_high</code>                    
</td><td>SizeTieredCompactionStrategy    </td><td>1.5          </td><td>Size 
tiered consider sstables to be w
 ithin the same bucket if their size is within [average_size * 
<code>bucket_low</code>, average_size * <code>bucket_high</code> ] (i.e the 
default groups sstable whose sizes diverges by at most 
50%).</td></tr><tr><td><code>sstable_size_in_mb</code>             
</td><td>LeveledCompactionStrategy       </td><td>5MB          </td><td>The 
target size (in MB) for sstables in the leveled strategy. Note that while 
sstable sizes should stay less or equal to <code>sstable_size_in_mb</code>, it 
is possible to exceptionally have a larger sstable as during compaction, data 
for a given partition key are never split into 2 
sstables</td></tr><tr><td><code>timestamp_resolution</code>           
</td><td>DateTieredCompactionStrategy    </td><td>MICROSECONDS </td><td>The 
timestamp resolution used when inserting data, could be MILLISECONDS, 
MICROSECONDS etc (should be understandable by Java 
TimeUnit)</td></tr><tr><td><code>base_time_seconds</code>              
</td><td>DateTieredCompactionStrategy    </
 td><td>60           </td><td>The base size of the time windows. 
</td></tr><tr><td><code>max_sstable_age_days</code>           
</td><td>DateTieredCompactionStrategy    </td><td>365          
</td><td>SSTables only containing data that is older than this will never be 
compacted. </td></tr></table><h4 id="compressionOptions">Compression 
options</h4><p>For the <code>compression</code> property, the following 
sub-options are available:</p><table><tr><th>option                 
</th><th>default        </th><th>description 
</th></tr><tr><td><code>class</code>                  </td><td>LZ4Compressor    
</td><td>The compression algorithm to use. Default compressor are: 
LZ4Compressor, SnappyCompressor and DeflateCompressor. Use <code>'enabled' : 
false</code> to disable compression. Custom compressor can be provided by 
specifying the full class name as a <a href="#constants">string 
constant</a>.</td></tr><tr><td><code>enabled</code>                
</td><td>true             </td><td>By default co
 mpression is enabled. To disable it, set <code>enabled</code> to 
<code>false</code></td></tr><tr><td><code>chunk_length_in_kb</code>     
</td><td>64KB             </td><td>On disk SSTables are compressed by block (to 
allow random reads). This defines the size (in KB) of said block. Bigger values 
may improve the compression rate, but increases the minimum size of data to be 
read from disk for a read </td></tr><tr><td><code>crc_check_chance</code>       
</td><td>1.0              </td><td>When compression is enabled, each compressed 
block includes a checksum of that block for the purpose of detecting disk 
bitrot and avoiding the propagation of corruption to other replica. This option 
defines the probability with which those checksums are checked during read. By 
default they are always checked. Set to 0 to disable checksum checking and to 
0.5 for instance to check them every other read</td></tr></table><h4 
id="cachingOptions">Caching options</h4><p>For the <code>caching</code> 
property,
  the following sub-options are available:</p><table><tr><th>option             
 </th><th>default        </th><th>description 
</th></tr><tr><td><code>keys</code>                 </td><td>ALL   
</td><td>Whether to cache keys (&#171;key cache&#187;) for this table. Valid 
values are: <code>ALL</code> and 
<code>NONE</code>.</td></tr><tr><td><code>rows_per_partition</code>   
</td><td>NONE   </td><td>The amount of rows to cache per partition (&#171;row 
cache&#187;). If an integer <code>n</code> is specified, the first 
<code>n</code> queried rows of a partition will be cached. Other possible 
options are <code>ALL</code>, to cache all rows of a queried partition, or 
<code>NONE</code> to disable row caching.</td></tr></table><h4 
id="Otherconsiderations">Other considerations:</h4><ul><li>When <a 
href="#insertStmt">inserting</a> / <a href="#updateStmt">updating</a> a given 
row, not all columns needs to be defined (except for those part of the key), 
and missing columns occupy no space on disk. F
 urthermore, adding new columns (see &lt;a href=#alterStmt><tt>ALTER 
TABLE</tt></a>) is a constant time operation. There is thus no need to try to 
anticipate future usage (or to cry when you haven&#8217;t) when creating a 
table.</li></ul><h3 id="alterTableStmt">ALTER 
TABLE</h3><p><i>Syntax:</i></p><pre class="syntax"><pre>&lt;alter-table-stmt> 
::= ALTER (TABLE | COLUMNFAMILY) &lt;tablename> &lt;instruction>
 
 &lt;instruction> ::= ALTER &lt;identifier> TYPE &lt;type>
                 | ADD   &lt;identifier> &lt;type>
@@ -141,7 +141,7 @@ DROP INDEX userkeyspace.address_index;
 </pre></pre><p><br/>The <code>DROP INDEX</code> statement is used to drop an 
existing secondary index. The argument of the statement is the index name, 
which may optionally specify the keyspace of the index.</p><p>If the index does 
not exists, the statement will return an error, unless <code>IF EXISTS</code> 
is used in which case the operation is a no-op.</p><h3 id="createMVStmt">CREATE 
MATERIALIZED VIEW</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;create-table-stmt> ::= CREATE MATERIALIZED VIEW ( IF 
NOT EXISTS )? &lt;viewname> AS
                           SELECT ( '(' &lt;identifier> ( ',' &lt;identifier> ) 
* ')' | '*' )
                           FROM &lt;tablename>
-                          WHERE ( &lt;identifier> IS NOT NULL ( AND 
&lt;identifier> IS NOT NULL )* )?
