This is an automated email from the ASF dual-hosted git repository.

morningman pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/doris-website.git


The following commit(s) were added to refs/heads/master by this push:
     new b82ef777f62 [doc](glue) modify glue & iceberg s3table (#2717)
b82ef777f62 is described below

commit b82ef777f62a801702f78ffb655f40ff9bab2649
Author: Mingyu Chen (Rayner) <[email protected]>
AuthorDate: Thu Aug 7 18:10:49 2025 -0700

    [doc](glue) modify glue & iceberg s3table (#2717)
---
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 .../current/lakehouse/metastores/aws-glue.md       | 188 ++++++++-------------
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 .../lakehouse/best-practices/doris-aws-s3tables.md |  49 ++++--
 7 files changed, 259 insertions(+), 223 deletions(-)

diff --git a/docs/lakehouse/best-practices/doris-aws-s3tables.md 
b/docs/lakehouse/best-practices/doris-aws-s3tables.md
index 4e056f91afb..cb16b6f8bc3 100644
--- a/docs/lakehouse/best-practices/doris-aws-s3tables.md
+++ b/docs/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ Here we create a Table Bucket named doris-s3-table-bucket. 
After creation, we wi
 
 ### 02 Create Iceberg Catalog
 
-Create an Iceberg Catalog of type `s3tables`
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- Create an Iceberg Catalog of type `s3tables`
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- Connecting to `s3 tables` using Glue Rest Catalog 
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 Access S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-We can insert another batch of data, then use the `iceberg_meta()` function to 
view Iceberg Snapshots:
+We can insert another batch of data, then use the `$snapshots` system table to 
view Iceberg Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216
diff --git 
a/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/best-practices/doris-aws-s3tables.md
 
b/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/best-practices/doris-aws-s3tables.md
index 39b5408fa24..ee1f9534385 100644
--- 
a/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/best-practices/doris-aws-s3tables.md
+++ 
b/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ S3 Table Bucket 是 S3 推出的第三种 Bucket 类型,和之前的 General p
 
 ### 02 创建 Iceberg Catalog
 
-创建一个 `s3tables` 类型的 Iceberg Catalog
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- 创建一个 `s3tables` 类型的 Iceberg Catalog
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- 通过 Glue Rest Catalog 连接 `s3 tables`
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 访问 S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-我们可以再插入一批数据,然后使用 `iceberg_meta()` 函数查看 Iceberg 的 Snapshots:
+我们可以再插入一批数据,然后使用 `$snapshots` 系统表查看 Iceberg 的 Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216
diff --git 
a/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/metastores/aws-glue.md
 
b/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/metastores/aws-glue.md
index c1fea3813e1..2f550e981df 100644
--- 
a/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/metastores/aws-glue.md
+++ 
b/i18n/zh-CN/docusaurus-plugin-content-docs/current/lakehouse/metastores/aws-glue.md
@@ -5,95 +5,37 @@
 }
 ---
 
-# Glue Catalog 参数文档
-
 本文档介绍通过 `CREATE CATALOG` 使用 **AWS Glue Catalog** 访问 **Iceberg 表** 或 **Hive 表** 
时的参数配置。
 
----
-
-## 一、Glue Catalog 支持的类型
+## Glue Catalog 支持的类型
 
 AWS Glue Catalog 当前支持两种类型的 Catalog:
 
-| Catalog 类型 | 类型标识 (`type`) | 描述                                |
-|--------------|---------------|-------------------------------------|
-| Hive         | glue          | 对接 Hive Metastore 的 Catalog      |
-| Iceberg      | glue          | 对接 Iceberg 表格式                |
+| Catalog 类型 | 类型标识 (`type`) | 描述                                        |
+|-------------|------------------|---------------------------------------------|
+| Hive        | glue             | 对接 Hive Metastore 的 Catalog             |
+| Iceberg     | glue             | 对接 Iceberg 表格式                         |
+| Iceberg     | rest             | 通过 Glue Rest Catalog 对接 Iceberg 表格式  |
 
+本说明文档分别对这写类型的参数进行详细介绍,便于用户配置。
 
-本说明文档分别对这两种类型的参数进行详细介绍,便于用户配置。
+## Hive Glue Catalog
 
----
+Hive Glue Catalog 用于访问 Hive 表,通过 AWS Glue 的 Hive Metastore 兼容接口访问 Glue。配置如下:
 
