added new files

Project: http://git-wip-us.apache.org/repos/asf/commons-numbers/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-numbers/commit/15136c2d
Tree: http://git-wip-us.apache.org/repos/asf/commons-numbers/tree/15136c2d
Diff: http://git-wip-us.apache.org/repos/asf/commons-numbers/diff/15136c2d

Branch: refs/heads/master
Commit: 15136c2d6b6112ae6fa60c1eb644ce70f675b4c5
Parents: 07bbda2
Author: Eric Barnhill <ericbarnh...@apache.org>
Authored: Fri Apr 28 00:47:26 2017 +0200
Committer: Eric Barnhill <ericbarnh...@apache.org>
Committed: Fri Apr 28 00:47:26 2017 +0200

----------------------------------------------------------------------
 .../commons/numbers/complex/.Complex.java.swo   |  Bin 0 -> 65536 bytes
 .../commons/numbers/complex/Complex.java.orig   | 1320 ++++++++++++++++++
 .../numbers/complex/.CStandardTest.java.swo     |  Bin 0 -> 28672 bytes
 .../commons/numbers/complex/CStandardTest.java  |  265 ++++
 4 files changed, 1585 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/15136c2d/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/.Complex.java.swo
----------------------------------------------------------------------
diff --git 
a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/.Complex.java.swo
 
b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/.Complex.java.swo
new file mode 100644
index 0000000..7720390
Binary files /dev/null and 
b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/.Complex.java.swo
 differ

http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/15136c2d/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
----------------------------------------------------------------------
diff --git 
a/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
 
b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
new file mode 100644
index 0000000..d3c7ce0
--- /dev/null
+++ 
b/commons-numbers-complex/src/main/java/org/apache/commons/numbers/complex/Complex.java.orig
@@ -0,0 +1,1320 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.numbers.complex;
+
+import java.io.Serializable;
+import java.util.ArrayList;
+import java.util.List;
+import org.apache.commons.numbers.core.Precision;
+/**
+ * Representation of a Complex number, i.e., a number which has both a
+ * real and imaginary part.
+ * <p>
+ * Implementations of arithmetic operations handle {@code NaN} and
+ * infinite values according to the rules for {@link java.lang.Double}, i.e.
+ * {@link #equals} is an equivalence relation for all instances that have
+ * a {@code NaN} in either real or imaginary part, e.g. the following are
+ * considered equal:
+ * <ul>
+ *  <li>{@code 1 + NaNi}</li>
+ *  <li>{@code NaN + i}</li>
+ *  <li>{@code NaN + NaNi}</li>
+ * </ul><p>
+ * Note that this contradicts the IEEE-754 standard for floating
+ * point numbers (according to which the test {@code x == x} must fail if
+ * {@code x} is {@code NaN}). The method
+ * {@link org.apache.commons.numbers.core.Precision#equals(double,double,int)
+ * equals for primitive double} in class {@code Precision} conforms with
+ * IEEE-754 while this class conforms with the standard behavior for Java
+ * object types.</p>
+ *
+ */
+public class Complex implements Serializable  {
+    /** The square root of -1. A number representing "0.0 + 1.0i" */
+    public static final Complex I = new Complex(0.0, 1.0);
+    // CHECKSTYLE: stop ConstantName
+    /** A complex number representing "NaN + NaNi" */
+    public static final Complex NaN = new Complex(Double.NaN, Double.NaN);
+    // CHECKSTYLE: resume ConstantName
+    /** A complex number representing "+INF + INFi" */
+    public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, 
Double.POSITIVE_INFINITY);
+    /** A complex number representing "1.0 + 0.0i" */
+    public static final Complex ONE = new Complex(1.0, 0.0);
+    /** A complex number representing "0.0 + 0.0i" */
+    public static final Complex ZERO = new Complex(0.0, 0.0);
+
+    /** Serializable version identifier */
+    private static final long serialVersionUID = 201701120L;
+
+    /** The imaginary part. */
+    private final double imaginary;
+    /** The real part. */
+    private final double real;
+    /** Record whether this complex number is equal to NaN. */
+    private final transient boolean isNaN;
+    /** Record whether this complex number is infinite. */
+    private final transient boolean isInfinite;
+
+    /**
+     * Create a complex number given only the real part.
+     *
+     * @param real Real part.
+     */
+    public Complex(double real) {
+        this(real, 0.0);
+    }
+
+    /**
+     * Create a complex number given the real and imaginary parts.
+     *
+     * @param real Real part.
+     * @param imaginary Imaginary part.
+     */
+    public Complex(double real, double imaginary) {
+        this.real = real;
+        this.imaginary = imaginary;
+
+        isNaN = Double.isNaN(real) || Double.isNaN(imaginary);
+        isInfinite = !isNaN &&
+            (Double.isInfinite(real) || Double.isInfinite(imaginary));
+    }
+
+    /**
+     * Return the absolute value of this complex number.
+     * Returns {@code NaN} if either real or imaginary part is {@code NaN}
+     * and {@code Double.POSITIVE_INFINITY} if neither part is {@code NaN},
+     * but at least one part is infinite.
+     * This code follows the <a 
href="http://www.iso-9899.info/wiki/The_Standard";>ISO C Standard</a>, Annex G, 
in calculating the returned value (i.e. the hypot(x,y) method)
+     *
+     * @return the absolute value.
+     */
+    public double abs() {
+        if (isNaN) {
+            return Double.NaN;
+        }
+        if (isInfinite()) {
+            return Double.POSITIVE_INFINITY;
+        }
+        if (Math.abs(real) < Math.abs(imaginary)) {
+            if (imaginary == 0.0) {
+                return Math.abs(real);
+            }
+            double q = real / imaginary;
+            return Math.abs(imaginary) * Math.sqrt(1 + q * q);
+        } else {
+            if (real == 0.0) {
+                return Math.abs(imaginary);
+            }
+            double q = imaginary / real;
+            return Math.abs(real) * Math.sqrt(1 + q * q);
+        }
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is
+     * {@code (this + addend)}.
+     * Uses the definitional formula
+     * <p>
+     *   {@code (a + bi) + (c + di) = (a+c) + (b+d)i}
+     * </p>
+     * If either {@code this} or {@code addend} has a {@code NaN} value in
+     * either part, {@link #NaN} is returned; otherwise {@code Infinite}
+     * and {@code NaN} values are returned in the parts of the result
+     * according to the rules for {@link java.lang.Double} arithmetic.
+     *
+     * @param  addend Value to be added to this {@code Complex}.
+     * @return {@code this + addend}.
