This is an automated email from the ASF dual-hosted git repository. github-bot pushed a commit to branch asf-staging in repository https://gitbox.apache.org/repos/asf/datafusion-site.git
The following commit(s) were added to refs/heads/asf-staging by this push: new d32b5fb Commit build products d32b5fb is described below commit d32b5fb81277f313f5ffddbd627751d3138868e9 Author: Build Pelican (action) <priv...@infra.apache.org> AuthorDate: Sun Mar 30 22:14:38 2025 +0000 Commit build products --- .../2025/02/07/datafusion-python-46.0.0/index.html | 41 ++++++++++++++++------ blog/feeds/all-en.atom.xml | 41 ++++++++++++++++------ blog/feeds/blog.atom.xml | 41 ++++++++++++++++------ blog/feeds/timsaucer.atom.xml | 41 ++++++++++++++++------ 4 files changed, 120 insertions(+), 44 deletions(-) diff --git a/blog/2025/02/07/datafusion-python-46.0.0/index.html b/blog/2025/02/07/datafusion-python-46.0.0/index.html index efb063e..e4ed091 100644 --- a/blog/2025/02/07/datafusion-python-46.0.0/index.html +++ b/blog/2025/02/07/datafusion-python-46.0.0/index.html @@ -67,10 +67,20 @@ blog post for <a href="https://datafusion.apache.org/blog/2024/12/14/datafusion- that can be found in the <a href="https://github.com/apache/datafusion-python/tree/main/dev/changelog">changelogs</a>.</p> <p>We highly recommend reviewing the upstream <a href="https://datafusion.apache.org/blog/2025/03/24/datafusion-46.0.0">DataFusion 46.0.0</a> announcement.</p> <h2>Easier file reading</h2> -<p>https://github.com/apache/datafusion-python/pull/982</p> +<p>In these releases we have introduced two new ways to more easily read files into +DataFrames.</p> +<p><a href="https://github.com/apache/datafusion-python/pull/982">PR 982</a> introduced a series of easier read functions for Parquet, JSON, CSV, and +AVRO files. This introduces a concept of a global context that is available by +default when using these methods. Now instead of creating a default Session +Context and then calling the read methods, you can simply import these read +alternative methods and begin working with your DataFrames. Below is an example of +how easy to use this new approach is.</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span> <span class="nn">datafusion.io</span> <span class="kn">import</span> <span class="n">read_parquet</span> <span class="n">df</span> <span class="o">=</span> <span class="n">read_parquet</span><span class="p">(</span><span class="n">path</span><span class="o">=</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> </code></pre></div> +<p><a href="https://github.com/apache/datafusion-python/pull/980">PR 980</a> adds a method for setting up a session context to use URL tables. With +this enabled, you can use a path to a local file as a table name. An example +of how to use this is demonstrated in the following snippet.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">datafusion</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">datafusion</span><span class="o">.</span><span class="n">SessionContext</span><span class="p">()</span><span class="o">.</span><span class="n">enable_url_table</span><span class="p">()</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> @@ -102,8 +112,18 @@ excellent compression scheme that balances speed and compression ratio. Users ca save their Parquet files uncompressed by passing in the appropriate value to the <code>compression</code> argument when calling <code>DataFrame.write_parquet</code>.</p> <h2>UDF Decorators</h2> -<p>https://github.com/apache/datafusion-python/pull/1040 -https://github.com/apache/datafusion-python/pull/1061</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1040">PR 1040</a> and <a href="https://github.com/apache/datafusion-python/pull/1061">PR 1061</a> we add methods to make creating user defined functions +easier and take advantage of Python decorators. With these PRs you can save a step +from defining a method and then defining a udf of that method. Instead you can +simply add the appropriate <code>udf</code> decorator. Similar methods exist for aggregate +and window user defined functions.</p> +<div class="codehilite"><pre><span></span><code><span class="nd">@udf</span><span class="p">([</span><span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">(),</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()],</span> <span class="n">pa</span><span class="o">.