This is an automated email from the ASF dual-hosted git repository.
comphead pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/datafusion.git
The following commit(s) were added to refs/heads/main by this push:
new e893a2eea4 Minor: Improve documentation in sql_to_plan example (#10582)
e893a2eea4 is described below
commit e893a2eea4dcbb7d079e68e996507d59e1e48952
Author: Andrew Lamb <[email protected]>
AuthorDate: Wed May 22 11:13:16 2024 -0400
Minor: Improve documentation in sql_to_plan example (#10582)
---
datafusion-examples/examples/plan_to_sql.rs | 62 +++++++++++++++--------------
1 file changed, 33 insertions(+), 29 deletions(-)
diff --git a/datafusion-examples/examples/plan_to_sql.rs
b/datafusion-examples/examples/plan_to_sql.rs
index 0e9485ba7f..8ac6746a31 100644
--- a/datafusion-examples/examples/plan_to_sql.rs
+++ b/datafusion-examples/examples/plan_to_sql.rs
@@ -22,18 +22,28 @@ use datafusion::sql::unparser::expr_to_sql;
use datafusion_sql::unparser::dialect::CustomDialect;
use datafusion_sql::unparser::{plan_to_sql, Unparser};
-/// This example demonstrates the programmatic construction of
-/// SQL using the DataFusion Expr [`Expr`] and LogicalPlan [`LogicalPlan`] API.
+/// This example demonstrates the programmatic construction of SQL strings
using
+/// the DataFusion Expr [`Expr`] and LogicalPlan [`LogicalPlan`] API.
///
///
/// The code in this example shows how to:
-/// 1. Create SQL from a variety of Expr and LogicalPlan: [`main`]`
-/// 2. Create a simple expression [`Exprs`] with fluent API
-/// and convert to sql: [`simple_expr_to_sql_demo`]
-/// 3. Create a simple expression [`Exprs`] with fluent API
-/// and convert to sql without escaping column names:
[`simple_expr_to_sql_demo_no_escape`]
-/// 4. Create a simple expression [`Exprs`] with fluent API
-/// and convert to sql escaping column names a MySQL style:
[`simple_expr_to_sql_demo_escape_mysql_style`]
+///
+/// 1. [`simple_expr_to_sql_demo`]: Create a simple expression [`Exprs`] with
+/// fluent API and convert to sql suitable for passing to another database
+///
+/// 2. [`simple_expr_to_sql_demo_no_escape`] Create a simple expression
+/// [`Exprs`] with fluent API and convert to sql without escaping column names
+/// more suitable for displaying to humans.
+///
+/// 3. [`simple_expr_to_sql_demo_escape_mysql_style`]" Create a simple
+/// expression [`Exprs`] with fluent API and convert to sql escaping column
+/// names in MySQL style.
+///
+/// 4. [`simple_plan_to_sql_demo`]: Create a simple logical plan using the
+/// DataFrames API and convert to sql string.
+///
+/// 5. [`round_trip_plan_to_sql_demo`]: Create a logical plan from a SQL
string, modify it using the
+/// DataFrames API and convert it back to a sql string.
#[tokio::main]
async fn main() -> Result<()> {
@@ -41,8 +51,8 @@ async fn main() -> Result<()> {
simple_expr_to_sql_demo()?;
simple_expr_to_sql_demo_no_escape()?;
simple_expr_to_sql_demo_escape_mysql_style()?;
- simple_plan_to_sql_parquest_dataframe_demo().await?;
- round_trip_plan_to_sql_parquest_dataframe_demo().await?;
+ simple_plan_to_sql_demo().await?;
+ round_trip_plan_to_sql_demo().await?;
Ok(())
}
@@ -50,8 +60,7 @@ async fn main() -> Result<()> {
/// PostgreSQL style.
fn simple_expr_to_sql_demo() -> Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
- let ast = expr_to_sql(&expr)?;
- let sql = format!("{}", ast);
+ let sql = expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"(("a" < 5) OR ("a" = 8))"#);
Ok(())
}
@@ -62,8 +71,7 @@ fn simple_expr_to_sql_demo_no_escape() -> Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
let dialect = CustomDialect::new(None);
let unparser = Unparser::new(&dialect);
- let ast = unparser.expr_to_sql(&expr)?;
- let sql = format!("{}", ast);
+ let sql = unparser.expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"((a < 5) OR (a = 8))"#);
Ok(())
}
@@ -74,16 +82,14 @@ fn simple_expr_to_sql_demo_escape_mysql_style() ->
Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
let dialect = CustomDialect::new(Some('`'));
let unparser = Unparser::new(&dialect);
- let ast = unparser.expr_to_sql(&expr)?;
- let sql = format!("{}", ast);
+ let sql = unparser.expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"((`a` < 5) OR (`a` = 8))"#);
Ok(())
}
/// DataFusion can convert a logic plan created using the DataFrames API to
read from a parquet file
/// to SQL, using column name escaping PostgreSQL style.
-async fn simple_plan_to_sql_parquest_dataframe_demo() -> Result<()> {
- // create local execution context
+async fn simple_plan_to_sql_demo() -> Result<()> {
let ctx = SessionContext::new();
let testdata = datafusion::test_util::parquet_test_data();
@@ -95,9 +101,8 @@ async fn simple_plan_to_sql_parquest_dataframe_demo() ->
Result<()> {
.await?
.select_columns(&["id", "int_col", "double_col", "date_string_col"])?;
- let ast = plan_to_sql(df.logical_plan())?;
-
- let sql = format!("{}", ast);
+ // Convert the data frame to a SQL string
+ let sql = plan_to_sql(df.logical_plan())?.to_string();
assert_eq!(
sql,
@@ -107,9 +112,9 @@ async fn simple_plan_to_sql_parquest_dataframe_demo() ->
Result<()> {
Ok(())
}
-// DataFusion could parse a SQL into a DataFrame, adding a Filter, and
converting that back to sql.
-async fn round_trip_plan_to_sql_parquest_dataframe_demo() -> Result<()> {
- // create local execution context
+/// DataFusion can also be used to parse SQL, programmatically modify the query
+/// (in this case adding a filter) and then and converting back to SQL.
+async fn round_trip_plan_to_sql_demo() -> Result<()> {
let ctx = SessionContext::new();
let testdata = datafusion::test_util::parquet_test_data();
@@ -124,21 +129,20 @@ async fn round_trip_plan_to_sql_parquest_dataframe_demo()
-> Result<()> {
// create a logical plan from a SQL string and then programmatically add
new filters
let df = ctx
+ // Use SQL to read some data from the parquet file
.sql(
"SELECT int_col, double_col, CAST(date_string_col as VARCHAR) \
FROM alltypes_plain",
)
.await?
+ // Add id > 1 and tinyint_col < double_col filter
.filter(
col("id")
.gt(lit(1))
.and(col("tinyint_col").lt(col("double_col"))),
)?;
- let ast = plan_to_sql(df.logical_plan())?;
-
- let sql = format!("{}", ast);
-
+ let sql = plan_to_sql(df.logical_plan())?.to_string();
assert_eq!(
sql,
r#"SELECT "alltypes_plain"."int_col", "alltypes_plain"."double_col",
CAST("alltypes_plain"."date_string_col" AS VARCHAR) FROM "alltypes_plain" WHERE
(("alltypes_plain"."id" > 1) AND ("alltypes_plain"."tinyint_col" <
"alltypes_plain"."double_col"))"#
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]