+     */
+    public Complex add(Complex addend) {
+        checkNotNull(addend);
+        if (isNaN || addend.isNaN) {
+            return NaN;
+        }
+
+        return createComplex(real + addend.getReal(),
+                             imaginary + addend.getImaginary());
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code (this + addend)},
+     * with {@code addend} interpreted as a real number.
+     *
+     * @param addend Value to be added to this {@code Complex}.
+     * @return {@code this + addend}.
+     * @see #add(Complex)
+     */
+    public Complex add(double addend) {
+        if (isNaN || Double.isNaN(addend)) {
+            return NaN;
+        }
+
+        return createComplex(real + addend, imaginary);
+    }
+
+     /**
+     * Returns the conjugate of this complex number.
+     * The conjugate of {@code a + bi} is {@code a - bi}.
+     * <p>
+     * {@link #NaN} is returned if either the real or imaginary
+     * part of this Complex number equals {@code Double.NaN}.
+     * </p><p>
+     * If the imaginary part is infinite, and the real part is not
+     * {@code NaN}, the returned value has infinite imaginary part
+     * of the opposite sign, e.g. the conjugate of
+     * {@code 1 + POSITIVE_INFINITY i} is {@code 1 - NEGATIVE_INFINITY i}.
+     * </p>
+     * @return the conjugate of this Complex object.
+     */
+    public Complex conjugate() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(real, -imaginary);
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is
+     * {@code (this / divisor)}.
+     * Implements the definitional formula
+     * <pre>
+     *  <code>
+     *    a + bi          ac + bd + (bc - ad)i
+     *    ----------- = -------------------------
+     *    c + di         c<sup>2</sup> + d<sup>2</sup>
+     *  </code>
+     * </pre>
+     * but uses
+     * <a href="http://doi.acm.org/10.1145/1039813.1039814";>
+     * prescaling of operands</a> to limit the effects of overflows and
+     * underflows in the computation.
+     * <p>
+     * {@code Infinite} and {@code NaN} values are handled according to the
+     * following rules, applied in the order presented:
+     * <ul>
+     *  <li>If either {@code this} or {@code divisor} has a {@code NaN} value
+     *   in either part, {@link #NaN} is returned.
+     *  </li>
+     *  <li>If {@code divisor} equals {@link #ZERO}, {@link #NaN} is returned.
+     *  </li>
+     *  <li>If {@code this} and {@code divisor} are both infinite,
+     *   {@link #NaN} is returned.
+     *  </li>
+     *  <li>If {@code this} is finite (i.e., has no {@code Infinite} or
+     *   {@code NaN} parts) and {@code divisor} is infinite (one or both parts
+     *   infinite), {@link #ZERO} is returned.
+     *  </li>
+     *  <li>If {@code this} is infinite and {@code divisor} is finite,
+     *   {@code NaN} values are returned in the parts of the result if the
+     *   {@link java.lang.Double} rules applied to the definitional formula
+     *   force {@code NaN} results.
+     *  </li>
+     * </ul>
+     *
+     * @param divisor Value by which this {@code Complex} is to be divided.
+     * @return {@code this / divisor}.
+     */
+    public Complex divide(Complex divisor) {
+        checkNotNull(divisor);
+        if (isNaN || divisor.isNaN) {
+            return NaN;
+        }
+
+        final double c = divisor.getReal();
+        final double d = divisor.getImaginary();
+        if (c == 0.0 && d == 0.0) {
+            return NaN;
+        }
+
+        if (divisor.isInfinite() && !isInfinite()) {
+            return ZERO;
+        }
+
+        if (Math.abs(c) < Math.abs(d)) {
+            double q = c / d;
+            double denominator = c * q + d;
+            return createComplex((real * q + imaginary) / denominator,
+                (imaginary * q - real) / denominator);
+        } else {
+            double q = d / c;
+            double denominator = d * q + c;
+            return createComplex((imaginary * q + real) / denominator,
+                (imaginary - real * q) / denominator);
+        }
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code (this / divisor)},
+     * with {@code divisor} interpreted as a real number.
+     *
+     * @param  divisor Value by which this {@code Complex} is to be divided.
+     * @return {@code this / divisor}.
+     * @see #divide(Complex)
+     */
+    public Complex divide(double divisor) {
+        if (isNaN || Double.isNaN(divisor)) {
+            return NaN;
+        }
+        if (divisor == 0d) {
+            return NaN;
+        }
+        if (Double.isInfinite(divisor)) {
+            return !isInfinite() ? ZERO : NaN;
+        }
+        return createComplex(real / divisor,
+                             imaginary  / divisor);
+    }
+
+    /**
+     * Returns the multiplicative inverse this instance.
+     *
+     * @return {@code 1 / this}.
+     * @see #divide(Complex)
+     */
+    public Complex reciprocal() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        if (real == 0.0 && imaginary == 0.0) {
+            return INF;
+        }
+
+        if (isInfinite) {
+            return ZERO;
+        }
+
+        if (Math.abs(real) < Math.abs(imaginary)) {
+            double q = real / imaginary;
+            double scale = 1. / (real * q + imaginary);
+            return createComplex(scale * q, -scale);
+        } else {
+            double q = imaginary / real;
+            double scale = 1. / (imaginary * q + real);
+            return createComplex(scale, -scale * q);
+        }
+    }
+
+    /**
+     * Test for equality with another object.
+     * If both the real and imaginary parts of two complex numbers
+     * are exactly the same, and neither is {@code Double.NaN}, the two
+     * Complex objects are considered to be equal.
+     * The behavior is the same as for JDK's {@link Double#equals(Object)
+     * Double}:
+     * <ul>
+     *  <li>All {@code NaN} values are considered to be equal,
+     *   i.e, if either (or both) real and imaginary parts of the complex
+     *   number are equal to {@code Double.NaN}, the complex number is equal
+     *   to {@code NaN}.
+     *  </li>
+     *  <li>
+     *   Instances constructed with different representations of zero (i.e.
+     *   either "0" or "-0") are <em>not</em> considered to be equal.
+     *  </li>
+     * </ul>
+     *
+     * @param other Object to test for equality with this instance.
+     * @return {@code true} if the objects are equal, {@code false} if object
+     * is {@code null}, not an instance of {@code Complex}, or not equal to
+     * this instance.
+     */
+    @Override
+    public boolean equals(Object other) {
+        if (this == other) {
+            return true;
+        }
+        if (other instanceof Complex){
+            Complex c = (Complex) other;
+            if (c.isNaN) {
+                return isNaN;
+            } else {
+                return equals(real, c.real) &&
+                    equals(imaginary, c.imaginary);
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Test for the floating-point equality between Complex objects.
+     * It returns {@code true} if both arguments are equal or within the
+     * range of allowed error (inclusive).