</span><span class="n">bool_</span><span class="p">(),</span> <span class="s2">"stable"</span><span class="p">)</span> +<span class="k">def</span> <span class="nf">my_custom_function</span><span class="p">(</span> + <span class="n">age</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> + <span class="n">favorite_number</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> +<span class="p">)</span> <span class="o">-></span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">:</span> + <span class="k">pass</span> +</code></pre></div> <h2><code>uv</code> package management</h2> <p><a href="https://github.com/astral-sh/uv">uv</a> is an extremely fast Python package manager, written in Rust. In the previous version of <code>datafusion-python</code> we had a combination of settings of PyPi and Conda. Instead, we @@ -111,12 +131,11 @@ switch to using <a href="https://github.com/astral-sh/uv">uv</a> is our primary <p>For most users of DataFusion, this change will be transparent. You can still install via <code>pip</code> or <code>conda</code>. For developers, the instructions in the repository have been updated.</p> <h2><code>ruff</code> code cleanup</h2> -<p>https://github.com/apache/datafusion-python/pull/1055 -https://github.com/apache/datafusion-python/pull/1062</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1055">PR 1055</a> and <a href="https://github.com/apache/datafusion-python/pull/1062">PR 1062</a> - TODO(tsaucer) </p> <h2>Improved Jupyter Notebook rendering</h2> -<p>https://github.com/apache/datafusion-python/pull/1036</p> -<h2>Documentation</h2> -<p>https://github.com/apache/datafusion-python/pull/1031/files</p> +<p><a href="https://github.com/apache/datafusion-python/pull/1036">PR 1036</a> changed the way tables are rendered in jupyter notebooks - TODO(tsaucer)</p> +<h2>Extensions Documentation</h2> +<p>We have recently added <a href="https://datafusion.apache.org/python/contributor-guide/ffi.html">Extensions Documentation</a> to the DataFusion Python website. - TODO(tsaucer)</p> <h2>Migration Guide</h2> <p>During the upgrade from <a href="https://github.com/apache/datafusion/blob/main/dev/changelog/43.0.0.md">DataFusion 43.0.0</a> to [DataFusion 44.0.0] as our upstream core dependency, we discovered a few changes were necessary within our repository and our @@ -138,9 +157,9 @@ supported.</li> </ul> <h2>Coming Soon</h2> <ul> -<li>Reusable DataFusion UDFs</li> -<li>contrib table providers</li> -<li>catalog and schema providers</li> +<li>Reusable DataFusion UDFs - TODO(tsaucer)</li> +<li>contrib table providers - TODO(tsaucer)</li> +<li>catalog and schema providers - TODO(tsaucer)</li> </ul> <h2>Appreciation</h2> <p>TODO : UPDATE WITH LATEST LIST UP TO 46.0.0</p> diff --git a/blog/feeds/all-en.atom.xml b/blog/feeds/all-en.atom.xml index c9735df..5748f10 100644 --- a/blog/feeds/all-en.atom.xml +++ b/blog/feeds/all-en.atom.xml @@ -1278,10 +1278,20 @@ blog post for <a href="https://datafusion.apache.org/blog/2024/12/14/datafusi that can be found in the <a href="https://github.com/apache/datafusion-python/tree/main/dev/changelog">changelogs</a>.</p> <p>We highly recommend reviewing the upstream <a href="https://datafusion.apache.org/blog/2025/03/24/datafusion-46.0.0">DataFusion 46.0.0</a> announcement.</p> <h2>Easier file reading</h2> -<p>https://github.com/apache/datafusion-python/pull/982</p> +<p>In these releases we have introduced two new ways to more easily read files into +DataFrames.</p> +<p><a href="https://github.com/apache/datafusion-python/pull/982">PR 982</a> introduced a series of easier read functions for Parquet, JSON, CSV, and +AVRO files. This introduces a concept of a global context that is available by +default when using these methods. Now instead of creating a default Session +Context and then calling the read methods, you can simply import these read +alternative methods and begin working with your DataFrames. Below is an example of +how easy to use this new approach is.