+                          ( WHERE &lt;where-clause> )?
                           PRIMARY KEY '(' &lt;partition-key> ( ',' 
&lt;identifier> )* ')'
                           ( WITH &lt;option> ( AND &lt;option>)* )?
 </pre></pre><p><br/><i>Sample:</i></p><pre class="sample"><pre>CREATE 
MATERIALIZED VIEW monkeySpecies_by_population AS
@@ -150,7 +150,7 @@ DROP INDEX userkeyspace.address_index;
     WHERE population IS NOT NULL AND species IS NOT NULL
     PRIMARY KEY (population, species)
     WITH comment='Allow query by population instead of species';
-</pre></pre><p><br/>The <code>CREATE MATERIALIZED VIEW</code> statement 
creates a new materialized view. Each such view is a set of <em>rows</em> which 
corresponds to rows which are present in the underlying, or base, table 
specified in the <code>SELECT</code> statement. A materialized view cannot be 
directly updated, but updates to the base table will cause corresponding 
updates in the view.</p><p>Attempting to create an already existing 
materialized view will return an error unless the <code>IF NOT EXISTS</code> 
option is used. If it is used, the statement will be a no-op if the 
materialized view already exists.</p><h4 id="createMVWhere"><code>WHERE 
&lt;identifier> IS NOT NULL</code></h4><p>The where clause is required to 
explicitly exclude all primary key columns' null values. Any row which contains 
null values in the primary key will not be present in the materialized 
view.</p><h3 id="alterMVStmt">ALTER MATERIALIZED 
VIEW</h3><p><i>Syntax:</i></p><pre class="syntax"><pre>&lt;alte
 r-materialized-view-stmt> ::= ALTER MATERIALIZED VIEW &lt;viewname>
+</pre></pre><p><br/>The <code>CREATE MATERIALIZED VIEW</code> statement 
creates a new materialized view. Each such view is a set of <em>rows</em> which 
corresponds to rows which are present in the underlying, or base, table 
specified in the <code>SELECT</code> statement. A materialized view cannot be 
directly updated, but updates to the base table will cause corresponding 
updates in the view.</p><p>Attempting to create an already existing 
materialized view will return an error unless the <code>IF NOT EXISTS</code> 
option is used. If it is used, the statement will be a no-op if the 
materialized view already exists.</p><h4 id="createMVWhere"><code>WHERE</code> 
Clause</h4><p>The <code>&lt;where-clause></code> is similar to the <a 
href="#selectWhere">where clause of a <code>SELECT</code> statement</a>, with a 
few differences.  First, the where clause must contain an expression that 
disallows <code>NULL</code> values in columns in the view&#8217;s primary key.  
If no other restriction is
  desired, this can be accomplished with an <code>IS NOT NULL</code> 
expression.  Second, only columns which are in the base table&#8217;s primary 
key may be restricted with expressions other than <code>IS NOT NULL</code>.  