+     *
+     * @param x First value (cannot be {@code null}).
+     * @param y Second value (cannot be {@code null}).
+     * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
+     * values between the real (resp. imaginary) parts of {@code x} and
+     * {@code y}.
+     * @return {@code true} if there are fewer than {@code maxUlps} floating
+     * point values between the real (resp. imaginary) parts of {@code x}
+     * and {@code y}.
+     *
+     * @see Precision#equals(double,double,int)
+     */
+    public static boolean equals(Complex x, Complex y, int maxUlps) {
+        return Precision.equals(x.real, y.real, maxUlps) &&
+            Precision.equals(x.imaginary, y.imaginary, maxUlps);
+    }
+
+    /**
+     * Returns {@code true} iff the values are equal as defined by
+     * {@link #equals(Complex,Complex,int) equals(x, y, 1)}.
+     *
+     * @param x First value (cannot be {@code null}).
+     * @param y Second value (cannot be {@code null}).
+     * @return {@code true} if the values are equal.
+     */
+    public static boolean equals(Complex x, Complex y) {
+        return equals(x, y, 1);
+    }
+
+    /**
+     * Returns {@code true} if, both for the real part and for the imaginary
+     * part, there is no double value strictly between the arguments or the
+     * difference between them is within the range of allowed error
+     * (inclusive).  Returns {@code false} if either of the arguments is NaN.
+     *
+     * @param x First value (cannot be {@code null}).
+     * @param y Second value (cannot be {@code null}).
+     * @param eps Amount of allowed absolute error.
+     * @return {@code true} if the values are two adjacent floating point
+     * numbers or they are within range of each other.
+     *
+     * @see Precision#equals(double,double,double)
+     */
+    public static boolean equals(Complex x, Complex y, double eps) {
+        return Precision.equals(x.real, y.real, eps) &&
+            Precision.equals(x.imaginary, y.imaginary, eps);
+    }
+
+    /**
+     * Returns {@code true} if, both for the real part and for the imaginary
+     * part, there is no double value strictly between the arguments or the
+     * relative difference between them is smaller or equal to the given
+     * tolerance. Returns {@code false} if either of the arguments is NaN.
+     *
+     * @param x First value (cannot be {@code null}).
+     * @param y Second value (cannot be {@code null}).
+     * @param eps Amount of allowed relative error.
+     * @return {@code true} if the values are two adjacent floating point
+     * numbers or they are within range of each other.
+     *
+     * @see Precision#equalsWithRelativeTolerance(double,double,double)
+     */
+    public static boolean equalsWithRelativeTolerance(Complex x, Complex y,
+                                                      double eps) {
+        return Precision.equalsWithRelativeTolerance(x.real, y.real, eps) &&
+            Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, 
eps);
+    }
+
+    /**
+     * Get a hashCode for the complex number.
+     * Any {@code Double.NaN} value in real or imaginary part produces
+     * the same hash code {@code 7}.
+     *
+     * @return a hash code value for this object.
+     */
+    @Override
+    public int hashCode() {
+        if (isNaN) {
+            return 7;
+        }
+<<<<<<< HEAD
+        return 37 * 17 * (hash(imaginary) +
+            hash(real));
+    }
+
+    private int hash(double d) {
+        final long v = Double.doubleToLongBits(d);
+        return (int)(v^(v>>>32));
+        //return new Double(d).hashCode();
+=======
+        return 37 * (17 * hash(imaginary) +
+            hash(real));
+>>>>>>> eb-test
+    }
+
+    /**
+     * Access the imaginary part.
+     *
+     * @return the imaginary part.
+     */
+    public double getImaginary() {
+        return imaginary;
+    }
+
+    /**
+     * Access the real part.
+     *
+     * @return the real part.
+     */
+    public double getReal() {
+        return real;
+    }
+
+    /**
+     * Checks whether either or both parts of this complex number is
+     * {@code NaN}.
+     *
+     * @return true if either or both parts of this complex number is
+     * {@code NaN}; false otherwise.
+     */
+    public boolean isNaN() {
+        return isNaN;
+    }
+
+    /**
+     * Checks whether either the real or imaginary part of this complex number
+     * takes an infinite value (either {@code Double.POSITIVE_INFINITY} or
+     * {@code Double.NEGATIVE_INFINITY}) and neither part
+     * is {@code NaN}.
+     *
+     * @return true if one or both parts of this complex number are infinite
+     * and neither part is {@code NaN}.
+     */
+    public boolean isInfinite() {
+        return isInfinite;
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code this * factor}.
+     * Implements preliminary checks for {@code NaN} and infinity followed by
+     * the definitional formula:
+     * <p>
+     *   {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i}
+     * </p>
+     * Returns {@link #NaN} if either {@code this} or {@code factor} has one or
+     * more {@code NaN} parts.
+     * <p>
+     * Returns {@link #INF} if neither {@code this} nor {@code factor} has one
+     * or more {@code NaN} parts and if either {@code this} or {@code factor}
+     * has one or more infinite parts (same result is returned regardless of
+     * the sign of the components).
+     * </p><p>
+     * Returns finite values in components of the result per the definitional
+     * formula in all remaining cases.</p>
+     *
+     * @param  factor value to be multiplied by this {@code Complex}.
+     * @return {@code this * factor}.
+     */
+    public Complex multiply(Complex factor) {
+        checkNotNull(factor);
+        if (isNaN || factor.isNaN) {
+            return NaN;
+        }
+        if (Double.isInfinite(real) ||
+            Double.isInfinite(imaginary) ||
+            Double.isInfinite(factor.real) ||
+            Double.isInfinite(factor.imaginary)) {
+            // we don't use isInfinite() to avoid testing for NaN again
+            return INF;
+        }
+        return createComplex(real * factor.real - imaginary * factor.imaginary,
+                             real * factor.imaginary + imaginary * 
factor.real);
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code this * factor}, with 
{@code factor}
+     * interpreted as a integer number.
+     *
+     * @param  factor value to be multiplied by this {@code Complex}.
+     * @return {@code this * factor}.
+     * @see #multiply(Complex)
+     */
+    public Complex multiply(final int factor) {
+        if (isNaN) {
+            return NaN;
+        }
+        if (Double.isInfinite(real) ||
+            Double.isInfinite(imaginary)) {
+            return INF;
+        }
+        return createComplex(real * factor, imaginary * factor);
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code this * factor}, with 
{@code factor}
+     * interpreted as a real number.
+     *
+     * @param  factor value to be multiplied by this {@code Complex}.
+     * @return {@code this * factor}.
