This is an automated email from the ASF dual-hosted git repository.
lihaopeng pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/doris.git
The following commit(s) were added to refs/heads/master by this push:
new 53ae24912f [vectorized](feature) support partition sort node (#19708)
53ae24912f is described below
commit 53ae24912f18a73cea4d6d7fd2bef3586cb57d60
Author: zhangstar333 <[email protected]>
AuthorDate: Thu May 25 11:22:02 2023 +0800
[vectorized](feature) support partition sort node (#19708)
---
be/src/exec/exec_node.cpp | 5 +
.../pipeline/exec/partition_sort_sink_operator.h | 54 +++
.../pipeline/exec/partition_sort_source_operator.h | 56 +++
be/src/pipeline/pipeline_fragment_context.cpp | 16 +
be/src/vec/CMakeLists.txt | 2 +
be/src/vec/common/columns_hashing.h | 32 ++
be/src/vec/common/sort/partition_sorter.cpp | 203 +++++++++
be/src/vec/common/sort/partition_sorter.h | 108 +++++
be/src/vec/common/sort/sorter.h | 17 +-
be/src/vec/exec/vpartition_sort_node.cpp | 454 +++++++++++++++++++++
be/src/vec/exec/vpartition_sort_node.h | 386 ++++++++++++++++++
gensrc/thrift/PlanNodes.thrift | 15 +
12 files changed, 1342 insertions(+), 6 deletions(-)
diff --git a/be/src/exec/exec_node.cpp b/be/src/exec/exec_node.cpp
index 62a63afd98..b74fbd23b1 100644
--- a/be/src/exec/exec_node.cpp
+++ b/be/src/exec/exec_node.cpp
@@ -62,6 +62,7 @@
#include "vec/exec/vempty_set_node.h"
#include "vec/exec/vexchange_node.h"
#include "vec/exec/vmysql_scan_node.h" // IWYU pragma: keep
+#include "vec/exec/vpartition_sort_node.h"
#include "vec/exec/vrepeat_node.h"
#include "vec/exec/vschema_scan_node.h"
#include "vec/exec/vselect_node.h"
@@ -318,6 +319,7 @@ Status ExecNode::create_node(RuntimeState* state,
ObjectPool* pool, const TPlanN
case TPlanNodeType::FILE_SCAN_NODE:
case TPlanNodeType::JDBC_SCAN_NODE:
case TPlanNodeType::META_SCAN_NODE:
+ case TPlanNodeType::PARTITION_SORT_NODE:
break;
default: {
const auto& i = _TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type);
@@ -438,6 +440,9 @@ Status ExecNode::create_node(RuntimeState* state,
ObjectPool* pool, const TPlanN
*node = pool->add(new vectorized::VDataGenFunctionScanNode(pool,
tnode, descs));
return Status::OK();
+ case TPlanNodeType::PARTITION_SORT_NODE:
+ *node = pool->add(new vectorized::VPartitionSortNode(pool, tnode,
descs));
+ return Status::OK();
default:
std::map<int, const char*>::const_iterator i =
_TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type);
diff --git a/be/src/pipeline/exec/partition_sort_sink_operator.h
b/be/src/pipeline/exec/partition_sort_sink_operator.h
new file mode 100644
index 0000000000..ddcbebbb9d
--- /dev/null
+++ b/be/src/pipeline/exec/partition_sort_sink_operator.h
@@ -0,0 +1,54 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <stdint.h>
+
+#include "operator.h"
+#include "vec/exec/vpartition_sort_node.h"
+
+namespace doris {
+class ExecNode;
+
+namespace pipeline {
+
+class PartitionSortSinkOperatorBuilder final
+ : public OperatorBuilder<vectorized::VPartitionSortNode> {
+public:
+ PartitionSortSinkOperatorBuilder(int32_t id, ExecNode* sort_node)
+ : OperatorBuilder(id, "PartitionSortSinkOperator", sort_node) {}
+
+ bool is_sink() const override { return true; }
+
+ OperatorPtr build_operator() override;
+};
+
+class PartitionSortSinkOperator final : public
StreamingOperator<PartitionSortSinkOperatorBuilder> {
+public:
+ PartitionSortSinkOperator(OperatorBuilderBase* operator_builder, ExecNode*
sort_node)
+ : StreamingOperator(operator_builder, sort_node) {};
+
+ bool can_write() override { return true; }
+};
+
+OperatorPtr PartitionSortSinkOperatorBuilder::build_operator() {
+ return std::make_shared<PartitionSortSinkOperator>(this, _node);
+}
+
+} // namespace pipeline
+} // namespace doris
diff --git a/be/src/pipeline/exec/partition_sort_source_operator.h
b/be/src/pipeline/exec/partition_sort_source_operator.h
new file mode 100644
index 0000000000..bd55c42e4b
--- /dev/null
+++ b/be/src/pipeline/exec/partition_sort_source_operator.h
@@ -0,0 +1,56 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <stdint.h>
+
+#include "common/status.h"
+#include "operator.h"
+#include "vec/exec/vpartition_sort_node.h"
+
+namespace doris {
+class ExecNode;
+class RuntimeState;
+
+namespace pipeline {
+
+class PartitionSortSourceOperatorBuilder final
+ : public OperatorBuilder<vectorized::VPartitionSortNode> {
+public:
+ PartitionSortSourceOperatorBuilder(int32_t id, ExecNode* sort_node)
+ : OperatorBuilder(id, "PartitionSortSourceOperator", sort_node) {}
+
+ bool is_source() const override { return true; }
+
+ OperatorPtr build_operator() override;
+};
+
+class PartitionSortSourceOperator final
+ : public SourceOperator<PartitionSortSourceOperatorBuilder> {
+public:
+ PartitionSortSourceOperator(OperatorBuilderBase* operator_builder,
ExecNode* sort_node)
+ : SourceOperator(operator_builder, sort_node) {}
+ Status open(RuntimeState*) override { return Status::OK(); }
+};
+
+OperatorPtr PartitionSortSourceOperatorBuilder::build_operator() {
+ return std::make_shared<PartitionSortSourceOperator>(this, _node);
+}
+
+} // namespace pipeline
+} // namespace doris
\ No newline at end of file
diff --git a/be/src/pipeline/pipeline_fragment_context.cpp
b/be/src/pipeline/pipeline_fragment_context.cpp
index 923558b333..eea8d34b08 100644
--- a/be/src/pipeline/pipeline_fragment_context.cpp
+++ b/be/src/pipeline/pipeline_fragment_context.cpp
@@ -61,6 +61,8 @@
#include "pipeline/exec/nested_loop_join_probe_operator.h"
#include "pipeline/exec/olap_table_sink_operator.h"
#include "pipeline/exec/operator.h"
+#include "pipeline/exec/partition_sort_sink_operator.h"
+#include "pipeline/exec/partition_sort_source_operator.h"
#include "pipeline/exec/repeat_operator.h"
#include "pipeline/exec/result_file_sink_operator.h"
#include "pipeline/exec/result_sink_operator.h"
@@ -532,6 +534,20 @@ Status PipelineFragmentContext::_build_pipelines(ExecNode*
node, PipelinePtr cur
RETURN_IF_ERROR(cur_pipe->add_operator(sort_source));
break;
}
+ case TPlanNodeType::PARTITION_SORT_NODE: {
+ auto new_pipeline = add_pipeline();
+ RETURN_IF_ERROR(_build_pipelines(node->child(0), new_pipeline));
+
+ OperatorBuilderPtr partition_sort_sink =
std::make_shared<PartitionSortSinkOperatorBuilder>(
+ next_operator_builder_id(), node);
+ RETURN_IF_ERROR(new_pipeline->set_sink(partition_sort_sink));
+
+ OperatorBuilderPtr partition_sort_source =
+
std::make_shared<PartitionSortSourceOperatorBuilder>(next_operator_builder_id(),
+ node);