(Note that this second restriction may be lifted in the future.)</p><h3 
id="alterMVStmt">ALTER MATERIALIZED VIEW</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;alter-materialized-view-stmt> ::= ALTER MATERIALIZED 
VIEW &lt;viewname>
                                                  WITH &lt;option> ( AND 
&lt;option> )*
 </pre></pre><p>p.<br/>The <code>ALTER MATERIALIZED VIEW</code> statement 
allows options to be update; these options are the same as <a 
href="#createTableOptions"><code>CREATE TABLE</code>'s options</a>.</p><h3 
id="dropMVStmt">DROP MATERIALIZED VIEW</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;drop-materialized-stmt> ::= DROP MATERIALIZED VIEW ( IF 
EXISTS )? &lt;tablename>
 </pre></pre><p><i>Sample:</i></p><pre class="sample"><pre>DROP MATERIALIZED 
VIEW monkeySpecies_by_population;
@@ -296,7 +296,7 @@ SET director = 'Joss Whedon',
 WHERE movie = 'Serenity';
 
 UPDATE UserActions SET total = total + 2 WHERE user = 
B70DE1D0-9908-4AE3-BE34-5573E5B09F14 AND action = 'click';
-</pre></pre><p><br/>The <code>UPDATE</code> statement writes one or more 
columns for a given row in a table. The <code>&lt;where-clause></code> is used 
to select the row to update and must include all columns composing the 
<code>PRIMARY KEY</code> (the <code>IN</code> relation is only supported for 
the last column of the partition key). Other columns values are specified 
through <code>&lt;assignment></code> after the <code>SET</code> 
keyword.</p><p>Note that unlike in SQL, <code>UPDATE</code> does not check the 
prior existence of the row by default: the row is created if none existed 
before, and updated otherwise. Furthermore, there is no mean to know which of 
creation or update happened.</p><p>It is however possible to use the conditions 
on some columns through <code>IF</code>, in which case the row will not be 
updated unless such condition are met. But please note that using 
<code>IF</code> conditions will incur a non negligible performance cost 
(internally, Paxos will be used) so
  this should be used sparingly.</p><p>In an <code>UPDATE</code> statement, all 
updates within the same partition key are applied atomically and in 
isolation.</p><p>The <code>c = c + 3</code> form of 
<code>&lt;assignment></code> is used to increment/decrement counters. The 
identifier after the &#8216;=&#8217; sign <strong>must</strong> be the same 
than the one before the &#8216;=&#8217; sign (Only increment/decrement is 
supported on counters, not the assignment of a specific value).</p><p>The 
<code>id = id + &lt;collection-literal></code> and <code>id[value1] = 
value2</code> forms of <code>&lt;assignment></code> are for collections. Please 
refer to the <a href="#collections">relevant section</a> for more 
details.</p><h4 id="updateOptions"><code>&lt;options></code></h4><p>The 
<code>UPDATE</code> and <code>INSERT</code> statements allows to specify the 
following options for the insertion:</p><ul><li><code>TIMESTAMP</code>: sets 
the timestamp for the operation. If not specified, the coo
 rdinator will use the current time (in microseconds) at the start of statement 
execution as the timestamp. This is usually a suitable 
default.</li><li><code>TTL</code>: allows to specify an optional Time To Live 
(in seconds) for the inserted values. If set, the inserted values are 
automatically removed from the database after the specified time. Note that the 
TTL concerns the inserted values, not the column themselves. This means that 
any subsequent update of the column will also reset the TTL (to whatever TTL is 
specified in that update). By default, values never expire. A TTL of 0 or a 
negative one is equivalent to no TTL.</li></ul><h3 
id="deleteStmt">DELETE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;delete-stmt> ::= DELETE ( &lt;selection> ( ',' 
&lt;selection> )* )?
