This is an automated email from the ASF dual-hosted git repository.
ggregory pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/commons-geometry.git
The following commit(s) were added to refs/heads/master by this push:
new e0f669dd Use HTTPS in URL
e0f669dd is described below
commit e0f669dd3a818c6da283fe8af7c0b108afd23a94
Author: Gary Gregory <[email protected]>
AuthorDate: Sun Nov 2 10:49:34 2025 -0500
Use HTTPS in URL
---
.../java/org/apache/commons/geometry/enclosing/WelzlEncloser.java | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git
a/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
b/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
index d246f46e..564c080a 100644
---
a/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
+++
b/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
@@ -26,13 +26,13 @@ import org.apache.commons.numbers.core.Precision;
/** Class implementing Emo Welzl's algorithm to find the smallest enclosing
ball in linear time.
* <p>
* The class implements the algorithm described in paper <a
- *
href="http://www.inf.ethz.ch/personal/emo/PublFiles/SmallEnclDisk_LNCS555_91.pdf">Smallest
+ *
href="https://www.inf.ethz.ch/personal/emo/PublFiles/SmallEnclDisk_LNCS555_91.pdf">Smallest
* Enclosing Disks (Balls and Ellipsoids)</a> by Emo Welzl, Lecture Notes in
Computer Science
* 555 (1991) 359-370. The pivoting improvement published in the paper <a
- *
href="http://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf">Fast
and
+ *
href="https://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf">Fast
and
* Robust Smallest Enclosing Balls</a>, by Bernd Gärtner and further modified
in
* paper <a
- *
href="http://www.idt.mdh.se/kurser/ct3340/ht12/MINICONFERENCE/FinalPapers/ircse12_submission_30.pdf">
+ *
href="https://www.idt.mdh.se/kurser/ct3340/ht12/MINICONFERENCE/FinalPapers/ircse12_submission_30.pdf">
* Efficient Computation of Smallest Enclosing Balls in Three Dimensions</a>
by Linus Källberg
* to avoid performing local copies of data have been included.
* </p>