+ RETURN_IF_ERROR(cur_pipe->add_operator(partition_sort_source));
+ break;
+ }
case TPlanNodeType::ANALYTIC_EVAL_NODE: {
auto new_pipeline = add_pipeline();
RETURN_IF_ERROR(_build_pipelines(node->child(0), new_pipeline));
diff --git a/be/src/vec/CMakeLists.txt b/be/src/vec/CMakeLists.txt
index 2d5bc7f177..97e77cd4d0 100644
--- a/be/src/vec/CMakeLists.txt
+++ b/be/src/vec/CMakeLists.txt
@@ -71,6 +71,7 @@ set(VEC_FILES
common/sort/sorter.cpp
common/sort/topn_sorter.cpp
common/sort/vsort_exec_exprs.cpp
+ common/sort/partition_sorter.cpp
common/string_utils/string_utils.cpp
common/hex.cpp
common/allocator.cpp
@@ -136,6 +137,7 @@ set(VEC_FILES
exec/vrepeat_node.cpp
exec/vtable_function_node.cpp
exec/vjdbc_connector.cpp
+ exec/vpartition_sort_node.cpp
exec/join/vhash_join_node.cpp
exec/join/vjoin_node_base.cpp
exec/join/vnested_loop_join_node.cpp
diff --git a/be/src/vec/common/columns_hashing.h
b/be/src/vec/common/columns_hashing.h
index 06f0773fc8..64fe7d87b5 100644
--- a/be/src/vec/common/columns_hashing.h
+++ b/be/src/vec/common/columns_hashing.h
@@ -258,6 +258,38 @@ struct HashMethodSingleLowNullableColumn : public
SingleColumnMethod {
return EmplaceResult(inserted);
}
+ template <typename Data>
+ ALWAYS_INLINE EmplaceResult emplace_key(Data& data, size_t hash_value,
size_t row,
+ Arena& pool) {
+ if (key_column->is_null_at(row)) {
+ bool has_null_key = data.has_null_key_data();
+ data.has_null_key_data() = true;
+
+ if constexpr (has_mapped) {
+ return EmplaceResult(data.get_null_key_data(),
data.get_null_key_data(),
+ !has_null_key);
+ } else {
+ return EmplaceResult(!has_null_key);
+ }
+ }
+
+ auto key_holder = Base::get_key_holder(row, pool);
+
+ bool inserted = false;
+ typename Data::LookupResult it;
+ data.emplace(key_holder, it, hash_value, inserted);
+
+ if constexpr (has_mapped) {
+ auto& mapped = *lookup_result_get_mapped(it);
+ if (inserted) {
+ new (&mapped) Mapped();
+ }
+ return EmplaceResult(mapped, mapped, inserted);
+ } else {
+ return EmplaceResult(inserted);
+ }
+ }
+
template <typename Data, typename Func, typename CreatorForNull>
ALWAYS_INLINE typename std::enable_if_t<has_mapped, Mapped>&
lazy_emplace_key(
Data& data, size_t row, Arena& pool, Func&& f, CreatorForNull&&
null_creator) {
diff --git a/be/src/vec/common/sort/partition_sorter.cpp
b/be/src/vec/common/sort/partition_sorter.cpp
new file mode 100644
index 0000000000..ca29d62eb4
--- /dev/null
+++ b/be/src/vec/common/sort/partition_sorter.cpp
@@ -0,0 +1,203 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "vec/common/sort/partition_sorter.h"
+
+#include <glog/logging.h>
+
+#include <algorithm>
+#include <queue>
+
+#include "common/object_pool.h"
+#include "vec/core/block.h"
+#include "vec/core/sort_cursor.h"
+#include "vec/functions/function_binary_arithmetic.h"
+#include "vec/utils/util.hpp"
+
+namespace doris {
+class RowDescriptor;
+class RuntimeProfile;
+class RuntimeState;
+
+namespace vectorized {
+class VSortExecExprs;
+} // namespace vectorized
+} // namespace doris
+
+namespace doris::vectorized {
+
+PartitionSorter::PartitionSorter(VSortExecExprs& vsort_exec_exprs, int limit,
int64_t offset,
+ ObjectPool* pool, std::vector<bool>&
is_asc_order,
+ std::vector<bool>& nulls_first, const
RowDescriptor& row_desc,
+ RuntimeState* state, RuntimeProfile* profile,
+ bool has_global_limit, int
partition_inner_limit,
+ TopNAlgorithm::type top_n_algorithm,
SortCursorCmp* previous_row)
+ : Sorter(vsort_exec_exprs, limit, offset, pool, is_asc_order,
nulls_first),
+ _state(MergeSorterState::create_unique(row_desc, offset, limit,
state, profile)),
+ _row_desc(row_desc),
+ _has_global_limit(has_global_limit),
+ _partition_inner_limit(partition_inner_limit),
+ _top_n_algorithm(top_n_algorithm),
+ _previous_row(previous_row) {}
+
+Status PartitionSorter::append_block(Block* input_block) {
+ Block sorted_block =
VectorizedUtils::create_empty_columnswithtypename(_row_desc);
+ DCHECK(input_block->columns() == sorted_block.columns());
+ RETURN_IF_ERROR(partial_sort(*input_block, sorted_block));
+ RETURN_IF_ERROR(_state->add_sorted_block(sorted_block));
+ return Status::OK();
+}
+
+Status PartitionSorter::prepare_for_read() {
+ auto& cursors = _state->get_cursors();
+ auto& blocks = _state->get_sorted_block();
+ auto& priority_queue = _state->get_priority_queue();
+ for (const auto& block : blocks) {
+ cursors.emplace_back(block, _sort_description);
+ }
+ for (auto& cursor : cursors) {
+ priority_queue.push(MergeSortCursor(&cursor));
+ }
+ return Status::OK();
+}
+
+Status PartitionSorter::get_next(RuntimeState* state, Block* block, bool* eos)
{
+ if (_state->get_sorted_block().empty()) {
+ *eos = true;
+ } else {
+ if (_state->get_sorted_block().size() == 1 && _has_global_limit) {
+ auto& sorted_block = _state->get_sorted_block()[0];
+ block->swap(sorted_block);
+ block->set_num_rows(_partition_inner_limit);
+ *eos = true;
+ } else {
+ RETURN_IF_ERROR(partition_sort_read(block, eos,
state->batch_size()));
+ }
+ }
+ return Status::OK();
+}
+
+Status PartitionSorter::partition_sort_read(Block* output_block, bool* eos,
int batch_size) {
+ const auto& sorted_block = _state->get_sorted_block()[0];
+ size_t num_columns = sorted_block.columns();
+ bool mem_reuse = output_block->mem_reuse();
+ MutableColumns merged_columns =
+ mem_reuse ? output_block->mutate_columns() :
sorted_block.clone_empty_columns();
+
+ size_t current_output_rows = 0;
+ auto& priority_queue = _state->get_priority_queue();
+
+ bool get_enough_data = false;
+ bool first_compare_row = false;
+ while (!priority_queue.empty()) {
+ auto current = priority_queue.top();
+ priority_queue.pop();
+ if (UNLIKELY(_previous_row->impl == nullptr)) {
+ first_compare_row = true;
+ *_previous_row = current;
+ }
+
+ switch (_top_n_algorithm) {
+ case TopNAlgorithm::ROW_NUMBER: {
+ //1 row_number no need to check distinct, just output
partition_inner_limit row
+ if ((current_output_rows + _output_total_rows) <
_partition_inner_limit) {
+ for (size_t i = 0; i < num_columns; ++i) {
+ merged_columns[i]->insert_from(*current->all_columns[i],
current->pos);
+ }
+ } else {
+ //rows has get enough
+ get_enough_data = true;
+ }
+ current_output_rows++;
+ break;
+ }
+ case TopNAlgorithm::DENSE_RANK: {
+ //3 dense_rank() maybe need distinct rows of partition_inner_limit
+ if ((current_output_rows + _output_total_rows) <
_partition_inner_limit) {
+ for (size_t i = 0; i < num_columns; ++i) {
+ merged_columns[i]->insert_from(*current->all_columns[i],
current->pos);
+ }
+ } else {
+ get_enough_data = true;