+     * @see #multiply(Complex)
+     */
+    public Complex multiply(double factor) {
+        if (isNaN || Double.isNaN(factor)) {
+            return NaN;
+        }
+        if (Double.isInfinite(real) ||
+            Double.isInfinite(imaginary) ||
+            Double.isInfinite(factor)) {
+            // we don't use isInfinite() to avoid testing for NaN again
+            return INF;
+        }
+        return createComplex(real * factor, imaginary * factor);
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is {@code (-this)}.
+     * Returns {@code NaN} if either real or imaginary
+     * part of this Complex number is {@code Double.NaN}.
+     *
+     * @return {@code -this}.
+     */
+    public Complex negate() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(-real, -imaginary);
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is
+     * {@code (this - subtrahend)}.
+     * Uses the definitional formula
+     * <p>
+     *  {@code (a + bi) - (c + di) = (a-c) + (b-d)i}
+     * </p>
+     * If either {@code this} or {@code subtrahend} has a {@code NaN]} value 
in either part,
+     * {@link #NaN} is returned; otherwise infinite and {@code NaN} values are
+     * returned in the parts of the result according to the rules for
+     * {@link java.lang.Double} arithmetic.
+     *
+     * @param  subtrahend value to be subtracted from this {@code Complex}.
+     * @return {@code this - subtrahend}.
+     */
+    public Complex subtract(Complex subtrahend) {
+        checkNotNull(subtrahend);
+        if (isNaN || subtrahend.isNaN) {
+            return NaN;
+        }
+
+        return createComplex(real - subtrahend.getReal(),
+                             imaginary - subtrahend.getImaginary());
+    }
+
+    /**
+     * Returns a {@code Complex} whose value is
+     * {@code (this - subtrahend)}.
+     *
+     * @param  subtrahend value to be subtracted from this {@code Complex}.
+     * @return {@code this - subtrahend}.
+     * @see #subtract(Complex)
+     */
+    public Complex subtract(double subtrahend) {
+        if (isNaN || Double.isNaN(subtrahend)) {
+            return NaN;
+        }
+        return createComplex(real - subtrahend, imaginary);
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/InverseCosine.html"; TARGET="_top">
+     * inverse cosine</a> of this complex number.
+     * Implements the formula:
+     * <p>
+     *  {@code acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))}
+     * </p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN} or infinite.
+     *
+     * @return the inverse cosine of this complex number.
+     */
+    public Complex acos() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return this.add(this.sqrt1z().multiply(I)).log().multiply(I.negate());
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/InverseSine.html"; TARGET="_top">
+     * inverse sine</a> of this complex number.
+     * Implements the formula:
+     * <p>
+     *  {@code asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))}
+     * </p><p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN} or infinite.</p>
+     *
+     * @return the inverse sine of this complex number.
+     */
+    public Complex asin() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return sqrt1z().add(this.multiply(I)).log().multiply(I.negate());
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/InverseTangent.html"; 
TARGET="_top">
+     * inverse tangent</a> of this complex number.
+     * Implements the formula:
+     * <p>
+     * {@code atan(z) = (i/2) log((i + z)/(i - z))}
+     * </p><p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN} or infinite.</p>
+     *
+     * @return the inverse tangent of this complex number
+     */
+    public Complex atan() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return this.add(I).divide(I.subtract(this)).log()
+                .multiply(I.divide(createComplex(2.0, 0.0)));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/Cosine.html"; TARGET="_top">
+     * cosine</a> of this complex number.
+     * Implements the formula:
+     * <p>
+     *  {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
+     * </p><p>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos},
+     * {@link Math#cosh} and {@link Math#sinh}.
+     * </p><p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p><p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.</p>
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   cos(1 &plusmn; INFINITY i) = 1 \u2213 INFINITY i
+     *   cos(&plusmn;INFINITY + i) = NaN + NaN i
+     *   cos(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return the cosine of this complex number.
+     */
+    public Complex cos() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(Math.cos(real) * Math.cosh(imaginary),
+                             -Math.sin(real) * Math.sinh(imaginary));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/HyperbolicCosine.html"; 
TARGET="_top">
+     * hyperbolic cosine</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos},
+     * {@link Math#cosh} and {@link Math#sinh}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   cosh(1 &plusmn; INFINITY i) = NaN + NaN i
+     *   cosh(&plusmn;INFINITY + i) = INFINITY &plusmn; INFINITY i
+     *   cosh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return the hyperbolic cosine of this complex number.
+     */
+    public Complex cosh() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(Math.cosh(real) * Math.cos(imaginary),
+                             Math.sinh(real) * Math.sin(imaginary));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/ExponentialFunction.html"; 
TARGET="_top">
+     * exponential function</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#exp}, {@link Math#cos}, and
+     * {@link Math#sin}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   exp(1 &plusmn; INFINITY i) = NaN + NaN i
+     *   exp(INFINITY + i) = INFINITY + INFINITY i
+     *   exp(-INFINITY + i) = 0 + 0i
+     *   exp(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return <code><i>e</i><sup>this</sup></code>.
+     */
+    public Complex exp() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        double expReal = Math.exp(real);
+        return createComplex(expReal *  Math.cos(imaginary),
+                             expReal * Math.sin(imaginary));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/NaturalLogarithm.html"; 
TARGET="_top">
+     * natural logarithm</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   log(a + bi) = ln(|a + bi|) + arg(a + bi)i
+     *  </code>
+     * </pre>
+     * where ln on the right hand side is {@link Math#log},
+     * {@code |a + bi|} is the modulus, {@link Complex#abs},  and
+     * {@code arg(a + bi) = }{@link Math#atan2}(b, a).
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite (or critical) values in real or imaginary parts of the input 
may
+     * result in infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   log(1 &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/2)i
+     *   log(INFINITY + i) = INFINITY + 0i
+     *   log(-INFINITY + i) = INFINITY + &pi;i
+     *   log(INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (&pi;/4)i
+     *   log(-INFINITY &plusmn; INFINITY i) = INFINITY &plusmn; (3&pi;/4)i
+     *   log(0 + 0i) = -INFINITY + 0i
+     *  </code>
+     * </pre>
+     *
+     * @return the value <code>ln &nbsp; this</code>, the natural logarithm
+     * of {@code this}.
+     */
+    public Complex log() {
+        if (isNaN) {
+            return NaN;
+        }
+        return createComplex(Math.log(abs()),
+                             Math.atan2(imaginary, real));
+    }
+
+    /**
+     * Returns of value of this complex number raised to the power of {@code 
x}.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   y<sup>x</sup> = exp(x&middot;log(y))
+     *  </code>
+     * </pre>
+     * where {@code exp} and {@code log} are {@link #exp} and
+     * {@link #log}, respectively.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN} or infinite, or if {@code y}
+     * equals {@link Complex#ZERO}.</p>
+     *
+     * @param  x exponent to which this {@code Complex} is to be raised.
