Author: luc
Date: Mon Sep 29 14:47:41 2008
New Revision: 700272
URL: http://svn.apache.org/viewvc?rev=700272&view=rev
Log:
added a transformer from symmetric matrix to tri-diagonal matrix
(this is only for internal purposes only yet, it will be used later)
Added:
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
(with props)
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
(with props)
Added:
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
URL:
http://svn.apache.org/viewvc/commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java?rev=700272&view=auto
==============================================================================
---
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
(added)
+++
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
Mon Sep 29 14:47:41 2008
@@ -0,0 +1,273 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.linear;
+
+import java.io.Serializable;
+import java.util.Arrays;
+
+/**
+ * Class transforming a symmetrical matrix to tri-diagonal shape.
+ * <p>A symmetrical m × m matrix A can be written as the product of
three matrices:
+ * A = Q × T × Q<sup>T</sup> with Q an orthogonal matrix and T a
symmetrical
+ * tri-diagonal matrix. Both Q and T are m × m matrices.</p>
+ * <p>Transformation to tri-diagonal shape is often not a goal by itself, but
it is
+ * an intermediate step in more general decomposition algorithms like [EMAIL
PROTECTED]
+ * EigenValuesDecomposition Eigen Values Decomposition}. This class is
therefore
+ * intended for internal use by the library and is not public. As a
consequence of
+ * this explicitly limited scope, many methods directly returns references to
+ * internal arrays, not copies.</p>
+ * @version $Revision$ $Date$
+ * @since 2.0
+ */
+class TriDiagonalTransformer implements Serializable {
+
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = 8935390784125343332L;
+
+ /** Householder vectors. */
+ private final double householderVectors[][];
+
+ /** Main diagonal. */
+ private final double[] main;
+
+ /** Secondary diagonal. */
+ private final double[] secondary;
+
+ /** Cached value of Q. */
+ private RealMatrix cachedQ;
+
+ /** Cached value of Qt. */
+ private RealMatrix cachedQt;
+
+ /** Cached value of T. */
+ private RealMatrix cachedT;
+
+ /**
+ * Build the transformation to tri-diagonal shape of a symmetrical matrix.
+ * <p>The specified matrix is assumed to be symmetrical without any check.
+ * Only the upper triangular part of the matrix is used.</p>
+ * @param matrix the symmetrical matrix to transform.
+ * @exception InvalidMatrixException if matrix is not square
+ */
+ public TriDiagonalTransformer(RealMatrix matrix)
+ throws InvalidMatrixException {
+ if (!matrix.isSquare()) {
+ throw new InvalidMatrixException("transformation to tri-diagonal
requires that the matrix be square");
+ }
+
+ final int m = matrix.getRowDimension();
+ householderVectors = matrix.getData();
+ main = new double[m];
+ secondary = new double[m - 1];
+ cachedQ = null;
+ cachedQt = null;
+ cachedT = null;
+
+ // transform matrix
+ transform();
+
+ }
+
+ /**
+ * Returns the matrix Q of the transform.
+ * <p>Q is an orthogonal matrix, i.e. its transpose is also its
inverse.</p>
+ * @return the Q matrix
+ */
+ public RealMatrix getQ() {
+ if (cachedQ == null) {
+ cachedQ = getQT().transpose();
+ }
+ return cachedQ;
+ }
+
+ /**
+ * Returns the transpose of the matrix Q of the transform.
