This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/datafusion-site.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new e167e76  Commit build products
e167e76 is described below

commit e167e766666a58349569ecacc6423e7c88fd344c
Author: Build Pelican (action) <[email protected]>
AuthorDate: Fri Apr 11 17:37:28 2025 +0000

    Commit build products
---
 output/2025/04/10/fastest-tpch-generator/index.html       | 2 +-
 output/feeds/all-en.atom.xml                              | 2 +-
 output/feeds/andrew-lamb-achraf-b-and-sean-smith.atom.xml | 2 +-
 output/feeds/blog.atom.xml                                | 2 +-
 4 files changed, 4 insertions(+), 4 deletions(-)

diff --git a/output/2025/04/10/fastest-tpch-generator/index.html 
b/output/2025/04/10/fastest-tpch-generator/index.html
index e03c029..179e185 100644
--- a/output/2025/04/10/fastest-tpch-generator/index.html
+++ b/output/2025/04/10/fastest-tpch-generator/index.html
@@ -76,7 +76,7 @@ faster than any other implementation we know of.</p>
 <p>It is now possible to create the TPC-H SF=100 dataset in 72.23 seconds (1.4 
GB/s
 😎) on a Macbook Air M3 with 16GB of memory, compared to the classic 
<code>dbgen</code>
 which takes 30 minutes<sup>1</sup> (0.05GB/sec). On the same machine, it takes 
less than
-2 minutes to create all 3.6 GB of SF=100 in <a 
href="https://parquet.apache.org/";>Apache Parquet</a> format, which takes 44 
minutes using <a href="https://duckdb.org";>DuckDB</a>.
+2 minutes to create all 36 GB of SF=100 in <a 
href="https://parquet.apache.org/";>Apache Parquet</a> format, which takes 44 
minutes using <a href="https://duckdb.org";>DuckDB</a>.
 It is finally convenient and efficient to run TPC-H queries locally when 
testing
 analytical engines such as DataFusion.</p>
 <p><img alt="Time to create TPC-H parquet dataset for Scale Factor  1, 10, 100 
and 1000" class="img-responsive" 
src="/blog/images/fastest-tpch-generator/parquet-performance.png" 
width="80%"/></p>
diff --git a/output/feeds/all-en.atom.xml b/output/feeds/all-en.atom.xml
index bde3316..07f0702 100644
--- a/output/feeds/all-en.atom.xml
+++ b/output/feeds/all-en.atom.xml
@@ -60,7 +60,7 @@ faster than any other implementation we know of.&lt;/p&gt;
 &lt;p&gt;It is now possible to create the TPC-H SF=100 dataset in 72.23 
seconds (1.4 GB/s
 😎) on a Macbook Air M3 with 16GB of memory, compared to the classic 
&lt;code&gt;dbgen&lt;/code&gt;
 which takes 30 minutes&lt;sup&gt;1&lt;/sup&gt; (0.05GB/sec). On the same 
machine, it takes less than
-2 minutes to create all 3.6 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
+2 minutes to create all 36 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
 It is finally convenient and efficient to run TPC-H queries locally when 
testing
 analytical engines such as DataFusion.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Time to create TPC-H parquet dataset for Scale Factor  
1, 10, 100 and 1000" class="img-responsive" 
src="/blog/images/fastest-tpch-generator/parquet-performance.png" 
width="80%"/&gt;&lt;/p&gt;
diff --git a/output/feeds/andrew-lamb-achraf-b-and-sean-smith.atom.xml 
b/output/feeds/andrew-lamb-achraf-b-and-sean-smith.atom.xml
index 21b8660..0570f9a 100644
--- a/output/feeds/andrew-lamb-achraf-b-and-sean-smith.atom.xml
+++ b/output/feeds/andrew-lamb-achraf-b-and-sean-smith.atom.xml
@@ -60,7 +60,7 @@ faster than any other implementation we know of.&lt;/p&gt;
 &lt;p&gt;It is now possible to create the TPC-H SF=100 dataset in 72.23 
seconds (1.4 GB/s
 😎) on a Macbook Air M3 with 16GB of memory, compared to the classic 
&lt;code&gt;dbgen&lt;/code&gt;
 which takes 30 minutes&lt;sup&gt;1&lt;/sup&gt; (0.05GB/sec). On the same 
machine, it takes less than
-2 minutes to create all 3.6 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
+2 minutes to create all 36 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
 It is finally convenient and efficient to run TPC-H queries locally when 
testing
 analytical engines such as DataFusion.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Time to create TPC-H parquet dataset for Scale Factor  
1, 10, 100 and 1000" class="img-responsive" 
src="/blog/images/fastest-tpch-generator/parquet-performance.png" 
width="80%"/&gt;&lt;/p&gt;
diff --git a/output/feeds/blog.atom.xml b/output/feeds/blog.atom.xml
index c3fdf9f..bbacaca 100644
--- a/output/feeds/blog.atom.xml
+++ b/output/feeds/blog.atom.xml
@@ -60,7 +60,7 @@ faster than any other implementation we know of.&lt;/p&gt;
 &lt;p&gt;It is now possible to create the TPC-H SF=100 dataset in 72.23 
seconds (1.4 GB/s
 😎) on a Macbook Air M3 with 16GB of memory, compared to the classic 
&lt;code&gt;dbgen&lt;/code&gt;
 which takes 30 minutes&lt;sup&gt;1&lt;/sup&gt; (0.05GB/sec). On the same 
machine, it takes less than
-2 minutes to create all 3.6 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
+2 minutes to create all 36 GB of SF=100 in &lt;a 
href="https://parquet.apache.org/"&gt;Apache Parquet&lt;/a&gt; format, which 
takes 44 minutes using &lt;a href="https://duckdb.org"&gt;DuckDB&lt;/a&gt;.
 It is finally convenient and efficient to run TPC-H queries locally when 
testing
 analytical engines such as DataFusion.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Time to create TPC-H parquet dataset for Scale Factor  
1, 10, 100 and 1000" class="img-responsive" 
src="/blog/images/fastest-tpch-generator/parquet-performance.png" 
width="80%"/&gt;&lt;/p&gt;


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to