This is an automated email from the ASF dual-hosted git repository.

git-site-role pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/datasketches-website.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new ca074f24 Automatic Site Publish by Buildbot
ca074f24 is described below

commit ca074f24f34590d66d6624006a8f8b6b5f210c1a
Author: buildbot <[email protected]>
AuthorDate: Fri Oct 25 16:56:12 2024 +0000

    Automatic Site Publish by Buildbot
---
 output/docs/QuantilesAll/QuantilesOverview.html | 103 ++++++++++++++++--------
 1 file changed, 69 insertions(+), 34 deletions(-)

diff --git a/output/docs/QuantilesAll/QuantilesOverview.html 
b/output/docs/QuantilesAll/QuantilesOverview.html
index 5bf984f9..c34e7285 100644
--- a/output/docs/QuantilesAll/QuantilesOverview.html
+++ b/output/docs/QuantilesAll/QuantilesOverview.html
@@ -323,7 +323,7 @@
 -->
 <h1 id="introduction-to-the-quantile-sketches">Introduction to the Quantile 
Sketches</h1>
 
-<p>This is a quick overview of the quantiles sketches in the library. Each of 
these quantile types may have one or more specific implementaions and some 
variation in API depending on the language. Three of the quantile sketches have 
mathematically provable error bounds while the fourth is an empirical 
algorithm.</p>
+<p>This is an overview of the quantiles sketches in the library. Each of these 
quantile types may have one or more specific implementaions and some variation 
in API depending on the language. Three of the quantile sketches have 
mathematically provable error bounds while the fourth is an empirical 
algorithm.</p>
 
 <p>The three sketches with mathematically provable error bounds are:</p>
 
@@ -341,7 +341,7 @@
 
 <p>For the Classic and KLL sketches, the difference between the rank upper 
bound and the rank lower bound is a 99% confidence interval and is an additive 
constant for all normalized ranks between 0.0 and 1.0. The specific error is a 
function of the parameter <i>K</i> of the sketch and can be derived from the 
sketch.  For example, if the rank error for a given K is 1%, then the error of 
a result rank of .01 is +/- .01 with a 99% confidence; the error of a result 
rank of .99 is +/- .01 wit [...]
 
-<p>The REQ sketch is special in that it’s error is also relative to the actual 
result rank (thus its name: Relative Error Quantiles). It was designed to 
proved very high rank accuacy for either the high end of the range of ranks 
(close to 1.0) or, based on the user’s choice, the low end of ranks (close to 
0.0). Please refer to the spcific documentation about the REQ sketch.</p>
+<p>The REQ sketch is special in that its error is also relative to the actual 
result rank (thus its name: Relative Error Quantiles). It was designed to 
provide very high rank accuacy for either the high end of the range of ranks 
(close to 1.0) or, based on the user’s choice, the low end of ranks (close to 
0.0). Please refer to the spcific documentation about the REQ sketch.</p>
 
 <p>Although upper and lower quantile bounds can be approximately computed from 
the upper and lower rank bounds, and the difference between the quantile bounds 
is also an approximate confidence interval, the size of the quantile confidence 
interval may not be meaningful and is not constrained by the defined rank error 
of the sketch.</p>
 
@@ -349,114 +349,149 @@
 
 <p>These sketches have many parallel methods. Please refer to the sketch API 
documentation by language for more information.</p>
 