+     * @return <code> this<sup>x</sup></code>.
+     */
+    public Complex pow(Complex x) {
+        checkNotNull(x);
+        if (real == 0 && imaginary == 0) {
+            if (x.real > 0 && x.imaginary == 0) {
+                // 0 raised to positive number is 0
+                return ZERO;
+            } else {
+                // 0 raised to anything else is NaN
+                return NaN;
+            }
+        }
+        return this.log().multiply(x).exp();
+    }
+
+    /**
+     * Returns of value of this complex number raised to the power of {@code 
x}.
+     *
+     * @param  x exponent to which this {@code Complex} is to be raised.
+     * @return <code>this<sup>x</sup></code>.
+     * @see #pow(Complex)
+     */
+     public Complex pow(double x) {
+        if (real == 0 && imaginary == 0) {
+            if (x > 0) {
+                // 0 raised to positive number is 0
+                return ZERO;
+            } else {
+                // 0 raised to anything else is NaN
+                return NaN;
+            }
+        }
+        return this.log().multiply(x).exp();
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/Sine.html"; TARGET="_top">
+     * sine</a>
+     * of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos},
+     * {@link Math#cosh} and {@link Math#sinh}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p><p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or {@code NaN} values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   sin(1 &plusmn; INFINITY i) = 1 &plusmn; INFINITY i
+     *   sin(&plusmn;INFINITY + i) = NaN + NaN i
+     *   sin(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return the sine of this complex number.
+     */
+    public Complex sin() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(Math.sin(real) * Math.cosh(imaginary),
+                             Math.cos(real) * Math.sinh(imaginary));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/HyperbolicSine.html"; 
TARGET="_top">
+     * hyperbolic sine</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos},
+     * {@link Math#cosh} and {@link Math#sinh}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p><p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   sinh(1 &plusmn; INFINITY i) = NaN + NaN i
+     *   sinh(&plusmn;INFINITY + i) = &plusmn; INFINITY + INFINITY i
+     *   sinh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return the hyperbolic sine of {@code this}.
+     */
+    public Complex sinh() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        return createComplex(Math.sinh(real) * Math.cos(imaginary),
+            Math.cosh(real) * Math.sin(imaginary));
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/SquareRoot.html"; TARGET="_top">
+     * square root</a> of this complex number.
+     * Implements the following algorithm to compute {@code sqrt(a + bi)}:
+     * <ol><li>Let {@code t = sqrt((|a| + |a + bi|) / 2)}</li>
+     * <li><pre>if {@code  a &#8805; 0} return {@code t + (b/2t)i}
+     *  else return {@code |b|/2t + sign(b)t i }</pre></li>
+     * </ol>
+     * where <ul>
+     * <li>{@code |a| = }{@link Math#abs}(a)</li>
+     * <li>{@code |a + bi| = }{@link Complex#abs}(a + bi)</li>
+     * <li>{@code sign(b) =  }{@link Math#copySign(double,double) copySign(1d, 
b)}
+     * </ul>
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   sqrt(1 &plusmn; INFINITY i) = INFINITY + NaN i
+     *   sqrt(INFINITY + i) = INFINITY + 0i
+     *   sqrt(-INFINITY + i) = 0 + INFINITY i
+     *   sqrt(INFINITY &plusmn; INFINITY i) = INFINITY + NaN i
+     *   sqrt(-INFINITY &plusmn; INFINITY i) = NaN &plusmn; INFINITY i
+     *  </code>
+     * </pre>
+     *
+     * @return the square root of {@code this}.
+     */
+    public Complex sqrt() {
+        if (isNaN) {
+            return NaN;
+        }
+
+        if (real == 0.0 && imaginary == 0.0) {
+            return createComplex(0.0, 0.0);
+        }
+
+        double t = Math.sqrt((Math.abs(real) + abs()) / 2.0);
+        if (real >= 0.0) {
+            return createComplex(t, imaginary / (2.0 * t));
+        } else {
+            return createComplex(Math.abs(imaginary) / (2.0 * t),
+                                 Math.copySign(1d, imaginary) * t);
+        }
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/SquareRoot.html"; TARGET="_top">
+     * square root</a> of <code>1 - this<sup>2</sup></code> for this complex
+     * number.
+     * Computes the result directly as
+     * {@code sqrt(ONE.subtract(z.multiply(z)))}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     *
+     * @return the square root of <code>1 - this<sup>2</sup></code>.
+     */
+    public Complex sqrt1z() {
+        return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt();
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/Tangent.html"; TARGET="_top">
+     * tangent</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + 
[sinh(2b)/(cos(2a)+cosh(2b))]i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
+     * {@link Math#sinh}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite (or critical) values in real or imaginary parts of the input 
may
+     * result in infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   tan(a &plusmn; INFINITY i) = 0 &plusmn; i
+     *   tan(&plusmn;INFINITY + bi) = NaN + NaN i
+     *   tan(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *   tan(&plusmn;&pi;/2 + 0 i) = &plusmn;INFINITY + NaN i
+     *  </code>
+     * </pre>
+     *
+     * @return the tangent of {@code this}.
+     */
+    public Complex tan() {
+        if (isNaN || Double.isInfinite(real)) {
+            return NaN;
+        }
+        if (imaginary > 20.0) {
+            return createComplex(0.0, 1.0);
+        }
+        if (imaginary < -20.0) {
+            return createComplex(0.0, -1.0);
+        }
+
+        double real2 = 2.0 * real;
+        double imaginary2 = 2.0 * imaginary;
+        double d = Math.cos(real2) + Math.cosh(imaginary2);
+
+        return createComplex(Math.sin(real2) / d,
+                             Math.sinh(imaginary2) / d);
+    }
+
+    /**
+     * Compute the
+     * <a href="http://mathworld.wolfram.com/HyperbolicTangent.html"; 
TARGET="_top">
+     * hyperbolic tangent</a> of this complex number.
+     * Implements the formula:
+     * <pre>
+     *  <code>
+     *   tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + 
[sin(2b)/(cosh(2a)+cos(2b))]i
+     *  </code>
+     * </pre>
+     * where the (real) functions on the right-hand side are
+     * {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
+     * {@link Math#sinh}.
+     * <p>
+     * Returns {@link Complex#NaN} if either real or imaginary part of the
+     * input argument is {@code NaN}.
+     * </p>
+     * Infinite values in real or imaginary parts of the input may result in
+     * infinite or NaN values returned in parts of the result.