+ }
+ if (_has_global_limit) {
+ current_output_rows++;
+ } else {
+ //when it's first comes, the rows are same no need compare
+ if (first_compare_row) {
+ current_output_rows++;
+ first_compare_row = false;
+ } else {
+ // not the first comes, so need compare those, when is
distinct row
+ // so could current_output_rows++
+ bool cmp_res = _previous_row->compare_two_rows(current);
+ if (cmp_res == false) { // distinct row
+ current_output_rows++;
+ *_previous_row = current;
+ }
+ }
+ }
+ break;
+ }
+ case TopNAlgorithm::RANK: {
+ if (_has_global_limit &&
+ (current_output_rows + _output_total_rows) >=
_partition_inner_limit) {
+ get_enough_data = true;
+ break;
+ }
+ bool cmp_res = _previous_row->compare_two_rows(current);
+ //get a distinct row
+ if (cmp_res == false) {
+ //here must be check distinct of two rows, and then check nums
of row
+ if ((current_output_rows + _output_total_rows) >=
_partition_inner_limit) {
+ get_enough_data = true;
+ break;
+ }
+ *_previous_row = current;
+ }
+ for (size_t i = 0; i < num_columns; ++i) {
+ merged_columns[i]->insert_from(*current->all_columns[i],
current->pos);
+ }
+ current_output_rows++;
+ break;
+ }
+ default:
+ break;
+ }
+
+ if (!current->isLast()) {
+ current->next();
+ priority_queue.push(current);
+ }
+
+ if (current_output_rows == batch_size || get_enough_data == true) {
+ break;
+ }
+ }
+
+ if (!mem_reuse) {
+ Block merge_block =
sorted_block.clone_with_columns(std::move(merged_columns));
+ merge_block.swap(*output_block);
+ }
+ _output_total_rows += output_block->rows();
+ if (current_output_rows == 0 || get_enough_data == true) {
+ *eos = true;
+ }
+ return Status::OK();
+}
+
+} // namespace doris::vectorized
diff --git a/be/src/vec/common/sort/partition_sorter.h
b/be/src/vec/common/sort/partition_sorter.h
new file mode 100644
index 0000000000..ff17ac2115
--- /dev/null
+++ b/be/src/vec/common/sort/partition_sorter.h
@@ -0,0 +1,108 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+#include <gen_cpp/PlanNodes_types.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include <cstdint>
+#include <memory>
+#include <vector>
+
+#include "common/status.h"
+#include "vec/common/sort/sorter.h"
+
+namespace doris {
+class ObjectPool;
+class RowDescriptor;
+class RuntimeProfile;
+class RuntimeState;
+
+namespace vectorized {
+class Block;
+class VSortExecExprs;
+} // namespace vectorized
+} // namespace doris
+
+namespace doris::vectorized {
+
+struct SortCursorCmp {
+public:
+ SortCursorCmp() {
+ impl = nullptr;
+ row = 0;
+ }
+ SortCursorCmp(const MergeSortCursor& cursor) : row(cursor->pos),
impl(cursor.impl) {}
+
+ void reset() {
+ impl = nullptr;
+ row = 0;
+ }
+ bool compare_two_rows(const MergeSortCursor& rhs) const {
+ for (size_t i = 0; i < impl->sort_columns_size; ++i) {
+ int direction = impl->desc[i].direction;
+ int nulls_direction = impl->desc[i].nulls_direction;
+ int res = direction * impl->sort_columns[i]->compare_at(row,
rhs.impl->pos,
+
*(rhs.impl->sort_columns[i]),
+
nulls_direction);
+ if (res != 0) {
+ return false;
+ }
+ }
+ return true;
+ }
+ int row = 0;
+ MergeSortCursorImpl* impl;
+};
+
+class PartitionSorter final : public Sorter {
+ ENABLE_FACTORY_CREATOR(PartitionSorter);
+
+public:
+ PartitionSorter(VSortExecExprs& vsort_exec_exprs, int limit, int64_t
offset, ObjectPool* pool,
+ std::vector<bool>& is_asc_order, std::vector<bool>&
nulls_first,
+ const RowDescriptor& row_desc, RuntimeState* state,
RuntimeProfile* profile,
+ bool has_global_limit, int partition_inner_limit,
+ TopNAlgorithm::type top_n_algorithm, SortCursorCmp*
previous_row);
+
+ ~PartitionSorter() override = default;
+
+ Status append_block(Block* block) override;
+
+ Status prepare_for_read() override;
+
+ Status get_next(RuntimeState* state, Block* block, bool* eos) override;
+
+ size_t data_size() const override { return _state->data_size(); }
+
+ bool is_spilled() const override { return false; }
+
+ Status partition_sort_read(Block* block, bool* eos, int batch_size);
+ int64 get_output_rows() const { return _output_total_rows; }
+
+private:
+ std::unique_ptr<MergeSorterState> _state;
+ const RowDescriptor& _row_desc;
+ int64 _output_total_rows = 0;
+ bool _has_global_limit = false;
+ int _partition_inner_limit = 0;
+ TopNAlgorithm::type _top_n_algorithm = TopNAlgorithm::type::ROW_NUMBER;
+ SortCursorCmp* _previous_row;
+};
+
+} // namespace doris::vectorized
diff --git a/be/src/vec/common/sort/sorter.h b/be/src/vec/common/sort/sorter.h
index 48ea77852a..f5a12db3c0 100644
--- a/be/src/vec/common/sort/sorter.h
+++ b/be/src/vec/common/sort/sorter.h
@@ -60,13 +60,14 @@ public:
limit_(limit),
profile_(profile) {
external_sort_bytes_threshold_ =
state->external_sort_bytes_threshold();
+ if (profile != nullptr) {
+ block_spill_profile_ = profile->create_child("BlockSpill", true,
true);
+ profile->add_child(block_spill_profile_, false, nullptr);
- block_spill_profile_ = profile->create_child("BlockSpill", true, true);
- profile->add_child(block_spill_profile_, false, nullptr);
-
- spilled_block_count_ = ADD_COUNTER(block_spill_profile_, "BlockCount",
TUnit::UNIT);
- spilled_original_block_size_ =
- ADD_COUNTER(block_spill_profile_, "BlockBytes", TUnit::BYTES);
+ spilled_block_count_ = ADD_COUNTER(block_spill_profile_,
"BlockCount", TUnit::UNIT);
+ spilled_original_block_size_ =
+ ADD_COUNTER(block_spill_profile_, "BlockBytes",
TUnit::BYTES);
+ }
}
~MergeSorterState() = default;
@@ -91,6 +92,10 @@ public:
const Block& last_sorted_block() const { return sorted_blocks_.back(); }
+ std::vector<Block>& get_sorted_block() { return sorted_blocks_; }
+ std::priority_queue<MergeSortCursor>& get_priority_queue() { return
priority_queue_; }
+ std::vector<MergeSortCursorImpl>& get_cursors() { return cursors_; }
+
std::unique_ptr<Block> unsorted_block_;
private:
diff --git a/be/src/vec/exec/vpartition_sort_node.cpp
b/be/src/vec/exec/vpartition_sort_node.cpp
new file mode 100644
index 0000000000..8f3f50b9d4
--- /dev/null
+++ b/be/src/vec/exec/vpartition_sort_node.cpp
@@ -0,0 +1,454 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "vec/exec/vpartition_sort_node.h"
+
+#include <glog/logging.h>
+
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <sstream>
+#include <string>
+
+#include "common/logging.h"
+#include "common/object_pool.h"
+#include "runtime/runtime_state.h"
+#include "vec/common/hash_table/hash_set.h"
+#include "vec/exprs/vexpr.h"
+#include "vec/exprs/vexpr_context.h"
+
+namespace doris::vectorized {
+// Here is an empirical value.