+</pre></pre><p><br/>The <code>UPDATE</code> statement writes one or more 
columns for a given row in a table. The <code>&lt;where-clause></code> is used 
to select the row to update and must include all columns composing the 
<code>PRIMARY KEY</code>. Other columns values are specified through 
<code>&lt;assignment></code> after the <code>SET</code> keyword.</p><p>Note 
that unlike in SQL, <code>UPDATE</code> does not check the prior existence of 
the row by default: the row is created if none existed before, and updated 
otherwise. Furthermore, there are no means to know whether a creation or update 
occurred.</p><p>It is however possible to use the conditions on some columns 
through <code>IF</code>, in which case the row will not be updated unless the 
conditions are met. But, please note that using <code>IF</code> conditions will 
incur a non-negligible performance cost (internally, Paxos will be used) so 
this should be used sparingly.</p><p>In an <code>UPDATE</code> statement, all 
updates
  within the same partition key are applied atomically and in 
isolation.</p><p>The <code>c = c + 3</code> form of 
<code>&lt;assignment></code> is used to increment/decrement counters. The 
identifier after the &#8249;=&#8250; sign <strong>must</strong> be the same 
than the one before the &#8249;=&#8250; sign (Only increment/decrement is 
supported on counters, not the assignment of a specific value).</p><p>The 
<code>id = id + &lt;collection-literal></code> and <code>id[value1] = 
value2</code> forms of <code>&lt;assignment></code> are for collections. Please 
refer to the <a href="#collections">relevant section</a> for more 
details.</p><h4 id="updateOptions"><code>&lt;options></code></h4><p>The 
<code>UPDATE</code> and <code>INSERT</code> statements support the following 
options:</p><ul><li><code>TIMESTAMP</code>: sets the timestamp for the 
operation. If not specified, the coordinator will use the current time (in 
microseconds) at the start of statement execution as the timestamp. This is
  usually a suitable default.</li><li><code>TTL</code>: specifies an optional 
Time To Live (in seconds) for the inserted values. If set, the inserted values 
are automatically removed from the database after the specified time. Note that 
the TTL concerns the inserted values, not the columns themselves. This means 
that any subsequent update of the column will also reset the TTL (to whatever 
TTL is specified in that update). By default, values never expire. A TTL of 0 
or a negative value is equivalent to no TTL.</li></ul><h3 
id="deleteStmt">DELETE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;delete-stmt> ::= DELETE ( &lt;selection> ( ',' 
&lt;selection> )* )?
                   FROM &lt;tablename>
                   ( USING TIMESTAMP &lt;integer>)?
                   WHERE &lt;where-clause>
@@ -319,7 +319,7 @@ UPDATE UserActions SET total = total + 2
 </pre></pre><p><br/><i>Sample:</i></p><pre class="sample"><pre>DELETE FROM 
NerdMovies USING TIMESTAMP 1240003134 WHERE movie = 'Serenity';
 
 DELETE phone FROM Users WHERE userid IN (C73DE1D3-AF08-40F3-B124-3FF3E5109F22, 
B70DE1D0-9908-4AE3-BE34-5573E5B09F14);
-</pre></pre><p><br/>The <code>DELETE</code> statement deletes columns and 
rows. If column names are provided directly after the <code>DELETE</code> 
keyword, only those columns are deleted from the row indicated by the 
<code>&lt;where-clause></code> (the <code>id[value]</code> syntax in 
<code>&lt;selection></code> is for collection, please refer to the <a 
href="#collections">collection section</a> for more details).  Otherwise whole 
rows are removed. The <code>&lt;where-clause></code> allows to specify the key 
for the row(s) to delete (the <code>IN</code> relation is only supported for 
the last column of the partition key).</p><p><code>DELETE</code> supports the 
<code>TIMESTAMP</code> options with the same semantic that in the <a 
href="#updateStmt"><code>UPDATE</code></a> statement.</p><p>In a 
<code>DELETE</code> statement, all deletions within the same partition key are 
applied atomically and in isolation.</p><p>A <code>DELETE</code> operation 
application can be conditioned using <c
 ode>IF</code> like for <code>UPDATE</code> and <code>INSERT</code>. But please 
not that as for the later, this will incur a non negligible performance cost 
(internally, Paxos will be used) and so should be used sparingly.</p><h3 
id="batchStmt">BATCH</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;batch-stmt> ::= BEGIN ( UNLOGGED | COUNTER ) BATCH
+</pre></pre><p><br/>The <code>DELETE</code> statement deletes columns and 
rows. If column names are provided directly after the <code>DELETE</code> 
keyword, only those columns are deleted from the row indicated by the 
<code>&lt;where-clause></code> (the <code>id[value]</code> syntax in 
<code>&lt;selection></code> is for collection, please refer to the <a 
href="#collections">collection section</a> for more details).  Otherwise, whole 
rows are removed. The <code>&lt;where-clause></code> specifies which rows are 
to be deleted.  Multiple rows may be deleted with one statement by using an 
<code>IN</code> clause.  A range of rows may be deleted using an inequality 
operator (such as <code>>=</code>).</p><p><code>DELETE</code> supports the 
<code>TIMESTAMP</code> option with the same semantics as the <a 
href="#updateStmt"><code>UPDATE</code></a> statement.</p><p>In a 
<code>DELETE</code> statement, all deletions within the same partition key are 
applied atomically and in isolation.</p><p>A <c
 ode>DELETE</code> operation can be conditional through the use of an 
<code>IF</code> clause, similar to <code>UPDATE</code> and <code>INSERT</code> 
statements. However, as with <code>INSERT</code> and <code>UPDATE</code> 
statements, this will incur a non-negligible performance cost (internally, 
Paxos will be used) and so should be used sparingly.</p><h3 
id="batchStmt">BATCH</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;batch-stmt> ::= BEGIN ( UNLOGGED | COUNTER ) BATCH
                  ( USING &lt;option> ( AND &lt;option> )* )?
