This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-staging
in repository https://gitbox.apache.org/repos/asf/datafusion-site.git


The following commit(s) were added to refs/heads/asf-staging by this push:
     new f4a1df8  Commit build products
f4a1df8 is described below

commit f4a1df8231c786cb4801ffd20990e520783261ff
Author: Build Pelican (action) <priv...@infra.apache.org>
AuthorDate: Wed Jun 11 15:40:20 2025 +0000

    Commit build products
---
 blog/2025/06/15/optimizing-sql-dataframes-part-one/index.html | 7 ++++---
 blog/feeds/alamb-akurmustafa.atom.xml                         | 7 ++++---
 blog/feeds/all-en.atom.xml                                    | 7 ++++---
 blog/feeds/blog.atom.xml                                      | 7 ++++---
 4 files changed, 16 insertions(+), 12 deletions(-)

diff --git a/blog/2025/06/15/optimizing-sql-dataframes-part-one/index.html 
b/blog/2025/06/15/optimizing-sql-dataframes-part-one/index.html
index 0621f36..0fd5637 100644
--- a/blog/2025/06/15/optimizing-sql-dataframes-part-one/index.html
+++ b/blog/2025/06/15/optimizing-sql-dataframes-part-one/index.html
@@ -112,9 +112,10 @@ language such as Python, where you describe how to do the 
computation as shown
 in Figure 1.</p>
 <p><img alt="Fig 1: Query Execution." class="img-responsive" 
src="/blog/images/optimizing-sql-dataframes/query-execution.png" 
width="80%"/></p>
 <p><strong>Figure 1</strong>: Query Execution: Users describe the answer they 
want using either
-a DataFrame or SQL. The query planner or DataFrame API translates that
-description into an <em>Initial Plan</em>, which is correct but slow. The Query
-Optimizer then rewrites the initial plan to an <em>Optimized Plan</em>, which 
computes
+SQL or a DataFrame. For SQL, a Query Planner translates the parsed query 
+into an <em>initial plan</em>. The DataFrame API creates an initial plan 
directly.
+The initial plan is correct, but slow. Then, the Query
+Optimizer rewrites the initial plan into an <em>optimized plan</em>, which 
computes
 the same results but faster and more efficiently. Finally, the Execution Engine
 executes the optimized plan producing results.</p>
 <h2>SQL, DataFrames, LogicalPlan Equivalence</h2>
diff --git a/blog/feeds/alamb-akurmustafa.atom.xml 
b/blog/feeds/alamb-akurmustafa.atom.xml
index c19d77a..af2cdb7 100644
--- a/blog/feeds/alamb-akurmustafa.atom.xml
+++ b/blog/feeds/alamb-akurmustafa.atom.xml
@@ -94,9 +94,10 @@ language such as Python, where you describe how to do the 
computation as shown
 in Figure 1.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Fig 1: Query Execution." class="img-responsive" 
src="/blog/images/optimizing-sql-dataframes/query-execution.png" 
width="80%"/&gt;&lt;/p&gt;
 &lt;p&gt;&lt;strong&gt;Figure 1&lt;/strong&gt;: Query Execution: Users 
describe the answer they want using either
-a DataFrame or SQL. The query planner or DataFrame API translates that
-description into an &lt;em&gt;Initial Plan&lt;/em&gt;, which is correct but 
slow. The Query
-Optimizer then rewrites the initial plan to an &lt;em&gt;Optimized 
Plan&lt;/em&gt;, which computes
+SQL or a DataFrame. For SQL, a Query Planner translates the parsed query 
+into an &lt;em&gt;initial plan&lt;/em&gt;. The DataFrame API creates an 
initial plan directly.
+The initial plan is correct, but slow. Then, the Query
+Optimizer rewrites the initial plan into an &lt;em&gt;optimized 
plan&lt;/em&gt;, which computes
 the same results but faster and more efficiently. Finally, the Execution Engine
 executes the optimized plan producing results.&lt;/p&gt;
 &lt;h2&gt;SQL, DataFrames, LogicalPlan Equivalence&lt;/h2&gt;
diff --git a/blog/feeds/all-en.atom.xml b/blog/feeds/all-en.atom.xml
index a44f973..8586a7b 100644
--- a/blog/feeds/all-en.atom.xml
+++ b/blog/feeds/all-en.atom.xml
@@ -94,9 +94,10 @@ language such as Python, where you describe how to do the 
computation as shown
 in Figure 1.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Fig 1: Query Execution." class="img-responsive" 
src="/blog/images/optimizing-sql-dataframes/query-execution.png" 
width="80%"/&gt;&lt;/p&gt;
 &lt;p&gt;&lt;strong&gt;Figure 1&lt;/strong&gt;: Query Execution: Users 
describe the answer they want using either
-a DataFrame or SQL. The query planner or DataFrame API translates that
-description into an &lt;em&gt;Initial Plan&lt;/em&gt;, which is correct but 
slow. The Query
-Optimizer then rewrites the initial plan to an &lt;em&gt;Optimized 
Plan&lt;/em&gt;, which computes
+SQL or a DataFrame. For SQL, a Query Planner translates the parsed query 
+into an &lt;em&gt;initial plan&lt;/em&gt;. The DataFrame API creates an 
initial plan directly.
+The initial plan is correct, but slow. Then, the Query
+Optimizer rewrites the initial plan into an &lt;em&gt;optimized 
plan&lt;/em&gt;, which computes
 the same results but faster and more efficiently. Finally, the Execution Engine
 executes the optimized plan producing results.&lt;/p&gt;
 &lt;h2&gt;SQL, DataFrames, LogicalPlan Equivalence&lt;/h2&gt;
diff --git a/blog/feeds/blog.atom.xml b/blog/feeds/blog.atom.xml
index b43a27c..65a6a23 100644
--- a/blog/feeds/blog.atom.xml
+++ b/blog/feeds/blog.atom.xml
@@ -94,9 +94,10 @@ language such as Python, where you describe how to do the 
computation as shown
 in Figure 1.&lt;/p&gt;
 &lt;p&gt;&lt;img alt="Fig 1: Query Execution." class="img-responsive" 
src="/blog/images/optimizing-sql-dataframes/query-execution.png" 
width="80%"/&gt;&lt;/p&gt;
 &lt;p&gt;&lt;strong&gt;Figure 1&lt;/strong&gt;: Query Execution: Users 
describe the answer they want using either
-a DataFrame or SQL. The query planner or DataFrame API translates that
-description into an &lt;em&gt;Initial Plan&lt;/em&gt;, which is correct but 
slow. The Query
-Optimizer then rewrites the initial plan to an &lt;em&gt;Optimized 
Plan&lt;/em&gt;, which computes
+SQL or a DataFrame. For SQL, a Query Planner translates the parsed query 
+into an &lt;em&gt;initial plan&lt;/em&gt;. The DataFrame API creates an 
initial plan directly.
+The initial plan is correct, but slow. Then, the Query
+Optimizer rewrites the initial plan into an &lt;em&gt;optimized 
plan&lt;/em&gt;, which computes
 the same results but faster and more efficiently. Finally, the Execution Engine
 executes the optimized plan producing results.&lt;/p&gt;
 &lt;h2&gt;SQL, DataFrames, LogicalPlan Equivalence&lt;/h2&gt;


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@datafusion.apache.org
For additional commands, e-mail: commits-h...@datafusion.apache.org

Reply via email to