-<h3 id="the-classic-quantiles-sketch">The Classic Quantiles Sketch</h3>
-
+<h3 id="classic-quantiles-sketch">Classic Quantiles Sketch</h3>
 <ul>
   <li>Java
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-java";>https://github.com/apache/datasketches-java</a></li>
-      <li>Package: org.apache.datasketches.quantiles</li>
+      <li>Package: <a 
href="https://github.com/apache/datasketches-java/tree/master/src/main/java/org/apache/datasketches/quantiles";>org.apache.datasketches.quantiles</a></li>
+      <li>Dedicated <em>double</em> and generic <em>item</em> implentations 
for arbitrary comparable types.
+        <ul>
+          <li>The <em>double</em> implementation can be configured for 
off-heap operation.</li>
+        </ul>
+      </li>
     </ul>
   </li>
   <li>C++
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-cpp";>https://github.com/apache/datasketches-cpp</a></li>
+      <li>Directory: <a 
href="https://github.com/apache/datasketches-cpp/tree/master/quantiles";>quantiles</a></li>
+      <li>Template implementation for arbitrary comparable types.</li>
     </ul>
   </li>
   <li>Python
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-python";>https://github.com/apache/datasketches-python</a></li>
+      <li>Dedicated <em>float</em>, <em>double</em>, <em>integer</em> and 
arbitrary Python object implementations</li>
     </ul>
   </li>
-  <li>Key Features (both Java &amp; C++)
+  <li>Key Features (Java, C++ and Python)
     <ul>
+      <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
       <li>User selectable search criteria QuantileSearchCriteria:
         <ul>
-          <li>Exclusive, which is compatible with the KLL and older Quantiles 
Sketch</li>
-          <li>Inclusive, a common definition in some of the theoretical 
literature.</li>
+          <li>Inclusive, a common definition in some of the theoretical 
literature (default).</li>
+          <li>Exclusive, which is compatible with older Quantiles Sketch.</li>
         </ul>
       </li>
-      <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
-      <li>Dedicated <em>double</em> and generic <em>item</em> implentations 
for arbitrary comparable types.</li>
-      <li>The <em>double</em> implementation can be configured for off-heap 
operation.</li>
     </ul>
   </li>
 </ul>
 
-<h3 id="the-kll-sketch">The KLL Sketch</h3>
-
+<h3 id="kll-sketch">KLL Sketch</h3>
 <ul>
   <li>Java
     <ul>
-      <li>Repo: <a 
href="https://github.com/apache/datasketches-java";>https://github.com/apache/datasketches-java</a>:</li>
-      <li>Package: org.apache.datasketches.kll</li>
+      <li>Repo: <a 
href="https://github.com/apache/datasketches-java";>https://github.com/apache/datasketches-java</a></li>
+      <li>Package: <a 
href="https://github.com/apache/datasketches-java/tree/master/src/main/java/org/apache/datasketches/kll";>org.apache.datasketches.kll</a></li>
+      <li>Dedicated <em>float</em>, <em>double</em>, <em>long</em>, and 
generic <em>item</em> implementations.
+        <ul>
+          <li>The <em>float</em>, <em>double</em>, and <em>long</em> 
implementations can be configured for off-heap operation.</li>
+        </ul>
+      </li>
     </ul>
   </li>
   <li>C++
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-cpp";>https://github.com/apache/datasketches-cpp</a></li>
-      <li>Directory: kll</li>
+      <li>Directory: <a 
href="https://github.com/apache/datasketches-cpp/tree/master/kll";>kll</a></li>
+      <li>Template implementation for arbitrary comparable types.</li>
     </ul>
   </li>
   <li>Python
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-python";>https://github.com/apache/datasketches-python</a></li>
+      <li>Dedicated <em>float</em>, <em>double</em>, <em>integer</em> and 
arbitrary Python object implementations</li>
     </ul>
   </li>
-  <li>Key Features (both Java &amp; C++)
+  <li>Key Features (Java, C++ and Python)
     <ul>
+      <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
       <li>User selectable comparison QuantileSearchCriteria:
         <ul>
-          <li>Exclusive, which is compatible with the KLL and older Quantiles 
Sketch</li>
-          <li>Inclusive, a common definition in some of the theoretical 
literature.</li>
+          <li>Inclusive, a common definition in some of the theoretical 
literature (default).</li>
+          <li>Exclusive, which is compatible with older Quantiles Sketch.</li>
         </ul>
       </li>
-      <li>Accuracy %: a function of <em>K</em> and independent of rank.</li>
       <li>Near optimal accuracy per sketch size compared to other constant 
accuracy quantiles sketches.</li>
-      <li>Java: Dedicated <em>float</em>, <em>double</em>, <em>long</em>, and 
generic <em>item</em> implementations.</li>
-      <li>The <em>float</em>, <em>double</em>, and <em>long</em> 
implementations can be configured for off-heap operation.</li>
-      <li>C++: Template implementation for arbitrary comparible types.</li>
-      <li>Python: Dedicated <em>float</em> and <em>integer</em> 
implementations</li>
     </ul>
   </li>
 </ul>
 