</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span> <span class="nn">datafusion.io</span> <span class="kn">import</span> <span class="n">read_parquet</span> <span class="n">df</span> <span class="o">=</span> <span class="n">read_parquet</span><span class="p">(</span><span class="n">path</span><span class="o">=</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> </code></pre></div> +<p><a href="https://github.com/apache/datafusion-python/pull/980">PR 980</a> adds a method for setting up a session context to use URL tables. With +this enabled, you can use a path to a local file as a table name. An example +of how to use this is demonstrated in the following snippet.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">datafusion</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">datafusion</span><span class="o">.</span><span class="n">SessionContext</span><span class="p">()</span><span class="o">.</span><span class="n">enable_url_table</span><span class="p">()</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> @@ -1313,8 +1323,18 @@ excellent compression scheme that balances speed and compression ratio. Users ca save their Parquet files uncompressed by passing in the appropriate value to the <code>compression</code> argument when calling <code>DataFrame.write_parquet</code>.</p> <h2>UDF Decorators</h2> -<p>https://github.com/apache/datafusion-python/pull/1040 -https://github.com/apache/datafusion-python/pull/1061</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1040">PR 1040</a> and <a href="https://github.com/apache/datafusion-python/pull/1061">PR 1061</a> we add methods to make creating user defined functions +easier and take advantage of Python decorators. With these PRs you can save a step +from defining a method and then defining a udf of that method. Instead you can +simply add the appropriate <code>udf</code> decorator. Similar methods exist for aggregate +and window user defined functions.</p> +<div class="codehilite"><pre><span></span><code><span class="nd">@udf</span><span class="p">([</span><span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">(),</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()],</span> <span class="n">pa</spa [...] +<span class="k">def</span> <span class="nf">my_custom_function</span><span class="p">(</span> + <span class="n">age</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> + <span class="n">favorite_number</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> +<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">:</span> + <span class="k">pass</span> +</code></pre></div> <h2><code>uv</code> package management</h2> <p><a href="https://github.com/astral-sh/uv">uv</a> is an extremely fast Python package manager, written in Rust. In the previous version of <code>datafusion-python</code> we had a combination of settings of PyPi and Conda. Instead, we @@ -1322,12 +1342,11 @@ switch to using <a href="https://github.com/astral-sh/uv">uv</a> is <p>For most users of DataFusion, this change will be transparent. You can still install via <code>pip</code> or <code>conda</code>. For developers, the instructions in the repository have been updated.</p> <h2><code>ruff</code> code cleanup</h2> -<p>https://github.com/apache/datafusion-python/pull/1055 -https://github.com/apache/datafusion-python/pull/1062</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1055">PR 1055</a> and <a href="https://github.com/apache/datafusion-python/pull/1062">PR 1062</a> - TODO(tsaucer) </p> <h2>Improved Jupyter Notebook rendering</h2> -<p>https://github.com/apache/datafusion-python/pull/1036</p> -<h2>Documentation</h2> -<p>https://github.com/apache/datafusion-python/pull/1031/files</p> +<p><a href="https://github.com/apache/datafusion-python/pull/1036">PR 1036</a> changed the way tables are rendered in jupyter notebooks - TODO(tsaucer)</p> +<h2>Extensions Documentation</h2> +<p>We have recently added <a href="https://datafusion.apache.org/python/contributor-guide/ffi.html">Extensions Documentation</a> to the DataFusion Python website. - TODO(tsaucer)</p> <h2>Migration Guide</h2> <p>During the upgrade from <a href="https://github.com/apache/datafusion/blob/main/dev/changelog/43.0.0.md">DataFusion 43.0.0</a> to [DataFusion 44.0.0] as our upstream core dependency, we discovered a few changes were necessary within our repository and our @@ -1349,9 +1368,9 @@ supported.