+     * <pre>
+     *  Examples:
+     *  <code>
+     *   tanh(a &plusmn; INFINITY i) = NaN + NaN i
+     *   tanh(&plusmn;INFINITY + bi) = &plusmn;1 + 0 i
+     *   tanh(&plusmn;INFINITY &plusmn; INFINITY i) = NaN + NaN i
+     *   tanh(0 + (&pi;/2)i) = NaN + INFINITY i
+     *  </code>
+     * </pre>
+     *
+     * @return the hyperbolic tangent of {@code this}.
+     */
+    public Complex tanh() {
+        if (isNaN || Double.isInfinite(imaginary)) {
+            return NaN;
+        }
+        if (real > 20.0) {
+            return createComplex(1.0, 0.0);
+        }
+        if (real < -20.0) {
+            return createComplex(-1.0, 0.0);
+        }
+        double real2 = 2.0 * real;
+        double imaginary2 = 2.0 * imaginary;
+        double d = Math.cosh(real2) + Math.cos(imaginary2);
+
+        return createComplex(Math.sinh(real2) / d,
+                             Math.sin(imaginary2) / d);
+    }
+
+
+
+    /**
+     * Compute the argument of this complex number.
+     * The argument is the angle phi between the positive real axis and
+     * the point representing this number in the complex plane.
+     * The value returned is between -PI (not inclusive)
+     * and PI (inclusive), with negative values returned for numbers with
+     * negative imaginary parts.
+     * <p>
+     * If either real or imaginary part (or both) is NaN, NaN is returned.
+     * Infinite parts are handled as {@code Math.atan2} handles them,
+     * essentially treating finite parts as zero in the presence of an
+     * infinite coordinate and returning a multiple of pi/4 depending on
+     * the signs of the infinite parts.
+     * See the javadoc for {@code Math.atan2} for full details.
+     *
+     * @return the argument of {@code this}.
+     */
+    public double getArgument() {
+        return Math.atan2(getImaginary(), getReal());
+    }
+
+    /**
+     * Computes the n-th roots of this complex number.
+     * The nth roots are defined by the formula:
+     * <pre>
+     *  <code>
+     *   z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 
2&pi;k/n))
+     *  </code>
+     * </pre>
+     * for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
+     * are respectively the {@link #abs() modulus} and
+     * {@link #getArgument() argument} of this complex number.
+     * <p>
+     * If one or both parts of this complex number is NaN, a list with just
+     * one element, {@link #NaN} is returned.
+     * if neither part is NaN, but at least one part is infinite, the result
+     * is a one-element list containing {@link #INF}.
+     *
+     * @param n Degree of root.
+     * @return a List of all {@code n}-th roots of {@code this}.
+     */
+    public List<Complex> nthRoot(int n) {
+
+        if (n <= 0) {
+            throw new RuntimeException("cannot compute nth root for null or 
negative n: {0}");
+        }
+
+        final List<Complex> result = new ArrayList<Complex>();
+
+        if (isNaN) {
+            result.add(NaN);
+            return result;
+        }
+        if (isInfinite()) {
+            result.add(INF);
+            return result;
+        }
+
+        // nth root of abs -- faster / more accurate to use a solver here?
+        final double nthRootOfAbs = Math.pow(abs(), 1.0 / n);
+
+        // Compute nth roots of complex number with k = 0, 1, ... n-1
+        final double nthPhi = getArgument() / n;
+        final double slice = 2 * Math.PI / n;
+        double innerPart = nthPhi;
+        for (int k = 0; k < n ; k++) {
+            // inner part
+            final double realPart = nthRootOfAbs *  Math.cos(innerPart);
+            final double imaginaryPart = nthRootOfAbs *  Math.sin(innerPart);
+            result.add(createComplex(realPart, imaginaryPart));
+            innerPart += slice;
+        }
+
+        return result;
+    }
+
+    /**
+     * Create a complex number given the real and imaginary parts.
+     *
+     * @param realPart Real part.
+     * @param imaginaryPart Imaginary part.
+     * @return a new complex number instance.
+     * @see #valueOf(double, double)
+     */
+    protected Complex createComplex(double realPart,
+                                    double imaginaryPart) {
+        return new Complex(realPart, imaginaryPart);
+    }
+
+    /**
+     * Create a complex number given the real and imaginary parts.
+     *
+     * @param realPart Real part.
+     * @param imaginaryPart Imaginary part.
+     * @return a Complex instance.
+     */
+    public static Complex valueOf(double realPart,
+                                  double imaginaryPart) {
+        if (Double.isNaN(realPart) ||
+            Double.isNaN(imaginaryPart)) {
+            return NaN;
+        }
+        return new Complex(realPart, imaginaryPart);
+    }
+
+    /**
+     * Create a complex number given only the real part.
+     *
+     * @param realPart Real part.
+     * @return a Complex instance.
+     */
+    public static Complex valueOf(double realPart) {
+        if (Double.isNaN(realPart)) {
+            return NaN;
+        }
+        return new Complex(realPart);
+    }
+
+    /**
+     * Resolve the transient fields in a deserialized Complex Object.
+     * Subclasses will need to override {@link #createComplex} to
+     * deserialize properly.
+     *
+     * @return A Complex instance with all fields resolved.
+     */
+    protected final Object readResolve() {
+        return createComplex(real, imaginary);
+    }
+
+    /** {@inheritDoc} */
+    @Override
+    public String toString() {
+        return "(" + real + ", " + imaginary + ")";
+    }
+
+    /**
+     * Checks that an object is not null.
+     *
+     * @param o Object to be checked.
+     */
+    private static void checkNotNull(Object o) {
+        if (o == null) {
+            throw new RuntimeException("Null Argument to Complex Method");
+        }
+    }
+
+    /**
+     * Returns {@code true} if the values are equal according to semantics of
+     * {@link Double#equals(Object)}.
+     *
+     * @param x Value
+     * @param y Value
+     * @return {@code new Double(x).equals(new Double(y))}
+     */
+    private static boolean equals(double x, double y) {
+        return new Double(x).equals(new Double(y));
+    }
+
+    /**
+     * Returns an integer hash code representing the given double value.