                     &lt;modification-stmt> ( ';' &lt;modification-stmt> )*
                  APPLY BATCH
@@ -381,7 +381,7 @@ SELECT COUNT(*) FROM users;
 
 SELECT COUNT(*) AS user_count FROM users;
 
-</pre></pre><p><br/>The <code>SELECT</code> statements reads one or more 
columns for one or more rows in a table. It returns a result-set of rows, where 
each row contains the collection of columns corresponding to the query.  If the 
<code>JSON</code> keyword is used, the results for each row will contain only a 
single column named &#8220;json&#8221;.  See the section on <a 
href="#selectJson"><code>SELECT JSON</code></a> for more details.</p><h4 
id="selectSelection"><code>&lt;select-clause></code></h4><p>The 
<code>&lt;select-clause></code> determines which columns needs to be queried 
and returned in the result-set. It consists of either the comma-separated list 
of <selector> or the wildcard character (<code>*</code>) to select all the 
columns defined for the table.</p><p>A <code>&lt;selector></code> is either a 
column name to retrieve or a <code>&lt;function></code> of one or more 
@<term>@s. The function allowed are the same as for <code>&lt;term></code> and 
are described in the <a h
 ref="#functions">function section</a>. In addition to these generic functions, 
the <code>WRITETIME</code> (resp. <code>TTL</code>) function allows to select 
the timestamp of when the column was inserted (resp. the time to live (in 
seconds) for the column (or null if the column has no expiration 
set)).</p><p>Any <code>&lt;selector></code> can be aliased using 
<code>AS</code> keyword (see examples). Please note that 
<code>&lt;where-clause></code> and <code>&lt;order-by></code> clause should 
refer to the columns by their original names and not by their 
aliases.</p><p>The <code>COUNT</code> keyword can be used with parenthesis 
enclosing <code>*</code>. If so, the query will return a single result: the 
number of rows matching the query. Note that <code>COUNT(1)</code> is supported 
as an alias.</p><h4 id="selectWhere"><code>&lt;where-clause></code></h4><p>The 
<code>&lt;where-clause></code> specifies which rows must be queried. It is 
composed of relations on the columns that are part of th
 e <code>PRIMARY KEY</code> and/or have a <a href="#createIndexStmt">secondary 
index</a> defined on them.</p><p>Not all relations are allowed in a query. For 
instance, non-equal relations (where <code>IN</code> is considered as an equal 
relation) on a partition key are not supported (but see the use of the 
<code>TOKEN</code> method below to do non-equal queries on the partition key). 