+ * <p>Q is an orthogonal matrix, i.e. its transpose is also its
inverse.</p>
+ * @return the Q matrix
+ */
+ public RealMatrix getQT() {
+
+ if (cachedQt == null) {
+
+ final int m = householderVectors.length;
+ final double[][] qtData = new double[m][m];
+
+ // build up first part of the matrix by applying Householder
transforms
+ for (int k = m - 1; k >= 1; --k) {
+ final double[] hK = householderVectors[k - 1];
+ final double inv = 1.0 / (secondary[k - 1] * hK[k]);
+ qtData[k][k] = 1;
+ if (hK[k] != 0.0) {
+ for (int j = k; j < m; ++j) {
+ final double[] qtJ = qtData[j];
+ double beta = 0;
+ for (int i = k; i < m; ++i) {
+ beta -= qtJ[i] * hK[i];
+ }
+ beta *= inv;
+
+ for (int i = k; i < m; ++i) {
+ qtJ[i] -= beta * hK[i];
+ }
+ }
+ }
+ }
+ qtData[0][0] = 1;
+
+ // cache the matrix for subsequent calls
+ cachedQt = new RealMatrixImpl(qtData, false);
+
+ }
+
+ // return the cached matrix
+ return cachedQt;
+
+ }
+
+ /**
+ * Returns the tri-diagonal matrix T of the transform.
+ * @return the T matrix
+ */
+ public RealMatrix getT() {
+
+ if (cachedT == null) {
+
+ final int m = main.length;
+ double[][] tData = new double[m][m];
+ for (int i = 0; i < m; ++i) {
+ double[] tDataI = tData[i];
+ tDataI[i] = main[i];
+ if (i > 0) {
+ tDataI[i - 1] = secondary[i - 1];
+ }
+ if (i < main.length - 1) {
+ tDataI[i + 1] = secondary[i];
+ }
+ }
+
+ // cache the matrix for subsequent calls
+ cachedT = new RealMatrixImpl(tData, false);
+
+ }
+
+ // return the cached matrix
+ return cachedT;
+
+ }
+
+ /**
+ * Get the Householder vectors of the transform.
+ * <p>Note that since this class is only intended for internal use,
+ * it returns directly a reference to its internal arrays, not a copy.</p>
+ * @return the main diagonal elements of the B matrix
+ */
+ double[][] getHouseholderVectorsRef() {
+ return householderVectors;
+ }
+
+ /**
+ * Get the main diagonal elements of the matrix T of the transform.
+ * <p>Note that since this class is only intended for internal use,
+ * it returns directly a reference to its internal arrays, not a copy.</p>
+ * @return the main diagonal elements of the T matrix
+ */
+ double[] getMainDiagonalRef() {
+ return main;
+ }
+
+ /**
+ * Get the secondary diagonal elements of the matrix T of the transform.
+ * <p>Note that since this class is only intended for internal use,
+ * it returns directly a reference to its internal arrays, not a copy.</p>
+ * @return the secondary diagonal elements of the T matrix
+ */
+ double[] getSecondaryDiagonalRef() {
+ return secondary;
+ }
+
+ /**
+ * Transform original matrix to tri-diagonal form.
+ * <p>Transformation is done using Householder transforms.</p>
+ */
+ private void transform() {
+
+ final int m = householderVectors.length;
+ final double[] z = new double[m];
+ for (int k = 0; k < m - 1; k++) {
+
+ //zero-out a row and a column simultaneously
+ final double[] hK = householderVectors[k];
+ main[k] = hK[k];
+ double xNormSqr = 0;
+ for (int j = k + 1; j < m; ++j) {
+ final double c = hK[j];
+ xNormSqr += c * c;
+ }
+ final double a = (hK[k + 1] > 0) ? -Math.sqrt(xNormSqr) :
Math.sqrt(xNormSqr);
+ secondary[k] = a;
+ if (a != 0.0) {
+ // apply Householder transform from left and right
simultaneously
+
+ hK[k + 1] -= a;
+ final double beta = -1 / (a * hK[k + 1]);
+
+ // compute a = beta A v, where v is the Householder vector
+ // this loop is written in such a way