</li> </ul> <h2>Coming Soon</h2> <ul> -<li>Reusable DataFusion UDFs</li> -<li>contrib table providers</li> -<li>catalog and schema providers</li> +<li>Reusable DataFusion UDFs - TODO(tsaucer)</li> +<li>contrib table providers - TODO(tsaucer)</li> +<li>catalog and schema providers - TODO(tsaucer)</li> </ul> <h2>Appreciation</h2> <p>TODO : UPDATE WITH LATEST LIST UP TO 46.0.0</p> diff --git a/blog/feeds/blog.atom.xml b/blog/feeds/blog.atom.xml index fb94fa3..138d1e3 100644 --- a/blog/feeds/blog.atom.xml +++ b/blog/feeds/blog.atom.xml @@ -1278,10 +1278,20 @@ blog post for <a href="https://datafusion.apache.org/blog/2024/12/14/datafusi that can be found in the <a href="https://github.com/apache/datafusion-python/tree/main/dev/changelog">changelogs</a>.</p> <p>We highly recommend reviewing the upstream <a href="https://datafusion.apache.org/blog/2025/03/24/datafusion-46.0.0">DataFusion 46.0.0</a> announcement.</p> <h2>Easier file reading</h2> -<p>https://github.com/apache/datafusion-python/pull/982</p> +<p>In these releases we have introduced two new ways to more easily read files into +DataFrames.</p> +<p><a href="https://github.com/apache/datafusion-python/pull/982">PR 982</a> introduced a series of easier read functions for Parquet, JSON, CSV, and +AVRO files. This introduces a concept of a global context that is available by +default when using these methods. Now instead of creating a default Session +Context and then calling the read methods, you can simply import these read +alternative methods and begin working with your DataFrames. Below is an example of +how easy to use this new approach is.</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span> <span class="nn">datafusion.io</span> <span class="kn">import</span> <span class="n">read_parquet</span> <span class="n">df</span> <span class="o">=</span> <span class="n">read_parquet</span><span class="p">(</span><span class="n">path</span><span class="o">=</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> </code></pre></div> +<p><a href="https://github.com/apache/datafusion-python/pull/980">PR 980</a> adds a method for setting up a session context to use URL tables. With +this enabled, you can use a path to a local file as a table name. An example +of how to use this is demonstrated in the following snippet.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">datafusion</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">datafusion</span><span class="o">.</span><span class="n">SessionContext</span><span class="p">()</span><span class="o">.</span><span class="n">enable_url_table</span><span class="p">()</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> @@ -1313,8 +1323,18 @@ excellent compression scheme that balances speed and compression ratio. Users ca save their Parquet files uncompressed by passing in the appropriate value to the <code>compression</code> argument when calling <code>DataFrame.write_parquet</code>.</p> <h2>UDF Decorators</h2> -<p>https://github.com/apache/datafusion-python/pull/1040 -https://github.com/apache/datafusion-python/pull/1061</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1040">PR 1040</a> and <a href="https://github.com/apache/datafusion-python/pull/1061">PR 1061</a> we add methods to make creating user defined functions +easier and take advantage of Python decorators. With these PRs you can save a step +from defining a method and then defining a udf of that method. Instead you can +simply add the appropriate <code>udf</code> decorator. Similar methods exist for aggregate +and window user defined functions.</p> +<div class="codehilite"><pre><span></span><code><span class="nd">@udf</span><span class="p">([</span><span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">(),</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()],</span> <span class="n">pa</spa [...] +<span class="k">def</span> <span class="nf">my_custom_function</span><span class="p">(</span> + <span class="n">age</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> + <span class="n">favorite_number</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> +<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">:</span> + <span class="k">pass</span> +</code></pre></div> <h2><code>uv</code> package management</h2> <p><a href="https://github.com/astral-sh/uv">uv</a> is an extremely fast Python package manager, written in Rust. In the previous version of <code>datafusion-python</code> we had a combination of settings of PyPi and Conda. Instead, we @@ -1322,12 +1342,11 @@ switch to using <a href="https://github.com/astral-sh/uv">uv</a> is <p>For most users of DataFusion, this change will be transparent. You can still install via <code>pip</code> or <code>conda</code>. For developers, the instructions in the repository have been updated.