-<h3 id="the-req-sketch">The REQ Sketch</h3>
-
+<h3 id="req-sketch">REQ Sketch</h3>
 <ul>
   <li>Java
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-java";>https://github.com/apache/datasketches-java</a></li>
-      <li>Package: org.apache.datasketches.req</li>
+      <li>Package: <a 
href="https://github.com/apache/datasketches-java/tree/master/src/main/java/org/apache/datasketches/req";>org.apache.datasketches.req</a></li>
+      <li>Dedicated <em>float</em> implementation.</li>
     </ul>
   </li>
   <li>C++
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-cpp";>https://github.com/apache/datasketches-cpp</a></li>
-      <li>Directory: req</li>
+      <li>Directory: <a 
href="https://github.com/apache/datasketches-cpp/tree/master/req";>req</a></li>
+      <li>Template implementation for arbitrary comparable types.</li>
     </ul>
   </li>
   <li>Python
     <ul>
       <li>Repo: <a 
href="https://github.com/apache/datasketches-python";>https://github.com/apache/datasketches-python</a></li>
+      <li>Dedicated <em>float</em>, <em>integer</em> and arbitrary Python 
object implementations</li>
     </ul>
   </li>
-  <li>Key Features (both Java &amp; C++)
+  <li>Key Features (Java, C++ and Python)
     <ul>
       <li>Accuracy %: a function of <em>K</em> and <strong>relative</strong> 
with respect to rank. The user can select either High Rank Accuracy (HRA) or 
Low Rank Accuracy (LRA). This enables extremely high accuracy for the ends of 
the rank domain. E.g., 99.999%ile quantiles.</li>
       <li>User selectable comparison QuantileSearchCriteria:
         <ul>
-          <li>Exclusive, which is compatible with the KLL and older Quantiles 
Sketch</li>
-          <li>Inclusive, a common definition in some of the theoretical 
literature.</li>
+          <li>Inclusive, a common definition in some of the theoretical 
literature (default).</li>
+          <li>Exclusive, which is compatible with older Quantiles Sketch.</li>
         </ul>
       </li>
-      <li>Java: Dedicated <em>float</em> implementation.</li>
-      <li>C++: Template implementation for arbitrary comparible types.</li>
-      <li>Python: Dedicated <em>float</em> and <em>integer</em> 
implementations.</li>
     </ul>
   </li>
 </ul>
 
+<h3 id="t-digest">T-Digest</h3>
+<ul>
+  <li>Java
+    <ul>
+      <li>Repo: <a 
href="https://github.com/apache/datasketches-java";>https://github.com/apache/datasketches-java</a></li>
+      <li>Package: <a 
href="https://github.com/apache/datasketches-java/tree/master/src/main/java/org/apache/datasketches/tdigest";>org.apache.datasketches.req</a></li>
+      <li>Dedicated <em>double</em> implementation.</li>
+    </ul>
+  </li>
+  <li>C++
+    <ul>
+      <li>Repo: <a 
href="https://github.com/apache/datasketches-cpp";>https://github.com/apache/datasketches-cpp</a></li>
+      <li>Directory: <a 
href="https://github.com/apache/datasketches-cpp/tree/master/tdigest";>req</a></li>
+      <li>Template implementation for <em>float</em> and <em>double</em> 
types.</li>
+    </ul>
+  </li>
+  <li>Python
+    <ul>
+      <li>Repo: <a 
href="https://github.com/apache/datasketches-python";>https://github.com/apache/datasketches-python</a></li>
+      <li>Dedicated <em>float</em> and <em>double</em> implementations</li>
+    </ul>
+  </li>
+  <li>Key Features (Java, C++ and Python)
+    <ul>
+      <li>Works on numeric (floating point) types only.</li>
+      <li>Accuracy: a function of <em>K</em> and <strong>relative</strong> 
with respect to rank. Prioritizes both high rank accuracy and low rank accuracy 
with lower accuracy in the middle.</li>
+    </ul>
+  </li>
+</ul>
 
       </div> <!-- End content -->
     </div> <!-- End row -->


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to