+ // 1) only the upper triangular part of the matrix is
accessed
+ // 2) access is cache-friendly for a matrix stored in rows
+ Arrays.fill(z, k + 1, m, 0);
+ for (int i = k + 1; i < m; ++i) {
+ final double[] hI = householderVectors[i];
+ final double hKI = hK[i];
+ double zI = hI[i] * hKI;
+ for (int j = i + 1; j < m; ++j) {
+ final double hIJ = hI[j];
+ zI += hIJ * hK[j];
+ z[j] += hIJ * hKI;
+ }
+ z[i] = beta * (z[i] + zI);
+ }
+
+ // compute gamma = beta vT z / 2
+ double gamma = 0;
+ for (int i = k + 1; i < m; ++i) {
+ gamma += z[i] * hK[i];
+ }
+ gamma *= beta / 2;
+
+ // compute z = z - gamma v
+ for (int i = k + 1; i < m; ++i) {
+ z[i] -= gamma * hK[i];
+ }
+
+ // update matrix: A = A - v zT - z vT
+ // only the upper triangular part of the matrix is updated
+ for (int i = k + 1; i < m; ++i) {
+ final double[] hI = householderVectors[i];
+ for (int j = i; j < m; ++j) {
+ hI[j] -= hK[i] * z[j] + z[i] * hK[j];
+ }
+ }
+
+ }
+
+ }
+ main[m - 1] = householderVectors[m - 1][m - 1];
+ }
+
+}
Propchange:
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
------------------------------------------------------------------------------
svn:eol-style = native
Propchange:
commons/proper/math/branches/MATH_2_0/src/java/org/apache/commons/math/linear/TriDiagonalTransformer.java
------------------------------------------------------------------------------
svn:keywords = Author Date Id Revision
Added:
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
URL:
http://svn.apache.org/viewvc/commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java?rev=700272&view=auto
==============================================================================
---
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
(added)
+++
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
Mon Sep 29 14:47:41 2008
@@ -0,0 +1,159 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.linear;
+
+import junit.framework.Test;
+import junit.framework.TestCase;
+import junit.framework.TestSuite;
+
+public class TriDiagonalTransformerTest extends TestCase {
+
+ private double[][] testSquare5 = {
+ { 1, 2, 3, 1, 1 },
+ { 2, 1, 1, 3, 1 },
+ { 3, 1, 1, 1, 2 },
+ { 1, 3, 1, 2, 1 },
+ { 1, 1, 2, 1, 3 }
+ };
+
+ private double[][] testSquare3 = {
+ { 1, 3, 4 },
+ { 3, 2, 2 },
+ { 4, 2, 0 }
+ };
+
+ public TriDiagonalTransformerTest(String name) {
+ super(name);
+ }
+
+ public void testNonSquare() {
+ try {
+ new TriDiagonalTransformer(new RealMatrixImpl(new double[3][2],
false));
+ fail("an exception should have been thrown");
+ } catch (InvalidMatrixException ime) {
+ // expected behavior
+ } catch (Exception e) {
+ fail("wrong exception caught");
+ }
+ }
+
+ public void testAEqualQTQt() {
+ checkAEqualQTQt(new RealMatrixImpl(testSquare5, false));
+ checkAEqualQTQt(new RealMatrixImpl(testSquare3, false));
+ }
+
+ private void checkAEqualQTQt(RealMatrix matrix) {
+ TriDiagonalTransformer transformer = new
TriDiagonalTransformer(matrix);
+ RealMatrix q = transformer.getQ();
+ RealMatrix qT = transformer.getQT();
+ RealMatrix t = transformer.getT();
+ double norm = q.multiply(t).multiply(qT).subtract(matrix).getNorm();
+ assertEquals(0, norm, 4.0e-15);
+ }
+
+ public void testQOrthogonal() {
+ checkOrthogonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare5, false)).getQ());
+ checkOrthogonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare3, false)).getQ());
+ }
+