+static constexpr size_t HASH_MAP_PREFETCH_DIST = 16;
+VPartitionSortNode::VPartitionSortNode(ObjectPool* pool, const TPlanNode&
tnode,
+ const DescriptorTbl& descs)
+ : ExecNode(pool, tnode, descs), _hash_table_size_counter(nullptr) {
+ _partitioned_data = std::make_unique<PartitionedHashMapVariants>();
+ _agg_arena_pool = std::make_unique<Arena>();
+ _previous_row = std::make_unique<SortCursorCmp>();
+}
+
+Status VPartitionSortNode::init(const TPlanNode& tnode, RuntimeState* state) {
+ RETURN_IF_ERROR(ExecNode::init(tnode, state));
+
+ //order by key
+ if (tnode.partition_sort_node.__isset.sort_info) {
+
RETURN_IF_ERROR(_vsort_exec_exprs.init(tnode.partition_sort_node.sort_info,
_pool));
+ _is_asc_order = tnode.partition_sort_node.sort_info.is_asc_order;
+ _nulls_first = tnode.partition_sort_node.sort_info.nulls_first;
+ }
+ //partition by key
+ if (tnode.partition_sort_node.__isset.partition_exprs) {
+ RETURN_IF_ERROR(VExpr::create_expr_trees(_pool,
tnode.partition_sort_node.partition_exprs,
+ &_partition_expr_ctxs));
+ _partition_exprs_num = _partition_expr_ctxs.size();
+ _partition_columns.resize(_partition_exprs_num);
+ }
+ if (_partition_exprs_num == 0) {
+ _value_places.push_back(_pool->add(new PartitionBlocks()));
+ }
+
+ _has_global_limit = tnode.partition_sort_node.has_global_limit;
+ _top_n_algorithm = tnode.partition_sort_node.top_n_algorithm;
+ _partition_inner_limit = tnode.partition_sort_node.partition_inner_limit;
+ return Status::OK();
+}
+
+Status VPartitionSortNode::prepare(RuntimeState* state) {
+ VLOG_CRITICAL << "VPartitionSortNode::prepare";
+ SCOPED_TIMER(_runtime_profile->total_time_counter());
+ _hash_table_size_counter = ADD_COUNTER(_runtime_profile, "HashTableSize",
TUnit::UNIT);
+ _build_timer = ADD_TIMER(runtime_profile(), "HashTableBuildTime");
+ _partition_sort_timer = ADD_TIMER(runtime_profile(), "PartitionSortTime");
+ _get_sorted_timer = ADD_TIMER(runtime_profile(), "GetSortedTime");
+ _selector_block_timer = ADD_TIMER(runtime_profile(), "SelectorBlockTime");
+ _emplace_key_timer = ADD_TIMER(runtime_profile(), "EmplaceKeyTime");
+
+ RETURN_IF_ERROR(ExecNode::prepare(state));
+ RETURN_IF_ERROR(_vsort_exec_exprs.prepare(state, child(0)->row_desc(),
_row_descriptor));
+ RETURN_IF_ERROR(VExpr::prepare(_partition_expr_ctxs, state,
child(0)->row_desc()));
+ _init_hash_method();
+
+ return Status::OK();
+}
+
+Status VPartitionSortNode::_split_block_by_partition(vectorized::Block*
input_block,
+ int batch_size) {
+ for (int i = 0; i < _partition_exprs_num; ++i) {
+ int result_column_id = -1;
+ RETURN_IF_ERROR(_partition_expr_ctxs[i]->execute(input_block,
&result_column_id));
+ DCHECK(result_column_id != -1);
+ _partition_columns[i] =
input_block->get_by_position(result_column_id).column.get();
+ }
+ _emplace_into_hash_table(_partition_columns, input_block, batch_size);
+ return Status::OK();
+}
+
+void VPartitionSortNode::_emplace_into_hash_table(const ColumnRawPtrs&
key_columns,
+ const vectorized::Block*
input_block,
+ int batch_size) {
+ std::visit(
+ [&](auto&& agg_method) -> void {
+ SCOPED_TIMER(_build_timer);
+ using HashMethodType = std::decay_t<decltype(agg_method)>;
+ using HashTableType = std::decay_t<decltype(agg_method.data)>;
+ using AggState = typename HashMethodType::State;
+
+ AggState state(key_columns, _partition_key_sz, nullptr);
+ size_t num_rows = input_block->rows();
+ _pre_serialize_key_if_need(state, agg_method, key_columns,
num_rows);
+
+ //PHHashMap
+ if constexpr (HashTableTraits<HashTableType>::is_phmap) {
+ if (_hash_values.size() < num_rows) {
+ _hash_values.resize(num_rows);
+ }
+ if constexpr
(ColumnsHashing::IsPreSerializedKeysHashMethodTraits<
+ AggState>::value) {
+ for (size_t i = 0; i < num_rows; ++i) {
+ _hash_values[i] =
agg_method.data.hash(agg_method.keys[i]);
+ }
+ } else {
+ for (size_t i = 0; i < num_rows; ++i) {
+ _hash_values[i] =
+
agg_method.data.hash(state.get_key_holder(i, *_agg_arena_pool));
+ }
+ }
+ }
+
+ for (size_t row = 0; row < num_rows; ++row) {
+ SCOPED_TIMER(_emplace_key_timer);
+ PartitionDataPtr aggregate_data = nullptr;
+ auto emplace_result = [&]() {
+ if constexpr
(HashTableTraits<HashTableType>::is_phmap) {
+ if (LIKELY(row + HASH_MAP_PREFETCH_DIST <
num_rows)) {
+ agg_method.data.prefetch_by_hash(
+ _hash_values[row +
HASH_MAP_PREFETCH_DIST]);
+ }
+ return state.emplace_key(agg_method.data,
_hash_values[row], row,
+ *_agg_arena_pool);
+ } else {
+ return state.emplace_key(agg_method.data, row,
*_agg_arena_pool);
+ }
+ }();
+
+ /// If a new key is inserted, initialize the states of the
aggregate functions, and possibly something related to the key.
