Author: psteitz
Date: Thu Dec 9 11:53:14 2010
New Revision: 1043908
URL: http://svn.apache.org/viewvc?rev=1043908&view=rev
Log:
Fixed javadoc typos.
Modified:
commons/proper/math/branches/MATH_2_X/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
commons/proper/math/trunk/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
Modified:
commons/proper/math/branches/MATH_2_X/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
URL:
http://svn.apache.org/viewvc/commons/proper/math/branches/MATH_2_X/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java?rev=1043908&r1=1043907&r2=1043908&view=diff
==============================================================================
---
commons/proper/math/branches/MATH_2_X/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
(original)
+++
commons/proper/math/branches/MATH_2_X/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
Thu Dec 9 11:53:14 2010
@@ -36,7 +36,7 @@ import org.apache.commons.math.util.Fast
* interesting case is when the generated vector should be drawn from a <a
* href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
* Multivariate Normal Distribution</a>. The approach using a Cholesky
- * decomposition is quite usual in this case. However, it cas be extended
+ * decomposition is quite usual in this case. However, it can be extended
* to other cases as long as the underlying random generator provides
* {...@link NormalizedRandomGenerator normalized values} like {...@link
* GaussianRandomGenerator} or {...@link UniformRandomGenerator}.</p>
@@ -48,7 +48,7 @@ import org.apache.commons.math.util.Fast
* should be null. Another non-conventional extension handling this case
* is used here. Rather than computing <code>C = U<sup>T</sup>.U</code>
* where <code>C</code> is the covariance matrix and <code>U</code>
- * is an uppertriangular matrix, we compute <code>C = B.B<sup>T</sup></code>
+ * is an upper-triangular matrix, we compute <code>C = B.B<sup>T</sup></code>
* where <code>B</code> is a rectangular matrix having
* more rows than columns. The number of columns of <code>B</code> is
* the rank of the covariance matrix, and it is the dimension of the
Modified:
commons/proper/math/trunk/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
URL:
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java?rev=1043908&r1=1043907&r2=1043908&view=diff
==============================================================================
---
commons/proper/math/trunk/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
(original)
+++
commons/proper/math/trunk/src/main/java/org/apache/commons/math/random/CorrelatedRandomVectorGenerator.java
Thu Dec 9 11:53:14 2010
@@ -36,7 +36,7 @@ import org.apache.commons.math.util.Fast
* interesting case is when the generated vector should be drawn from a <a
* href="http://en.wikipedia.org/wiki/Multivariate_normal_distribution">
* Multivariate Normal Distribution</a>. The approach using a Cholesky
- * decomposition is quite usual in this case. However, it cas be extended
+ * decomposition is quite usual in this case. However, it can be extended
* to other cases as long as the underlying random generator provides
* {...@link NormalizedRandomGenerator normalized values} like {...@link
* GaussianRandomGenerator} or {...@link UniformRandomGenerator}.</p>
@@ -48,7 +48,7 @@ import org.apache.commons.math.util.Fast
* should be null. Another non-conventional extension handling this case
* is used here. Rather than computing <code>C = U<sup>T</sup>.U</code>
* where <code>C</code> is the covariance matrix and <code>U</code>
- * is an uppertriangular matrix, we compute <code>C = B.B<sup>T</sup></code>
+ * is an upper-triangular matrix, we compute <code>C = B.B<sup>T</sup></code>
* where <code>B</code> is a rectangular matrix having
* more rows than columns. The number of columns of <code>B</code> is
* the rank of the covariance matrix, and it is the dimension of the