+ public void testQTOrthogonal() {
+ checkOrthogonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare5, false)).getQT());
+ checkOrthogonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare3, false)).getQT());
+ }
+
+ private void checkOrthogonal(RealMatrix m) {
+ RealMatrix mTm = m.transpose().multiply(m);
+ RealMatrix id =
MatrixUtils.createRealIdentityMatrix(mTm.getRowDimension());
+ assertEquals(0, mTm.subtract(id).getNorm(), 1.0e-15);
+ }
+
+ public void testTTriDiagonal() {
+ checkTriDiagonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare5, false)).getT());
+ checkTriDiagonal(new TriDiagonalTransformer(new
RealMatrixImpl(testSquare3, false)).getT());
+ }
+
+ private void checkTriDiagonal(RealMatrix m) {
+ final int rows = m.getRowDimension();
+ final int cols = m.getColumnDimension();
+ for (int i = 0; i < rows; ++i) {
+ for (int j = 0; j < cols; ++j) {
+ if ((i < j - 1) || (i > j + 1)) {
+ assertEquals(0, m.getEntry(i, j), 1.0e-16);
+ }
+ }
+ }
+ }
+
+ public void testMatricesValues5() {
+ checkMatricesValues(testSquare5,
+ new double[][] {
+ { 1.0, 0.0, 0.0,
0.0, 0.0 },
+ { 0.0, -0.5163977794943222,
0.016748280772542083, 0.839800693771262, 0.16669620021405473 },
+ { 0.0, -0.7745966692414833,
-0.4354553000860955, -0.44989322880603355, -0.08930153582895772 },
+ { 0.0, -0.2581988897471611,
0.6364346693566014, -0.30263204032131164, 0.6608313651342882 },
+ { 0.0, -0.2581988897471611,
0.6364346693566009, -0.027289660803112598, -0.7263191580755246 }
+ },
+ new double[] { 1, 4.4, 1.433099579242636,
-0.89537362758743, 2.062274048344794 },
+ new double[] { -Math.sqrt(15),
-3.0832882879592476, 0.6082710842351517, 1.1786086405912128 });
+ }
+
+ public void testMatricesValues3() {
+ checkMatricesValues(testSquare3,
+ new double[][] {
+ { 1.0, 0.0, 0.0 },
+ { 0.0, -0.6, 0.8 },
+ { 0.0, -0.8, -0.6 },
+ },
+ new double[] { 1, 2.64, -0.64 },
+ new double[] { -5, -1.52 });
+ }
+
+ private void checkMatricesValues(double[][] matrix, double[][] qRef,
+ double[] mainDiagnonal,
+ double[] secondaryDiagonal) {
+ TriDiagonalTransformer transformer =
+ new TriDiagonalTransformer(new RealMatrixImpl(matrix, false));
+
+ // check values against known references
+ RealMatrix q = transformer.getQ();
+ assertEquals(0, q.subtract(new RealMatrixImpl(qRef, false)).getNorm(),
1.0e-14);
+
+ RealMatrix t = transformer.getT();
+ double[][] tData = new
double[mainDiagnonal.length][mainDiagnonal.length];
+ for (int i = 0; i < mainDiagnonal.length; ++i) {
+ tData[i][i] = mainDiagnonal[i];
+ if (i > 0) {
+ tData[i][i - 1] = secondaryDiagonal[i - 1];
+ }
+ if (i < secondaryDiagonal.length) {
+ tData[i][i + 1] = secondaryDiagonal[i];
+ }
+ }
+ assertEquals(0, t.subtract(new RealMatrixImpl(tData,
false)).getNorm(), 1.0e-14);
+
+ // check the same cached instance is returned the second time
+ assertTrue(q == transformer.getQ());
+ assertTrue(t == transformer.getT());
+
+ }
+
+ public static Test suite() {
+ return new TestSuite(TriDiagonalTransformerTest.class);
+ }
+
+}
Propchange:
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
------------------------------------------------------------------------------
svn:eol-style = native
Propchange:
commons/proper/math/branches/MATH_2_0/src/test/org/apache/commons/math/linear/TriDiagonalTransformerTest.java
------------------------------------------------------------------------------
svn:keywords = Author Date Id Revision