+     *
+     * @param value the value to be hashed
+     * @return the hash code
+     */
+    private static int hash(double value) {
+        return new Double(value).hashCode();
+    }
+}

http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/15136c2d/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/.CStandardTest.java.swo
----------------------------------------------------------------------
diff --git 
a/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/.CStandardTest.java.swo
 
b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/.CStandardTest.java.swo
new file mode 100644
index 0000000..430efd7
Binary files /dev/null and 
b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/.CStandardTest.java.swo
 differ

http://git-wip-us.apache.org/repos/asf/commons-numbers/blob/15136c2d/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/CStandardTest.java
----------------------------------------------------------------------
diff --git 
a/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/CStandardTest.java
 
b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/CStandardTest.java
new file mode 100644
index 0000000..88183de
--- /dev/null
+++ 
b/commons-numbers-complex/src/test/java/org/apache/commons/numbers/complex/CStandardTest.java
@@ -0,0 +1,265 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.numbers.complex;
+
+import org.apache.commons.numbers.complex.Complex;
+import org.apache.commons.numbers.complex.ComplexUtils;
+import org.junit.Assert;
+import org.junit.Ignore;
+import org.junit.Test;
+
+public class CStandardTest {
+
+    private double inf = Double.POSITIVE_INFINITY;
+    private double neginf = Double.NEGATIVE_INFINITY;
+    private double nan = Double.NaN;
+    private double pi = Math.PI;
+    private double piOverFour = Math.PI / 4.0;
+    private double piOverTwo = Math.PI / 2.0;
+    private double threePiOverFour = 3.0*Math.PI/4.0
+    private Complex oneInf = new Complex(1, inf);
+    private Complex oneNegInf = new Complex(1, neginf);
+    private Complex infOne = new Complex(inf, 1);
+    private Complex infZero = new Complex(inf, 0);
+    private Complex infNaN = new Complex(inf, nan);
+    private Complex infNegInf = new Complex(inf, neginf);
+    private Complex infInf = new Complex(inf, inf);
+    private Complex negInfInf = new Complex(neginf, inf);
+    private Complex negInfZero = new Complex(neginf, 0);
+    private Complex negInfOne = new Complex(neginf, 1);
+    private Complex negInfNaN = new Complex(neginf, nan);
+    private Complex negInfNegInf = new Complex(neginf, neginf);
+    private Complex oneNaN = new Complex(1, nan);
+    private Complex zeroInf = new Complex(0, inf);
+    private Complex zeroNaN = new Complex(0, nan);
+    private Complex nanInf = new Complex(nan, inf);
+    private Complex nanNegInf = new Complex(nan, neginf);
+    private Complex nanZero = new Complex(nan, 0);
+    private Complex negZeroZero = new Complex(-0.0, 0);
+    private Complex negZeroNan = new Complex(-0.0, nan);
+    private Complex negI = new Complex(0.0, -1.0);
+    private Complex zeroPiTwo = new Complex(0.0, piOverTwo);
+    private Complex piTwoNaN = new Complex(piOverTwo, nan);
+    private Complex piNegInf = new Complex(Math.PI, negInf);
+    private Complex piTwoNegInf = new Complex(piOverTwo, negInf);
+    private Complex negInfPosInf = new Complex(negInf, inf);
+    private Complex piTwoNegZero = new Complex(piOverTwo, -0.0);
+    private Complex threePiFourNegInf = new Complex(threePiOverFour,negInf);
+    private Complex piFourNegInf = new Complex(piOverFour, negInf);
+    private Complex infPiTwo = new Complex(inf, piOverTwo);
+    private Complex infPiFour = new Complex(inf, piOverFour);
+    private Complex negInfPi = new Complex(negInf, Math.PI);
+    /**
+     * ISO C Standard G.6.3
+     */
+    @Test
+    public void testSqrt() {
+        Complex z1 = new Complex(-2.0, 0.0);
+        Complex z2 = new Complex(0.0, Math.sqrt(2));
+        Assert.assertEquals(z1.sqrt(), z2);
+        z1 = new Complex(-2.0, -0.0);
+        z2 = new Complex(0.0, -Math.sqrt(2));
+        Assert.assertEquals(z1.sqrt(), z2);
+    }
+
+    @Test
+    public void testImplicitTrig() {
+        Complex z1 = new Complex(3.0);
+        Complex z2 = new Complex(0.0, 3.0); 
+        Assert.assertEquals(z1.asin(), negI.multiply(z2.asinh()));
+        Assert.assertEquals(z1.atan(), negI.multiply(z2.atanh()));
+        Assert.assertEquals(z1.cos(), z2.cosh());
+        Assert.assertEquals(z1.sin(), negI.multiply(z2.sinh()));
+        Assert.assertEquals(z1.tan(), negI.multiply(z1.tanh()));
+    }
+
+    /**
+     * ISO C Standard G.6.1.1
+     */
+    @Test
+    public void testAcos() {
+        Assert.assertEquals(oneOne.acos().conj(), oneOne.conj().acos());
+        Assert.assertEquals(Complex.ZERO.acos(), piTwoNegZero);
+        Assert.assertEquals(negZeroZero.acos(), piTwoNegZero);
+        Assert.assertEquals(zeroNaN.acos(), piTwoNaN);
+        Assert.assertEquals(oneInf.acos(), piTwoNegInf);
+        Assert.assertEquals(oneNaN.acos(), Complex.NaN);
+        Assert.assertEquals(negInfOne.acos(), piNegInf);
+        Assert.assertEquals(infOne.acos(), zeroInf);
+        Assert.assertEquals(negInfPosInf.acos(), threePiFourNegInf);
+        Assert.assertEquals(infInf.acos(), piFourNegInf);
+        Assert.assertEquals(infNaN.acos(), naNInf);
+        Assert.assertEquals(negInfNan.acos(), nanNegInf);
+        Assert.assertEquals(nanOne.acos(), Complex.NaN);
+        Assert.assertEquals(nanInf.acos(), nanNegInf);
+        Assert.assertEquals(Complex.NaN.acos(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.2.2
+     */
+    @Test
+    public void testAsinh() {
+        // TODO: test for which Asinh is odd
+        Assert.assertEquals(oneOne.conj().asinh(), oneOne.asinh().conj());
+        Assert.assertEquals(Complex.ZERO.asinh(), Complex.ZERO);
+        Assert.assertEquals(oneInf.asinh(), infPiTwo);
+        Assert.assertEquals(oneNaN.asinh(), Complex.NaN);