+ if (emplace_result.is_inserted()) {
+ /// exception-safety - if you can not allocate memory
or create states, then destructors will not be called.
+ emplace_result.set_mapped(nullptr);
+ aggregate_data = _pool->add(new PartitionBlocks());
+ emplace_result.set_mapped(aggregate_data);
+ _value_places.push_back(aggregate_data);
+ _num_partition++;
+ } else {
+ aggregate_data = emplace_result.get_mapped();
+ }
+ assert(aggregate_data != nullptr);
+ aggregate_data->add_row_idx(row);
+ }
+ for (auto place : _value_places) {
+ SCOPED_TIMER(_selector_block_timer);
+ place->append_block_by_selector(input_block,
child(0)->row_desc(),
+ _has_global_limit,
_partition_inner_limit,
+ batch_size);
+ }
+ },
+ _partitioned_data->_partition_method_variant);
+}
+
+Status VPartitionSortNode::sink(RuntimeState* state, vectorized::Block*
input_block, bool eos) {
+ auto current_rows = input_block->rows();
+ if (current_rows > 0) {
+ child_input_rows = child_input_rows + current_rows;
+ if (UNLIKELY(_partition_exprs_num == 0)) {
+ //no partition key
+ _value_places[0]->append_whole_block(input_block,
child(0)->row_desc());
+ } else {
+ //just simply use partition num to check
+ //TODO: here could set can read to true directly. need mutex
+ if (_num_partition > 512 && child_input_rows < 10000 *
_num_partition) {
+ _blocks_buffer.push(std::move(*input_block));
+ } else {
+ RETURN_IF_ERROR(_split_block_by_partition(input_block,
state->batch_size()));
+ RETURN_IF_CANCELLED(state);
+ RETURN_IF_ERROR(
+ state->check_query_state("VPartitionSortNode, while
split input block."));
+ input_block->clear_column_data();
+ }
+ }
+ }
+
+ if (eos) {
+ //seems could free for hashtable
+ _agg_arena_pool.reset(nullptr);
+ _partitioned_data.reset(nullptr);
+ SCOPED_TIMER(_partition_sort_timer);
+ for (int i = 0; i < _value_places.size(); ++i) {
+ auto sorter = PartitionSorter::create_unique(
+ _vsort_exec_exprs, _limit, 0, _pool, _is_asc_order,
_nulls_first,
+ child(0)->row_desc(), state, i == 0 ?
_runtime_profile.get() : nullptr,
+ _has_global_limit, _partition_inner_limit,
_top_n_algorithm,
+ _previous_row.get());
+
+ DCHECK(child(0)->row_desc().num_materialized_slots() ==
+ _value_places[i]->blocks.back()->columns());
+ //get blocks from every partition, and sorter get those data.
+ for (const auto& block : _value_places[i]->blocks) {
+ RETURN_IF_ERROR(sorter->append_block(block.get()));
+ }
+ sorter->init_profile(_runtime_profile.get());
+ RETURN_IF_ERROR(sorter->prepare_for_read());
+ _partition_sorts.push_back(std::move(sorter));
+ }
+ if (state->enable_profile()) {
+ debug_profile();
+ }
+ COUNTER_SET(_hash_table_size_counter, int64_t(_num_partition));
+ _can_read = true;
+ }
+ return Status::OK();
+}
+
+Status VPartitionSortNode::open(RuntimeState* state) {
+ VLOG_CRITICAL << "VPartitionSortNode::open";
+ SCOPED_TIMER(_runtime_profile->total_time_counter());
+ RETURN_IF_ERROR(ExecNode::open(state));
+ RETURN_IF_ERROR(child(0)->open(state));
+
+ bool eos = false;
+ std::unique_ptr<Block> input_block = Block::create_unique();
+ do {
+ RETURN_IF_ERROR(child(0)->get_next_after_projects(
+ state, input_block.get(), &eos,
+ std::bind((Status(ExecNode::*)(RuntimeState*,
vectorized::Block*, bool*)) &
+ ExecNode::get_next,
+ _children[0], std::placeholders::_1,
std::placeholders::_2,
+ std::placeholders::_3)));
+ RETURN_IF_ERROR(sink(state, input_block.get(), eos));
+ } while (!eos);
+
+ child(0)->close(state);
+
+ return Status::OK();
+}
+
+Status VPartitionSortNode::alloc_resource(RuntimeState* state) {
+ SCOPED_TIMER(_runtime_profile->total_time_counter());
+ RETURN_IF_ERROR(ExecNode::alloc_resource(state));
+ RETURN_IF_ERROR(VExpr::open(_partition_expr_ctxs, state));
+ RETURN_IF_ERROR(_vsort_exec_exprs.open(state));
+ RETURN_IF_CANCELLED(state);
+ RETURN_IF_ERROR(state->check_query_state("VPartitionSortNode, while
open."));
+ return Status::OK();
+}
+
+Status VPartitionSortNode::pull(doris::RuntimeState* state, vectorized::Block*
output_block,
+ bool* eos) {
+ RETURN_IF_CANCELLED(state);
+ output_block->clear_column_data();
+ bool current_eos = false;
+ RETURN_IF_ERROR(get_sorted_block(state, output_block, ¤t_eos));
+ if (_sort_idx >= _partition_sorts.size() && output_block->rows() == 0) {
+ if (_blocks_buffer.empty() == false) {
+ _blocks_buffer.front().swap(*output_block);
+ _blocks_buffer.pop();
+ } else {
+ *eos = true;
+ }
+ }
+ return Status::OK();
+}
+
+Status VPartitionSortNode::get_next(RuntimeState* state, Block* output_block,
bool* eos) {
+ if (state == nullptr || output_block == nullptr || eos == nullptr) {
+ return Status::InternalError("input is nullptr");
+ }
+ VLOG_CRITICAL << "VPartitionSortNode::get_next";
+ SCOPED_TIMER(_runtime_profile->total_time_counter());
+
+ return pull(state, output_block, eos);
+}
+
+Status VPartitionSortNode::get_sorted_block(RuntimeState* state, Block*
output_block,
+ bool* current_eos) {
+ SCOPED_TIMER(_get_sorted_timer);
+ //sorter output data one by one
+ if (_sort_idx < _partition_sorts.size()) {
+ RETURN_IF_ERROR(_partition_sorts[_sort_idx]->get_next(state,
output_block, current_eos));
+ }
+ if (*current_eos) {
+ //current sort have eos, so get next idx
+ _previous_row->reset();
+ auto rows = _partition_sorts[_sort_idx]->get_output_rows();
+ partition_profile_output_rows.push_back(rows);
+ _num_rows_returned += rows;
+ _partition_sorts[_sort_idx].reset(nullptr);
+ _sort_idx++;
+ }
+
+ return Status::OK();
+}
+
+Status VPartitionSortNode::close(RuntimeState* state) {