Moreover, for a given partition key, the clustering columns induce an ordering 
of rows and relations on them is restricted to the relations that allow to 
select a <strong>contiguous</strong> (for the ordering) set of rows. For 
instance, given</p><pre class="sample"><pre>CREATE TABLE posts (
+</pre></pre><p><br/>The <code>SELECT</code> statements reads one or more 
columns for one or more rows in a table. It returns a result-set of rows, where 
each row contains the collection of columns corresponding to the query.  If the 
<code>JSON</code> keyword is used, the results for each row will contain only a 
single column named &#171;json&#187;.  See the section on <a 
href="#selectJson"><code>SELECT JSON</code></a> for more details.</p><h4 
id="selectSelection"><code>&lt;select-clause></code></h4><p>The 
<code>&lt;select-clause></code> determines which columns needs to be queried 
and returned in the result-set. It consists of either the comma-separated list 
of <selector> or the wildcard character (<code>*</code>) to select all the 
columns defined for the table.</p><p>A <code>&lt;selector></code> is either a 
column name to retrieve or a <code>&lt;function></code> of one or more 
@<term>@s. The function allowed are the same as for <code>&lt;term></code> and 
are described in the <a hre
 f="#functions">function section</a>. In addition to these generic functions, 
the <code>WRITETIME</code> (resp. <code>TTL</code>) function allows to select 
the timestamp of when the column was inserted (resp. the time to live (in 
seconds) for the column (or null if the column has no expiration 
set)).</p><p>Any <code>&lt;selector></code> can be aliased using 
<code>AS</code> keyword (see examples). Please note that 
<code>&lt;where-clause></code> and <code>&lt;order-by></code> clause should 
refer to the columns by their original names and not by their 
aliases.</p><p>The <code>COUNT</code> keyword can be used with parenthesis 
enclosing <code>*</code>. If so, the query will return a single result: the 
number of rows matching the query. Note that <code>COUNT(1)</code> is supported 
as an alias.</p><h4 id="selectWhere"><code>&lt;where-clause></code></h4><p>The 
<code>&lt;where-clause></code> specifies which rows must be queried. It is 
composed of relations on the columns that are part of the 
 <code>PRIMARY KEY</code> and/or have a <a href="#createIndexStmt">secondary 
index</a> defined on them.</p><p>Not all relations are allowed in a query. For 
instance, non-equal relations (where <code>IN</code> is considered as an equal 
relation) on a partition key are not supported (but see the use of the 
<code>TOKEN</code> method below to do non-equal queries on the partition key). 
Moreover, for a given partition key, the clustering columns induce an ordering 
of rows and relations on them is restricted to the relations that allow to 
select a <strong>contiguous</strong> (for the ordering) set of rows. For 
instance, given</p><pre class="sample"><pre>CREATE TABLE posts (
     userid text,
     blog_title text,
     posted_at timestamp,
@@ -394,10 +394,10 @@ SELECT COUNT(*) AS user_count FROM users
 </pre></pre><p>But the following one is not, as it does not select a 
contiguous set of rows (and we suppose no secondary indexes are set):</p><pre 
class="sample"><pre>// Needs a blog_title to be set to select ranges of 
posted_at
 SELECT entry_title, content FROM posts WHERE userid='john doe' AND posted_at 
>= '2012-01-01' AND posted_at &lt; '2012-01-31'
 </pre></pre><p>When specifying relations, the <code>TOKEN</code> function can 
be used on the <code>PARTITION KEY</code> column to query. In that case, rows 
will be selected based on the token of their <code>PARTITION_KEY</code> rather 
than on the value. Note that the token of a key depends on the partitioner in 
use, and that in particular the RandomPartitioner won&#8217;t yield a 
meaningful order. Also note that ordering partitioners always order token 
values by bytes (so even if the partition key is of type int, <code>token(-1) > 
token(0)</code> in particular). Example:</p><pre class="sample"><pre>SELECT * 
FROM posts WHERE token(userid) > token('tom') AND token(userid) &lt; 
token('bob')
-</pre></pre><p>Moreover, the <code>IN</code> relation is only allowed on the 
last column of the partition key and on the last column of the full primary 
key.</p><p>It is also possible to &#8220;group&#8221; <code>CLUSTERING 
COLUMNS</code> together in a relation using the tuple notation. For 
instance:</p><pre class="sample"><pre>SELECT * FROM posts WHERE userid='john 
doe' AND (blog_title, posted_at) > ('John''s Blog', '2012-01-01')
-</pre></pre><p>will request all rows that sorts after the one having 
&#8220;John's Blog&#8221; as <code>blog_tile</code> and 
