This is an automated email from the ASF dual-hosted git repository.

ggregory pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/commons-geometry.git


The following commit(s) were added to refs/heads/master by this push:
     new e0f669dd Use HTTPS in URL
e0f669dd is described below

commit e0f669dd3a818c6da283fe8af7c0b108afd23a94
Author: Gary Gregory <[email protected]>
AuthorDate: Sun Nov 2 10:49:34 2025 -0500

    Use HTTPS in URL
---
 .../java/org/apache/commons/geometry/enclosing/WelzlEncloser.java   | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git 
a/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
 
b/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
index d246f46e..564c080a 100644
--- 
a/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
+++ 
b/commons-geometry-enclosing/src/main/java/org/apache/commons/geometry/enclosing/WelzlEncloser.java
@@ -26,13 +26,13 @@ import org.apache.commons.numbers.core.Precision;
 /** Class implementing Emo Welzl's algorithm to find the smallest enclosing 
ball in linear time.
  * <p>
  * The class implements the algorithm described in paper <a
- * 
href="http://www.inf.ethz.ch/personal/emo/PublFiles/SmallEnclDisk_LNCS555_91.pdf";>Smallest
+ * 
href="https://www.inf.ethz.ch/personal/emo/PublFiles/SmallEnclDisk_LNCS555_91.pdf";>Smallest
  * Enclosing Disks (Balls and Ellipsoids)</a> by Emo Welzl, Lecture Notes in 
Computer Science
  * 555 (1991) 359-370. The pivoting improvement published in the paper <a
- * 
href="http://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf";>Fast
 and
+ * 
href="https://www.inf.ethz.ch/personal/gaertner/texts/own_work/esa99_final.pdf";>Fast
 and
  * Robust Smallest Enclosing Balls</a>, by Bernd Gärtner and further modified 
in
  * paper <a
- * 
href="http://www.idt.mdh.se/kurser/ct3340/ht12/MINICONFERENCE/FinalPapers/ircse12_submission_30.pdf";>
+ * 
href="https://www.idt.mdh.se/kurser/ct3340/ht12/MINICONFERENCE/FinalPapers/ircse12_submission_30.pdf";>
  * Efficient Computation of Smallest Enclosing Balls in Three Dimensions</a> 
by Linus Källberg
  * to avoid performing local copies of data have been included.
  * </p>

Reply via email to