</p> <h2><code>ruff</code> code cleanup</h2> -<p>https://github.com/apache/datafusion-python/pull/1055 -https://github.com/apache/datafusion-python/pull/1062</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1055">PR 1055</a> and <a href="https://github.com/apache/datafusion-python/pull/1062">PR 1062</a> - TODO(tsaucer) </p> <h2>Improved Jupyter Notebook rendering</h2> -<p>https://github.com/apache/datafusion-python/pull/1036</p> -<h2>Documentation</h2> -<p>https://github.com/apache/datafusion-python/pull/1031/files</p> +<p><a href="https://github.com/apache/datafusion-python/pull/1036">PR 1036</a> changed the way tables are rendered in jupyter notebooks - TODO(tsaucer)</p> +<h2>Extensions Documentation</h2> +<p>We have recently added <a href="https://datafusion.apache.org/python/contributor-guide/ffi.html">Extensions Documentation</a> to the DataFusion Python website. - TODO(tsaucer)</p> <h2>Migration Guide</h2> <p>During the upgrade from <a href="https://github.com/apache/datafusion/blob/main/dev/changelog/43.0.0.md">DataFusion 43.0.0</a> to [DataFusion 44.0.0] as our upstream core dependency, we discovered a few changes were necessary within our repository and our @@ -1349,9 +1368,9 @@ supported.</li> </ul> <h2>Coming Soon</h2> <ul> -<li>Reusable DataFusion UDFs</li> -<li>contrib table providers</li> -<li>catalog and schema providers</li> +<li>Reusable DataFusion UDFs - TODO(tsaucer)</li> +<li>contrib table providers - TODO(tsaucer)</li> +<li>catalog and schema providers - TODO(tsaucer)</li> </ul> <h2>Appreciation</h2> <p>TODO : UPDATE WITH LATEST LIST UP TO 46.0.0</p> diff --git a/blog/feeds/timsaucer.atom.xml b/blog/feeds/timsaucer.atom.xml index 3dc0e18..2fb939b 100644 --- a/blog/feeds/timsaucer.atom.xml +++ b/blog/feeds/timsaucer.atom.xml @@ -44,10 +44,20 @@ blog post for <a href="https://datafusion.apache.org/blog/2024/12/14/datafusi that can be found in the <a href="https://github.com/apache/datafusion-python/tree/main/dev/changelog">changelogs</a>.</p> <p>We highly recommend reviewing the upstream <a href="https://datafusion.apache.org/blog/2025/03/24/datafusion-46.0.0">DataFusion 46.0.0</a> announcement.</p> <h2>Easier file reading</h2> -<p>https://github.com/apache/datafusion-python/pull/982</p> +<p>In these releases we have introduced two new ways to more easily read files into +DataFrames.</p> +<p><a href="https://github.com/apache/datafusion-python/pull/982">PR 982</a> introduced a series of easier read functions for Parquet, JSON, CSV, and +AVRO files. This introduces a concept of a global context that is available by +default when using these methods. Now instead of creating a default Session +Context and then calling the read methods, you can simply import these read +alternative methods and begin working with your DataFrames. Below is an example of +how easy to use this new approach is.</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span> <span class="nn">datafusion.io</span> <span class="kn">import</span> <span class="n">read_parquet</span> <span class="n">df</span> <span class="o">=</span> <span class="n">read_parquet</span><span class="p">(</span><span class="n">path</span><span class="o">=</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> </code></pre></div> +<p><a href="https://github.com/apache/datafusion-python/pull/980">PR 980</a> adds a method for setting up a session context to use URL tables. With +this enabled, you can use a path to a local file as a table name. An example +of how to use this is demonstrated in the following snippet.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">datafusion</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">datafusion</span><span class="o">.</span><span class="n">SessionContext</span><span class="p">()</span><span class="o">.