+ VLOG_CRITICAL << "VPartitionSortNode::close";
+ if (is_closed()) {
+ return Status::OK();
+ }
+ return ExecNode::close(state);
+}
+
+void VPartitionSortNode::release_resource(RuntimeState* state) {
+ VExpr::close(_partition_expr_ctxs, state);
+ _vsort_exec_exprs.close(state);
+ ExecNode::release_resource(state);
+}
+
+void VPartitionSortNode::_init_hash_method() {
+ if (_partition_exprs_num == 0) {
+ return;
+ } else if (_partition_exprs_num == 1) {
+ auto is_nullable = _partition_expr_ctxs[0]->root()->is_nullable();
+ switch (_partition_expr_ctxs[0]->root()->result_type()) {
+ case TYPE_TINYINT:
+ case TYPE_BOOLEAN:
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int8_key,
is_nullable);
+ return;
+ case TYPE_SMALLINT:
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int16_key,
is_nullable);
+ return;
+ case TYPE_INT:
+ case TYPE_FLOAT:
+ case TYPE_DATEV2:
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int32_key,
is_nullable);
+ return;
+ case TYPE_BIGINT:
+ case TYPE_DOUBLE:
+ case TYPE_DATE:
+ case TYPE_DATETIME:
+ case TYPE_DATETIMEV2:
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_key,
is_nullable);
+ return;
+ case TYPE_LARGEINT: {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_key,
is_nullable);
+ return;
+ }
+ case TYPE_DECIMALV2:
+ case TYPE_DECIMAL32:
+ case TYPE_DECIMAL64:
+ case TYPE_DECIMAL128I: {
+ DataTypePtr& type_ptr =
_partition_expr_ctxs[0]->root()->data_type();
+ TypeIndex idx = is_nullable ? assert_cast<const
DataTypeNullable&>(*type_ptr)
+ .get_nested_type()
+ ->get_type_id()
+ : type_ptr->get_type_id();
+ WhichDataType which(idx);
+ if (which.is_decimal32()) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int32_key,
is_nullable);
+ } else if (which.is_decimal64()) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_key,
is_nullable);
+ } else {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_key,
is_nullable);
+ }
+ return;
+ }
+ case TYPE_CHAR:
+ case TYPE_VARCHAR:
+ case TYPE_STRING: {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::string_key,
is_nullable);
+ break;
+ }
+ default:
+
_partitioned_data->init(PartitionedHashMapVariants::Type::serialized);
+ }
+ } else {
+ bool use_fixed_key = true;
+ bool has_null = false;
+ int key_byte_size = 0;
+
+ _partition_key_sz.resize(_partition_exprs_num);
+ for (int i = 0; i < _partition_exprs_num; ++i) {
+ const auto& data_type =
_partition_expr_ctxs[i]->root()->data_type();
+
+ if (!data_type->have_maximum_size_of_value()) {
+ use_fixed_key = false;
+ break;
+ }
+
+ auto is_null = data_type->is_nullable();
+ has_null |= is_null;
+ _partition_key_sz[i] =
+ data_type->get_maximum_size_of_value_in_memory() -
(is_null ? 1 : 0);
+ key_byte_size += _partition_key_sz[i];
+ }
+
+ if (std::tuple_size<KeysNullMap<UInt256>>::value + key_byte_size >
sizeof(UInt256)) {
+ use_fixed_key = false;
+ }
+
+ if (use_fixed_key) {
+ if (has_null) {
+ if (std::tuple_size<KeysNullMap<UInt64>>::value +
key_byte_size <= sizeof(UInt64)) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_keys, has_null);
+ } else if (std::tuple_size<KeysNullMap<UInt128>>::value +
key_byte_size <=
+ sizeof(UInt128)) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_keys,
+ has_null);
+ } else {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int256_keys,
+ has_null);
+ }
+ } else {
+ if (key_byte_size <= sizeof(UInt64)) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int64_keys, has_null);
+ } else if (key_byte_size <= sizeof(UInt128)) {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int128_keys,
+ has_null);
+ } else {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::int256_keys,
+ has_null);
+ }
+ }
+ } else {
+
_partitioned_data->init(PartitionedHashMapVariants::Type::serialized);
+ }
+ }
+}
+
+void VPartitionSortNode::debug_profile() {
+ fmt::memory_buffer partition_rows_read, partition_blocks_read;
+ fmt::format_to(partition_rows_read, "[");
+ fmt::format_to(partition_blocks_read, "[");
+ for (auto place : _value_places) {
+ fmt::format_to(partition_rows_read, "{}, ", place->get_total_rows());
+ fmt::format_to(partition_rows_read, "{}, ", place->blocks.size());
+ }
+ fmt::format_to(partition_rows_read, "]");
+ fmt::format_to(partition_blocks_read, "]");
+
+ runtime_profile()->add_info_string("PerPartitionBlocksRead",
partition_blocks_read.data());
+ runtime_profile()->add_info_string("PerPartitionRowsRead",
partition_rows_read.data());
+ fmt::memory_buffer partition_output_rows;
+ fmt::format_to(partition_output_rows, "[");
+ for (auto row : partition_profile_output_rows) {
+ fmt::format_to(partition_output_rows, "{}, ", row);
+ }
+ fmt::format_to(partition_output_rows, "]");
+ runtime_profile()->add_info_string("PerPartitionOutputRows",
partition_output_rows.data());
+}
+
+} // namespace doris::vectorized
diff --git a/be/src/vec/exec/vpartition_sort_node.h
b/be/src/vec/exec/vpartition_sort_node.h
new file mode 100644
index 0000000000..4143b19dc9
--- /dev/null
+++ b/be/src/vec/exec/vpartition_sort_node.h
@@ -0,0 +1,386 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <glog/logging.h>
+
+#include <cstdint>
+#include <memory>
+
+#include "exec/exec_node.h"
+#include "vec/columns/column.h"
+#include "vec/common/columns_hashing.h"
+#include "vec/common/hash_table/hash.h"
+#include "vec/common/hash_table/ph_hash_map.h"
+#include "vec/common/hash_table/string_hash_map.h"
+#include "vec/common/sort/partition_sorter.h"
+#include "vec/common/sort/vsort_exec_exprs.h"
+#include "vec/core/block.h"
+
+namespace doris {
+namespace vectorized {
