[
https://issues.apache.org/jira/browse/CASSANDRA-17381?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17492065#comment-17492065
]
Joey Lynch commented on CASSANDRA-17381:
----------------------------------------
The prior knowledge required to complete this task are Java programming skills,
and optimization algorithm skillsets would be useful. Prior experience with
Cassandra is helpful but not needed as compaction is a somewhat isolated part
of the code base that can be independently tested and even published as
separate jars as compaction strategies are pluggable. Warm up tasks would
include pulling the branch, rebasing it against 3.0, getting it to compile if
there are issues, and starting up a local Cassandra node with a table
configured to use the new compaction strategy with DEBUG logging on to observe
the choices.
I can mentor and [~paulo] has offered to co-mentor.
> Produce and verify BoundedReadCompactionStrategy as a unified general purpose
> compaction algorithm
> --------------------------------------------------------------------------------------------------
>
> Key: CASSANDRA-17381
> URL: https://issues.apache.org/jira/browse/CASSANDRA-17381
> Project: Cassandra
> Issue Type: Improvement
> Components: Local/Compaction
> Reporter: Joey Lynch
> Assignee: Joey Lynch
> Priority: Normal
> Labels: gsoc, gsoc2022
>
> The existing compaction strategies have a number of drawbacks that make all
> three unsuitable as a general use compaction strategy, for example STCS
> creates giant files that are hard to back up, mess with the page cache, and
> led to many of the early re-open bugs. LCS improved dramatically on this but
> also has various issues e.g. lack of performant full compaction or due to the
> strict leveling with e.g. bulk loading when writes exceed the rate we can do
> the L0 - L1 promotion.
> In this
> [talk|https://github.com/ngcc/ngcc2019/blob/master/NextGenerationCassandraCompactionGoingBeyondLCS.pdf]
> I proposed a novel compaction strategy that aims to expose a single tunable
> that the user can control for the read amplification. Raise the
> max_read_per_read and you tradeoff read/space performance for write
> performance. Since then a proof of concept [patch
> |https://github.com/jolynch/cassandra/tree/jolynch_bounded_read_final]has
> been published along with some rudimentary [documentation
> |https://gist.github.com/jolynch/9118465f32ad5298b4e39d03ccd4370e] but this
> is still not tracked in Jira.
> The remaining work here is
> 1. Validate the algorithm is correct via test suites and performance testing
> stress testing and benchmarking with OSS tools (e.g. cassandra-stress,
> [tlp-stress|https://github.com/thelastpickle/tlp-stress], or
> [ndbench|https://github.com/Netflix/ndbench]). When issues are found (there
> likely will be issues as the patch is a PoC), devise how to adjust the
> algorithm and implementation appropriately. Key metric of success is we can
> run Cassandra stably for more than 24 hours while applying sustained load,
> with minimal compaction load (and also compaction can keep up).
> 2. Do more in depth experiments measuring performance across a wide range of
> workloads (e.g. write heavy, read heavy, balanced, time series, register
> update, etc ...) and in comparison with LCS (leveled), STCS (size tiered),
> and TWCS (time window). Key metrics of success are establishing that as we
> tune max_read_per_read we should get more predictable read latency under low
> system load (ρ < 30%) while not degrading at high system load (ρ > 70%), and
> we should match LCS performance under low load while doing better at high
> load.
> Once this is validated a Cassandra blog post reporting on the findings
> (positive or negative) may be advisable.
>
--
This message was sent by Atlassian Jira
(v8.20.1#820001)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]