</span><span class="n">enable_url_table</span><span class="p">()</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">table</span><span class="p">(</span><span class="s2">"./examples/tpch/data/customer.parquet"</span><span class="p">)</span> @@ -79,8 +89,18 @@ excellent compression scheme that balances speed and compression ratio. Users ca save their Parquet files uncompressed by passing in the appropriate value to the <code>compression</code> argument when calling <code>DataFrame.write_parquet</code>.</p> <h2>UDF Decorators</h2> -<p>https://github.com/apache/datafusion-python/pull/1040 -https://github.com/apache/datafusion-python/pull/1061</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1040">PR 1040</a> and <a href="https://github.com/apache/datafusion-python/pull/1061">PR 1061</a> we add methods to make creating user defined functions +easier and take advantage of Python decorators. With these PRs you can save a step +from defining a method and then defining a udf of that method. Instead you can +simply add the appropriate <code>udf</code> decorator. Similar methods exist for aggregate +and window user defined functions.</p> +<div class="codehilite"><pre><span></span><code><span class="nd">@udf</span><span class="p">([</span><span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">(),</span> <span class="n">pa</span><span class="o">.</span><span class="n">int64</span><span class="p">()],</span> <span class="n">pa</spa [...] +<span class="k">def</span> <span class="nf">my_custom_function</span><span class="p">(</span> + <span class="n">age</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> + <span class="n">favorite_number</span><span class="p">:</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">,</span> +<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">pa</span><span class="o">.</span><span class="n">Array</span><span class="p">:</span> + <span class="k">pass</span> +</code></pre></div> <h2><code>uv</code> package management</h2> <p><a href="https://github.com/astral-sh/uv">uv</a> is an extremely fast Python package manager, written in Rust. In the previous version of <code>datafusion-python</code> we had a combination of settings of PyPi and Conda. Instead, we @@ -88,12 +108,11 @@ switch to using <a href="https://github.com/astral-sh/uv">uv</a> is <p>For most users of DataFusion, this change will be transparent. You can still install via <code>pip</code> or <code>conda</code>. For developers, the instructions in the repository have been updated.</p> <h2><code>ruff</code> code cleanup</h2> -<p>https://github.com/apache/datafusion-python/pull/1055 -https://github.com/apache/datafusion-python/pull/1062</p> +<p>In <a href="https://github.com/apache/datafusion-python/pull/1055">PR 1055</a> and <a href="https://github.com/apache/datafusion-python/pull/1062">PR 1062</a> - TODO(tsaucer) </p> <h2>Improved Jupyter Notebook rendering</h2> -<p>https://github.com/apache/datafusion-python/pull/1036</p> -<h2>Documentation</h2> -<p>https://github.com/apache/datafusion-python/pull/1031/files</p> +<p><a href="https://github.com/apache/datafusion-python/pull/1036">PR 1036</a> changed the way tables are rendered in jupyter notebooks - TODO(tsaucer)</p> +<h2>Extensions Documentation</h2> +<p>We have recently added <a href="https://datafusion.apache.org/python/contributor-guide/ffi.html">Extensions Documentation</a> to the DataFusion Python website. - TODO(tsaucer)</p> <h2>Migration Guide</h2> <p>During the upgrade from <a href="https://github.com/apache/datafusion/blob/main/dev/changelog/43.0.0.md">DataFusion 43.0.0</a> to [DataFusion 44.0.0] as our upstream core dependency, we discovered a few changes were necessary within our repository and our @@ -115,9 +134,9 @@ supported.</li> </ul> <h2>Coming Soon</h2> <ul> -<li>Reusable DataFusion UDFs</li> -<li>contrib table providers</li> -<li>catalog and schema providers</li> +<li>Reusable DataFusion UDFs - TODO(tsaucer)</li> +<li>contrib table providers - TODO(tsaucer)</li> +<li>catalog and schema providers - TODO(tsaucer)</li> </ul> <h2>Appreciation</h2> <p>TODO : UPDATE WITH LATEST LIST UP TO 46.0.0</p> --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@datafusion.apache.org For additional commands, e-mail: commits-h...@datafusion.apache.org