+static constexpr size_t INITIAL_BUFFERED_BLOCK_BYTES = 64 << 20;
+
+struct PartitionBlocks {
+public:
+ PartitionBlocks() = default;
+ ~PartitionBlocks() = default;
+
+ void add_row_idx(size_t row) { selector.push_back(row); }
+
+ void append_block_by_selector(const vectorized::Block* input_block,
+ const RowDescriptor& row_desc, bool is_limit,
+ int64_t partition_inner_limit, int
batch_size) {
+ if (blocks.empty() || reach_limit()) {
+ init_rows = batch_size;
+
blocks.push_back(Block::create_unique(VectorizedUtils::create_empty_block(row_desc)));
+ }
+ auto columns = input_block->get_columns();
+ auto mutable_columns = blocks.back()->mutate_columns();
+ DCHECK(columns.size() == mutable_columns.size());
+ for (int i = 0; i < mutable_columns.size(); ++i) {
+ columns[i]->append_data_by_selector(mutable_columns[i], selector);
+ }
+ init_rows = init_rows - selector.size();
+ total_rows = total_rows + selector.size();
+ selector.clear();
+ }
+
+ void append_whole_block(vectorized::Block* input_block, const
RowDescriptor& row_desc) {
+ auto empty_block =
Block::create_unique(VectorizedUtils::create_empty_block(row_desc));
+ empty_block->swap(*input_block);
+ blocks.emplace_back(std::move(empty_block));
+ }
+
+ bool reach_limit() {
+ return init_rows <= 0 || blocks.back()->bytes() >
INITIAL_BUFFERED_BLOCK_BYTES;
+ }
+
+ size_t get_total_rows() const { return total_rows; }
+
+ IColumn::Selector selector;
+ std::vector<std::unique_ptr<Block>> blocks;
+ size_t total_rows = 0;
+ int init_rows = 4096;
+};
+
+using PartitionDataPtr = PartitionBlocks*;
+using PartitionDataWithStringKey = PHHashMap<StringRef, PartitionDataPtr,
DefaultHash<StringRef>>;
+using PartitionDataWithShortStringKey = StringHashMap<PartitionDataPtr>;
+using PartitionDataWithUInt32Key = PHHashMap<UInt32, PartitionDataPtr,
HashCRC32<UInt32>>;
+
+template <typename TData>
+struct PartitionMethodSerialized {
+ using Data = TData;
+ using Key = typename Data::key_type;
+ using Mapped = typename Data::mapped_type;
+ using Iterator = typename Data::iterator;
+
+ Data data;
+ Iterator iterator;
+ bool inited = false;
+ std::vector<StringRef> keys;
+ size_t keys_memory_usage = 0;
+ PartitionMethodSerialized() : _serialized_key_buffer_size(0),
_serialized_key_buffer(nullptr) {}
+
+ using State = ColumnsHashing::HashMethodSerialized<typename
Data::value_type, Mapped, true>;
+
+ template <typename Other>
+ explicit PartitionMethodSerialized(const Other& other) : data(other.data)
{}
+
+ size_t serialize_keys(const ColumnRawPtrs& key_columns, size_t num_rows) {
+ if (keys.size() < num_rows) {
+ keys.resize(num_rows);
+ }
+
+ size_t max_one_row_byte_size = 0;
+ for (const auto& column : key_columns) {
+ max_one_row_byte_size += column->get_max_row_byte_size();
+ }
+ size_t total_bytes = max_one_row_byte_size * num_rows;
+
+ if (total_bytes > SERIALIZE_KEYS_MEM_LIMIT_IN_BYTES) {
+ // reach mem limit, don't serialize in batch
+ // for simplicity, we just create a new arena here.
+ _arena.reset(new Arena());
+ size_t keys_size = key_columns.size();
+ for (size_t i = 0; i < num_rows; ++i) {
+ keys[i] = serialize_keys_to_pool_contiguous(i, keys_size,
key_columns, *_arena);
+ }
+ keys_memory_usage = _arena->size();
+ } else {
+ _arena.reset();
+ if (total_bytes > _serialized_key_buffer_size) {
+ _serialized_key_buffer_size = total_bytes;
+ _serialize_key_arena.reset(new Arena());
+ _serialized_key_buffer = reinterpret_cast<uint8_t*>(
+
_serialize_key_arena->alloc(_serialized_key_buffer_size));
+ }
+
+ for (size_t i = 0; i < num_rows; ++i) {
+ keys[i].data =
+ reinterpret_cast<char*>(_serialized_key_buffer + i *
max_one_row_byte_size);
+ keys[i].size = 0;
+ }
+
+ for (const auto& column : key_columns) {
+ column->serialize_vec(keys, num_rows, max_one_row_byte_size);
+ }
+ keys_memory_usage = _serialized_key_buffer_size;
+ }
+ return max_one_row_byte_size;
+ }
+
+private:
+ size_t _serialized_key_buffer_size;
+ uint8_t* _serialized_key_buffer;
+ std::unique_ptr<Arena> _serialize_key_arena;
+ std::unique_ptr<Arena> _arena;
+ static constexpr size_t SERIALIZE_KEYS_MEM_LIMIT_IN_BYTES = 16 * 1024 *
1024; // 16M
+};
+
+//for string
+template <typename TData>
+struct PartitionMethodStringNoCache {
+ using Data = TData;
+ using Key = typename Data::key_type;
+ using Mapped = typename Data::mapped_type;
+ using Iterator = typename Data::iterator;
+
+ Data data;
+ Iterator iterator;
+ bool inited = false;
+
+ PartitionMethodStringNoCache() = default;
+
+ explicit PartitionMethodStringNoCache(size_t size_hint) : data(size_hint)
{}
+
+ template <typename Other>
+ explicit PartitionMethodStringNoCache(const Other& other) :
data(other.data) {}
+
+ using State = ColumnsHashing::HashMethodString<typename Data::value_type,
Mapped, true, false>;
+
+ static const bool low_cardinality_optimization = false;
+};
+
+/// For the case where there is one numeric key.
+/// FieldType is UInt8/16/32/64 for any type with corresponding bit width.
+template <typename FieldType, typename TData, bool
consecutive_keys_optimization = false>
+struct PartitionMethodOneNumber {
+ using Data = TData;
+ using Key = typename Data::key_type;
+ using Mapped = typename Data::mapped_type;
+ using Iterator = typename Data::iterator;
+
+ Data data;
+ Iterator iterator;
+ bool inited = false;
+
+ PartitionMethodOneNumber() = default;
+
+ template <typename Other>
+ PartitionMethodOneNumber(const Other& other) : data(other.data) {}
+
+ /// To use one `Method` in different threads, use different `State`.
