[ 
https://issues.apache.org/jira/browse/CASSANDRA-10993?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15406130#comment-15406130
 ] 

Sylvain Lebresne commented on CASSANDRA-10993:
----------------------------------------------

I won't pretend having read very carefully neither this patch nor the one for 
RxJava but the argument that with little proof of performance advantage we're 
better off leveraging and existing and tested library, especially when the API 
is getting somewhat standardized, resonates with me. I also share the gut 
feeling that the bulk of the wins is going to actually get to TPC (or as close 
to it as we can) so we can simplify data structures (not only in term of 
performance, but also in term of complexity required by these data structures), 
and re-using an existing library sounds like it can get us there sooner without 
too much drawback.

> Make read and write requests paths fully non-blocking, eliminate related 
> stages
> -------------------------------------------------------------------------------
>
>                 Key: CASSANDRA-10993
>                 URL: https://issues.apache.org/jira/browse/CASSANDRA-10993
>             Project: Cassandra
>          Issue Type: Sub-task
>          Components: Coordination, Local Write-Read Paths
>            Reporter: Aleksey Yeschenko
>            Assignee: Tyler Hobbs
>             Fix For: 3.x
>
>         Attachments: 10993-reads-no-evloop-integration-six-node-stress.svg, 
> tpc-benchmarks-2.txt, tpc-benchmarks.txt
>
>
> Building on work done by [~tjake] (CASSANDRA-10528), [~slebresne] 
> (CASSANDRA-5239), and others, convert read and write request paths to be 
> fully non-blocking, to enable the eventual transition from SEDA to TPC 
> (CASSANDRA-10989)
> Eliminate {{MUTATION}}, {{COUNTER_MUTATION}}, {{VIEW_MUTATION}}, {{READ}}, 
> and {{READ_REPAIR}} stages, move read and write execution directly to Netty 
> context.
> For lack of decent async I/O options on Linux, we’ll still have to retain an 
> extra thread pool for serving read requests for data not residing in our page 
> cache (CASSANDRA-5863), however.
> Implementation-wise, we only have two options available to us: explicit FSMs 
> and chained futures. Fibers would be the third, and easiest option, but 
> aren’t feasible in Java without resorting to direct bytecode manipulation 
> (ourselves or using [quasar|https://github.com/puniverse/quasar]).
> I have seen 4 implementations bases on chained futures/promises now - three 
> in Java and one in C++ - and I’m not convinced that it’s the optimal (or 
> sane) choice for representing our complex logic - think 2i quorum read 
> requests with timeouts at all levels, read repair (blocking and 
> non-blocking), and speculative retries in the mix, {{SERIAL}} reads and 
> writes.
> I’m currently leaning towards an implementation based on explicit FSMs, and 
> intend to provide a prototype - soonish - for comparison with 
> {{CompletableFuture}}-like variants.
> Either way the transition is a relatively boring straightforward refactoring.
> There are, however, some extension points on both write and read paths that 
> we do not control:
> - authorisation implementations will have to be non-blocking. We have control 
> over built-in ones, but for any custom implementation we will have to execute 
> them in a separate thread pool
> - 2i hooks on the write path will need to be non-blocking
> - any trigger implementations will not be allowed to block
> - UDFs and UDAs
> We are further limited by API compatibility restrictions in the 3.x line, 
> forbidding us to alter, or add any non-{{default}} interface methods to those 
> extension points, so these pose a problem.
> Depending on logistics, expecting to get this done in time for 3.4 or 3.6 
> feature release.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to