+        Assert.assertEquals(infOne.asinh(), infZero);
+        Assert.assertEquals(infInf.asinh(), infPiFour);
+        Assert.assertEquals(infNaN.asinh(), z1);
+        Assert.assertEquals(nanZero.asinh(), nanZero);
+        Assert.assertEquals(nanOne.asinh(), Complex.NaN);
+        Assert.assertEquals(nanInf.asinh(), infNan);
+        Assert.assertEquals(Complex.NaN, Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.2.3
+     */
+    @Test
+    public void testAtanh() {
+        Assert.assertEquals(oneOne.conj().atanh(), oneOne.atanh().conj());
+        Assert.assertEquals(Complex.ZERO.atanh(), Complex.ZERO);
+        Assert.assertEquals(zeroNaN.atanh(), zeroNaN);
+        Assert.assertEquals(oneZero.atanh(), infZero);
+        Assert.assertEquals(oneInf.atanh(),zeroPiTwo);
+        Assert.assertEquals(oneNaN.atanh(), Complex.NaN);
+        Assert.assertEquals(infOne.atanh(), zeroPiTwo);
+        Assert.assertEquals(infInf.atanh(), zeroPiTwo);
+        Assert.assertEquals(infNaN.atanh(), zeroNaN);
+        Assert.assertEquals(nanOne.atanh(), Complex.NaN);
+        Assert.assertEquals(nanInf.atanh(), zeroPiTwo);
+        Assert.assertEquals(Complex.NaN.atanh(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.2.4
+     */
+    @Test
+    public void testCosh() {
+        Assert.assertEquals(oneOne.cosh().conj(), oneOne.conj().cosh());
+        Assert.assertEquals(Complex.ZERO.cosh(), Complex.ONE);
+        Assert.assertEquals(zeroInf.cosh(), nanZero);
+        Assert.assertEquals(zeroNan.cosh(), nanZero);
+        Assert.assertEquals(oneInf.cosh(), Complex.NaN);
+        Assert.assertEquals(oneNan.cosh(), Complex.NaN);
+        Assert.assertEquals(infZero.cosh(), infZero);
+        // the next test does not appear to make sense:
+        // (inf + iy) = inf + cis(y)
+        // skipped
+        Assert.assertEquals(infInf.cosh(), infNaN);
+        Assert.assertEquals(infNaN.cosh(), infNaN);
+        Assert.assertEquals(nanZero.cosh(), nanZero);
+        Assert.assertEquals(nanOne.cosh(), Complex.NaN);
+        Assert.assertEquals(Complex.NaN.cosh(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.2.5
+     */
+    @Test
+    public void testSinh() {
+        Assert.assertEquals(oneOne.sinh().conj(), oneOne.conj().sinh()); // 
AND CSINH IS ODD
+        Assert.assertEquals(Complex.ZERO.sinh(), Complex.ZERO);
+        Assert.assertEquals(zeroInf.sinh(), zeroNaN);
+        Assert.assertEquals(zeroNaN.sinh(), zeroNaN);
+        Assert.assertEquals(oneInf.sinh(), Complex.NaN);
+        Assert.assertEquals(oneNaN.sinh(), Complex.NaN);
+        Assert.assertEquals(infZero.sinh(), infZero);
+        // skipped test similar to previous section
+        Assert.assertEquals(infInf.sinh(), infNaN);
+        Assert.assertEquals(infNaN.sinh(), infNaN);
+        Assert.assertEquals(nanZero.sinh(), nanZero);
+        Assert.assertEquals(nanOne.sinh(), Complex.NaN);
+        Assert.assertEquals(Complex.NaN.sinh(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.2.6
+     */
+    @Test
+    public void testTanh() {
+        Assert.assertEquals(oneOne.tanh().conj(), oneOne.conj().tanh()); // 
AND CSINH IS ODD
+        Assert.assertEquals(Complex.ZERO.tanh(), Complex.ZERO);
+        Assert.assertEquals(oneInf.tanh(), Complex.NaN);
+        Assert.assertEquals(oneNaN.tanh(), Complex.NaN);
+        //Do Not Understand the Next Test
+        Assert.assertEquals(infInf.tanh(), oneZero);
+        Assert.assertEquals(infNaN.tanh(), oneZero);
+        Assert.assertEquals(nanZero.tanh(), nanZero);
+        Assert.assertEquals(nanOne.tanh(), Complex.NaN);
+        Assert.assertEquals(Complex.NaN.tanh(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.3.1
+     */
+    @Test
+    public void testExp() {
+        Assert.assertEquals(oneOne.conj().exp(), oneOne.exp().conj());
+        Assert.assertEquals(Complex.ZERO.exp(), oneZero);
+        Assert.assertEquals(negZero.exp(), oneZero);
+        Assert.assertEquals(oneInf.exp(), Complex.NaN);
+        Assert.assertEquals(oneNaN.exp(), Complex.NaN);
+        Assert.assertEquals(infZero.exp(), infZero);
+        // Do not understand next test
+        Assert.assertEquals(negInfInf.exp(), Complex.ZERO);
+        Assert.assertEquals(infInf.exp(), infNaN);
+        Assert.assertEquals(negInfNaN.exp(), Complex.ZERO);
+        Assert.assertEquals(infNaN.exp(), infNaN);
+        Assert.assertEquals(nanZero.exp(), nanZero);
+        Assert.assertEquals(nanOne.exp(), Complex.NaN);
+        Assert.assertEquals(Complex.NaN.exp(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.3.2
+     */
+    @Test
+    public void testLog() {
+        Assert.assertEquals(oneOne.log().conj(), oneOne.conj().log());
+        Assert.assertEquals(negZeroZero.log(), negInfPi); 
+        Assert.assertEquals(Complex.ZERO.log(), negInfZero);
+        Assert.assertEquals(oneInf.log(), infPiTwo);
+        Assert.assertEquals(oneNaN.log(), Complex.NaN);
+        Assert.assertEquals(negInfOne.log(), infPi);
+        Assert.assertEquals(infOne.log(), infZero);
+        Assert.assertEquals(infInf.log(), infPiFour);
+        Assert.assertEquals(infNaN.log(), infNaN);
+        Assert.assertEquals(nanOne.log(), Complex.NaN);
+        Assert.assertEquals(nanInf.log(), infNaN);
+        Assert.assertEquals(Complex.NaN.log(), Complex.NaN);
+    }
+
+    /**
+     * ISO C Standard G.6.4.2
+     */
+    @Test
+    public void testSqrt() {
+        Assert.assertEquals(oneOne.sqrt().conj(), oneOne.conj(), sqrt());
+        Assert.assertEquals(Complex.ZERO.sqrt(), Complex.ZERO);
+        Assert.assertEquals(oneInf.sqrt(), infInf);
+        Assert.assertEquals(negInfOne.sqrt(), zeroNaN);
+        Assert.assertEquals(infOne.sqrt(), infZero);
+        Assert.assertEquals(negInfNaN.sqrt(), nanInf);
+        Assert.assertEquals(infNaN.sqrt(), infNaN);
+        Assert.assertEquals(nanOne.sqrt(), Complex.NaN);
+        Assert.assertEquals(Complex.NaN.sqrt(), Complex.NaN);
+    }
+}

Reply via email to