+ using State = ColumnsHashing::HashMethodOneNumber<typename
Data::value_type, Mapped, FieldType,
+
consecutive_keys_optimization>;
+};
+
+template <typename Base>
+struct PartitionDataWithNullKey : public Base {
+ using Base::Base;
+
+ bool& has_null_key_data() { return has_null_key; }
+ PartitionDataPtr& get_null_key_data() { return null_key_data; }
+ bool has_null_key_data() const { return has_null_key; }
+ PartitionDataPtr get_null_key_data() const { return null_key_data; }
+ size_t size() const { return Base::size() + (has_null_key ? 1 : 0); }
+ bool empty() const { return Base::empty() && !has_null_key; }
+
+ void clear() {
+ Base::clear();
+ has_null_key = false;
+ }
+
+ void clear_and_shrink() {
+ Base::clear_and_shrink();
+ has_null_key = false;
+ }
+
+private:
+ bool has_null_key = false;
+ PartitionDataPtr null_key_data = nullptr;
+};
+
+template <typename SingleColumnMethod>
+struct PartitionMethodSingleNullableColumn : public SingleColumnMethod {
+ using Base = SingleColumnMethod;
+ using BaseState = typename Base::State;
+
+ using Data = typename Base::Data;
+ using Key = typename Base::Key;
+ using Mapped = typename Base::Mapped;
+
+ using Base::data;
+
+ PartitionMethodSingleNullableColumn() = default;
+
+ template <typename Other>
+ explicit PartitionMethodSingleNullableColumn(const Other& other) :
Base(other) {}
+
+ using State = ColumnsHashing::HashMethodSingleLowNullableColumn<BaseState,
Mapped, true>;
+};
+
+using PartitionedMethodVariants =
+ std::variant<PartitionMethodSerialized<PartitionDataWithStringKey>,
+ PartitionMethodOneNumber<UInt32,
PartitionDataWithUInt32Key>,
+
PartitionMethodSingleNullableColumn<PartitionMethodOneNumber<
+ UInt32,
PartitionDataWithNullKey<PartitionDataWithUInt32Key>>>,
+
PartitionMethodStringNoCache<PartitionDataWithShortStringKey>,
+
PartitionMethodSingleNullableColumn<PartitionMethodStringNoCache<
+
PartitionDataWithNullKey<PartitionDataWithShortStringKey>>>>;
+
+struct PartitionedHashMapVariants {
+ PartitionedHashMapVariants() = default;
+ PartitionedHashMapVariants(const PartitionedHashMapVariants&) = delete;
+ PartitionedHashMapVariants& operator=(const PartitionedHashMapVariants&) =
delete;
+ PartitionedMethodVariants _partition_method_variant;
+
+ enum class Type {
+ EMPTY = 0,
+ serialized,
+ int8_key,
+ int16_key,
+ int32_key,
+ int64_key,
+ int128_key,
+ int64_keys,
+ int128_keys,
+ int256_keys,
+ string_key,
+ };
+
+ Type _type = Type::EMPTY;
+
+ void init(Type type, bool is_nullable = false) {
+ _type = type;
+ switch (_type) {
+ case Type::serialized:
+ _partition_method_variant
+
.emplace<PartitionMethodSerialized<PartitionDataWithStringKey>>();
+ break;
+ case Type::int32_key:
+ if (is_nullable) {
+ _partition_method_variant
+
.emplace<PartitionMethodSingleNullableColumn<PartitionMethodOneNumber<
+ UInt32,
PartitionDataWithNullKey<PartitionDataWithUInt32Key>>>>();
+ } else {
+ _partition_method_variant
+ .emplace<PartitionMethodOneNumber<UInt32,
PartitionDataWithUInt32Key>>();
+ }
+ break;
+ case Type::string_key:
+ if (is_nullable) {
+ _partition_method_variant
+
.emplace<PartitionMethodSingleNullableColumn<PartitionMethodStringNoCache<
+
PartitionDataWithNullKey<PartitionDataWithShortStringKey>>>>();
+ } else {
+ _partition_method_variant
+
.emplace<PartitionMethodStringNoCache<PartitionDataWithShortStringKey>>();
+ }
+ break;
+ default:
+ DCHECK(false) << "Do not have a rigth partition by data type";
+ }
+ }
+};
+
+class VExprContext;
+
+class VPartitionSortNode : public ExecNode {
+public:
+ VPartitionSortNode(ObjectPool* pool, const TPlanNode& tnode, const
DescriptorTbl& descs);
+ ~VPartitionSortNode() override = default;
+
+ Status init(const TPlanNode& tnode, RuntimeState* state = nullptr)
override;
+ Status prepare(RuntimeState* state) override;
+ Status alloc_resource(RuntimeState* state) override;
+ Status open(RuntimeState* state) override;
+ void release_resource(RuntimeState* state) override;
+ Status get_next(RuntimeState* state, Block* block, bool* eos) override;
+ Status close(RuntimeState* state) override;
+
+ Status pull(RuntimeState* state, vectorized::Block* output_block, bool*
eos) override;
+ Status sink(RuntimeState* state, vectorized::Block* input_block, bool eos)
override;
+
+ void debug_profile();
+
+private:
+ template <typename AggState, typename AggMethod>
+ void _pre_serialize_key_if_need(AggState& state, AggMethod& agg_method,
+ const ColumnRawPtrs& key_columns, const
size_t num_rows) {
+ if constexpr
(ColumnsHashing::IsPreSerializedKeysHashMethodTraits<AggState>::value) {
+ (agg_method.serialize_keys(key_columns, num_rows));
+ state.set_serialized_keys(agg_method.keys.data());
+ }
+ }
+
+ void _init_hash_method();
+ Status _split_block_by_partition(vectorized::Block* input_block, int
batch_size);
+ void _emplace_into_hash_table(const ColumnRawPtrs& key_columns,
+ const vectorized::Block* input_block, int
batch_size);
+ Status get_sorted_block(RuntimeState* state, Block* output_block, bool*
eos);
+
+ // hash table
+ std::unique_ptr<PartitionedHashMapVariants> _partitioned_data;
+ std::unique_ptr<Arena> _agg_arena_pool;
+ // partition by k1,k2
+ int _partition_exprs_num = 0;
+ std::vector<VExprContext*> _partition_expr_ctxs;
+ std::vector<const IColumn*> _partition_columns;
+ std::vector<size_t> _partition_key_sz;
+ std::vector<size_t> _hash_values;
+
+ std::vector<std::unique_ptr<PartitionSorter>> _partition_sorts;
+ std::vector<PartitionDataPtr> _value_places;
+ // Expressions and parameters used for build _sort_description
+ VSortExecExprs _vsort_exec_exprs;
+ std::vector<bool> _is_asc_order;
+ std::vector<bool> _nulls_first;
+ TopNAlgorithm::type _top_n_algorithm = TopNAlgorithm::ROW_NUMBER;
+ bool _has_global_limit = false;
+ int _num_partition = 0;
+ int64_t _partition_inner_limit = 0;
+ int _sort_idx = 0;
+ std::unique_ptr<SortCursorCmp> _previous_row = nullptr;
+ std::queue<Block> _blocks_buffer;
+ int64_t child_input_rows = 0;
+
+ RuntimeProfile::Counter* _build_timer;
+ RuntimeProfile::Counter* _emplace_key_timer;
+ RuntimeProfile::Counter* _partition_sort_timer;
+ RuntimeProfile::Counter* _get_sorted_timer;
+ RuntimeProfile::Counter* _selector_block_timer;
+
+ RuntimeProfile::Counter* _hash_table_size_counter;
+ //only for profile record
+ std::vector<int> partition_profile_output_rows;
+};
+
+} // namespace vectorized
+} // namespace doris
diff --git a/gensrc/thrift/PlanNodes.thrift b/gensrc/thrift/PlanNodes.thrift
index 8afc3fde4c..ed54a8c3d2 100644
--- a/gensrc/thrift/PlanNodes.thrift
+++ b/gensrc/thrift/PlanNodes.thrift
@@ -57,6 +57,7 @@ enum TPlanNodeType {
FILE_SCAN_NODE,
JDBC_SCAN_NODE,
TEST_EXTERNAL_SCAN_NODE,
+ PARTITION_SORT_NODE,
}
// phases of an execution node
@@ -765,6 +766,19 @@ struct TSortNode {
7: optional bool use_topn_opt
}
+enum TopNAlgorithm {
+ RANK,
+ DENSE_RANK,
+ ROW_NUMBER
+ }
+
+ struct TPartitionSortNode {
+ 1: optional list<Exprs.TExpr> partition_exprs
+ 2: optional TSortInfo sort_info
+ 3: optional bool has_global_limit
+ 4: optional TopNAlgorithm top_n_algorithm
+ 5: optional i64 partition_inner_limit
+ }
enum TAnalyticWindowType {
// Specifies the window as a logical offset
RANGE,
@@ -1072,6 +1086,7 @@ struct TPlanNode {
101: optional list<Exprs.TExpr> projections
102: optional Types.TTupleId output_tuple_id
+ 103: optional TPartitionSortNode partition_sort_node
}
// A flattened representation of a tree of PlanNodes, obtained by depth-first
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]