&#8216;2012-01-01&#8217; for <code>posted_at</code> in the clustering order. In 
particular, rows having a <code>post_at &lt;= '2012-01-01'</code> will be 
returned as long as their <code>blog_title > 'John''s Blog'</code>, which 
wouldn&#8217;t be the case for:</p><pre class="sample"><pre>SELECT * FROM posts 
WHERE userid='john doe' AND blog_title > 'John''s Blog' AND posted_at > 
'2012-01-01'
+</pre></pre><p>Moreover, the <code>IN</code> relation is only allowed on the 
last column of the partition key and on the last column of the full primary 
key.</p><p>It is also possible to &#171;group&#187; <code>CLUSTERING 
COLUMNS</code> together in a relation using the tuple notation. For 
instance:</p><pre class="sample"><pre>SELECT * FROM posts WHERE userid='john 
doe' AND (blog_title, posted_at) > ('John''s Blog', '2012-01-01')
+</pre></pre><p>will request all rows that sorts after the one having 
&#171;John's Blog&#187; as <code>blog_tile</code> and &#8249;2012-01-01&#8250; 
for <code>posted_at</code> in the clustering order. In particular, rows having 
a <code>post_at &lt;= '2012-01-01'</code> will be returned as long as their 
<code>blog_title > 'John''s Blog'</code>, which wouldn&#8217;t be the case 
for:</p><pre class="sample"><pre>SELECT * FROM posts WHERE userid='john doe' 
AND blog_title > 'John''s Blog' AND posted_at > '2012-01-01'
 </pre></pre><p>The tuple notation may also be used for <code>IN</code> clauses 
on <code>CLUSTERING COLUMNS</code>:</p><pre class="sample"><pre>SELECT * FROM 
posts WHERE userid='john doe' AND (blog_title, posted_at) IN (('John''s Blog', 
'2012-01-01), ('Extreme Chess', '2014-06-01'))
-</pre></pre><p>The <code>CONTAINS</code> operator may only be used on 
collection columns (lists, sets, and maps).  In the case of maps, 
<code>CONTAINS</code> applies to the map values. The <code>CONTAINS KEY</code> 
operator may only be used on map columns and applies to the map keys.</p><h4 
id="selectOrderBy"><code>&lt;order-by></code></h4><p>The <code>ORDER BY</code> 
option allows to select the order of the returned results. It takes as argument 
a list of column names along with the order for the column (<code>ASC</code> 
for ascendant and <code>DESC</code> for descendant, omitting the order being 
equivalent to <code>ASC</code>). Currently the possible orderings are limited 
(which depends on the table <a href="#createTableOptions"><code>CLUSTERING 
ORDER</code></a> ):</p><ul><li>if the table has been defined without any 
specific <code>CLUSTERING ORDER</code>, then then allowed orderings are the 
order induced by the clustering columns and the reverse of that 
one.</li><li>otherwise, th
 e orderings allowed are the order of the <code>CLUSTERING ORDER</code> option 
and the reversed one.</li></ul><h4 
id="selectLimit"><code>LIMIT</code></h4><p>The <code>LIMIT</code> option to a 
<code>SELECT</code> statement limits the number of rows returned by a 
query.</p><h4 id="selectAllowFiltering"><code>ALLOW FILTERING</code></h4><p>By 
default, CQL only allows select queries that don&#8217;t involve 
&#8220;filtering&#8221; server side, i.e. queries where we know that all (live) 
record read will be returned (maybe partly) in the result set. The reasoning is 
that those &#8220;non filtering&#8221; queries have predictable performance in 
the sense that they will execute in a time that is proportional to the amount 
of data <strong>returned</strong> by the query (which can be controlled through 
<code>LIMIT</code>).</p><p>The <code>ALLOW FILTERING</code> option allows to 
explicitly allow (some) queries that require filtering. Please note that a 
query using <code>ALLOW FILTERING</code> ma
 y thus have unpredictable performance (for the definition above), i.e. even a 
query that selects a handful of records <strong>may</strong> exhibit 
performance that depends on the total amount of data stored in the 
cluster.</p><p>For instance, considering the following table holding user 
profiles with their year of birth (with a secondary index on it) and country of 
residence:</p><pre class="sample"><pre>CREATE TABLE users (
+</pre></pre><p>The <code>CONTAINS</code> operator may only be used on 
collection columns (lists, sets, and maps).  In the case of maps, 
<code>CONTAINS</code> applies to the map values. The <code>CONTAINS KEY</code> 
operator may only be used on map columns and applies to the map keys.</p><h4 
id="selectOrderBy"><code>&lt;order-by></code></h4><p>The <code>ORDER BY</code> 
option allows to select the order of the returned results. It takes as argument 
a list of column names along with the order for the column (<code>ASC</code> 
for ascendant and <code>DESC</code> for descendant, omitting the order being 
equivalent to <code>ASC</code>). Currently the possible orderings are limited 
(which depends on the table <a href="#createTableOptions"><code>CLUSTERING 
ORDER</code></a> ):</p><ul><li>if the table has been defined without any 
specific <code>CLUSTERING ORDER</code>, then then allowed orderings are the 
order induced by the clustering columns and the reverse of that 
one.</li><li>otherwise, th
 e orderings allowed are the order of the <code>CLUSTERING ORDER</code> option 
and the reversed one.</li></ul><h4 
id="selectLimit"><code>LIMIT</code></h4><p>The <code>LIMIT</code> option to a 
<code>SELECT</code> statement limits the number of rows returned by a 
query.</p><h4 id="selectAllowFiltering"><code>ALLOW FILTERING</code></h4><p>By 
default, CQL only allows select queries that don&#8217;t involve 
&#171;filtering&#187; server side, i.e. queries where we know that all (live) 
record read will be returned (maybe partly) in the result set. The reasoning is 
that those &#171;non filtering&#187; queries have predictable performance in 
the sense that they will execute in a time that is proportional to the amount 
of data <strong>returned</strong> by the query (which can be controlled through 
<code>LIMIT</code>).</p><p>The <code>ALLOW FILTERING</code> option allows to 
explicitly allow (some) queries that require filtering. Please note that a 
query using <code>ALLOW FILTERING</code> may th
 us have unpredictable performance (for the definition above), i.e. even a 
query that selects a handful of records <strong>may</strong> exhibit 
performance that depends on the total amount of data stored in the 
cluster.</p><p>For instance, considering the following table holding user 
profiles with their year of birth (with a secondary index on it) and country of 
residence:</p><pre class="sample"><pre>CREATE TABLE users (
     username text PRIMARY KEY,
     firstname text,
     lastname text,
@@ -409,7 +409,7 @@ CREATE INDEX ON users(birth_year);
 </pre></pre><p></p><p>Then the following queries are valid:</p><pre 
class="sample"><pre>SELECT * FROM users;
 SELECT firstname, lastname FROM users WHERE birth_year = 1981;
 </pre></pre><p>because in both case, Cassandra guarantees that these queries 
performance will be proportional to the amount of data returned. In particular, 
if no users are born in 1981, then the second query performance will not depend 
of the number of user profile stored in the database (not directly at least: 
due to secondary index implementation consideration, this query may still 
depend on the number of node in the cluster, which indirectly depends on the 
amount of data stored.  Nevertheless, the number of nodes will always be 
multiple number of magnitude lower than the number of user profile stored). Of 
course, both query may return very large result set in practice, but the amount 
of data returned can always be controlled by adding a 
<code>LIMIT</code>.</p><p>However, the following query will be 
rejected:</p><pre class="sample"><pre>SELECT firstname, lastname FROM users 
WHERE birth_year = 1981 AND country = 'FR';
-</pre></pre><p>because Cassandra cannot guarantee that it won&#8217;t have to 
scan large amount of data even if the result to those query is small. 
Typically, it will scan all the index entries for users born in 1981 even if 
only a handful are actually from France. However, if you &#8220;know what you 
are doing&#8221;, you can force the execution of this query by using 
<code>ALLOW FILTERING</code> and so the following query is valid:</p><pre 
class="sample"><pre>SELECT firstname, lastname FROM users WHERE birth_year = 
1981 AND country = 'FR' ALLOW FILTERING;
+</pre></pre><p>because Cassandra cannot guarantee that it won&#8217;t have to 
scan large amount of data even if the result to those query is small. 
Typically, it will scan all the index entries for users born in 1981 even if 
only a handful are actually from France. However, if you &#171;know what you 
are doing&#187;, you can force the execution of this query by using <code>ALLOW 
FILTERING</code> and so the following query is valid:</p><pre 
class="sample"><pre>SELECT firstname, lastname FROM users WHERE birth_year = 
1981 AND country = 'FR' ALLOW FILTERING;
 </pre></pre><h2 id="databaseRoles">Database Roles</h2><h3 
id="createRoleStmt">CREATE ROLE</h3><p><i>Syntax:</i></p><pre 
class="syntax"><pre>&lt;create-role-stmt> ::= CREATE ROLE ( IF NOT EXISTS )? 
&lt;identifier> ( WITH &lt;option> ( AND &lt;option> )* )?
 
 &lt;option> ::= PASSWORD = &lt;string>
@@ -553,7 +553,7 @@ REVOKE DESCRIBE ON ALL ROLES FROM role_a
                     | set  '&lt;' &lt;native-type> '>'
                     | map  '&lt;' &lt;native-type> ',' &lt;native-type> '>'
 &lt;tuple-type> ::= tuple '&lt;' &lt;type> (',' &lt;type>)* '>'

[... 33 lines stripped ...]

Reply via email to