-## 二、Iceberg Glue Catalog 参数总揽
+| 参数名称                   | 描述                                                  
    | 是否必须 | 默认值 |
+|---------------------------|-----------------------------------------------------------|----------|--------|
+| `type`                    | 固定为 `hms`                                        
      | 是       | 无     |
+| `hive.metastore.type`     | 固定为 `glue`                                       
      | 是       | 无     |
+| `glue.region`             | AWS Glue 所在区域,例如:`us-east-1`                     
 | 是       | 无     |
+| `glue.endpoint`           | AWS Glue 
endpoint,例如:`https://glue.us-east-1.amazonaws.com` | 是       | 无     |
+| `glue.access_key`         | AWS Access Key ID                                
         | 是       | 空     |
+| `glue.secret_key`         | AWS Secret Access Key                            
         | 是       | 空     |
+| `glue.catalog_id`         | Glue Catalog ID(暂未支持)                            
    | 否       | 空     |
+| `glue.role_arn`           | IAM Role ARN,用于访问 Glue(暂未支持)                     
| 否       | 空     |
+| `glue.external_id`        | IAM External ID,用于访问 Glue(暂未支持)                  
| 否       | 空     |
 
-Iceberg Glue Catalog 用于访问 Iceberg 表,必须配置以下参数:
-
-| 参数名称                  | 描述                                                   
                 | 是否必须 | 默认值  |
-|---------------------------|-------------------------------------------------------------------------|----------|---------|
-| `type`                    | 固定为 `iceberg`                                    
                   | 是       | 无      |
-| `iceberg.catalog.type`    | 固定为 `glue`                                       
                  | 是       | 无      |
-| `warehouse`               | Iceberg 
数据仓库路径,例如:`s3://my-bucket/iceberg-warehouse/`            | 是       | s3://doris 
    |
-| `glue.region`             | AWS Glue 所在区域,例如:`us-east-1`                     
              | 是       | 无      |
-| `glue.endpoint`           | AWS Glue 
endpoint,例如:`https://glue.us-east-1.amazonaws.com`         | 是       | 无      |
-| `glue.access_key`         | AWS Access Key ID                                
                       | 是       | 空     |
-| `glue.secret_key`         | AWS Secret Access Key                            
                       | 是       | 空     |
-| `glue.catalog_id`         | Glue Catalog ID(暂未支持)                            
                 | 否       | 空     |
-| `glue.role_arn`           | IAM Role ARN,用于访问 Glue(暂未支持)                     
           | 否       | 空     |
-| `glue.external_id`        | IAM External ID,用于访问 Glue(暂未支持)                  
          | 否       | 空     |
-
-### Iceberg Glue Catalog 示例
-
-```sql
-CREATE CATALOG iceberg_glue_catalog WITH (
-  'type' = 'iceberg',
-  'iceberg.catalog.type' = 'glue',
-  'glue.region' = 'us-east-1',
-  'glue.endpoint' = 'https://glue.us-east-1.amazonaws.com',
-  'glue.access_key' = '<YOUR_ACCESS_KEY>',
-  'glue.secret_key' = '<YOUR_SECRET_KEY>'
-);
-```
-
----
-
-## 三、Hive Glue Catalog 参数总揽
-
-Hive Glue Catalog 用于访问 Hive 表,通过 AWS Glue 作为 Hive Metastore 服务,必须配置以下参数:
-
-| 参数名称                           | 描述                                          
                                                    | 是否必须 | 默认值  |
-|-----------------------------------|--------------------------------------------------------------------------------------------------|----------|---------|
-| `type`                            | 固定为 `hms`                                
                                                     | 是       | 无      |
-| `hive.metastore.type`             | 固定为 `glue`                               
                                                     | 是       | 无      |
-| `glue.region`                     | AWS Glue 所在区域,例如:`us-east-1`             
                                                | 是       | 无      |
-| `glue.endpoint`                   | AWS Glue 
endpoint,例如:`https://glue.us-east-1.amazonaws.com`                              
       | 是       | 无      |
-| `glue.access_key`                 | AWS Access Key ID                        
                                                       | 是       | 空     |
-| `glue.secret_key`                 | AWS Secret Access Key                    
                                                       | 是       | 空     |
-| `glue.catalog_id`                 | Glue Catalog ID(暂未支持)                    
                                                  | 否       | 空     |
-| `glue.role_arn`                   | IAM Role ARN,用于访问 Glue(暂未支持)             
                                           | 否       | 空     |
-| `glue.external_id`                | IAM External ID,用于访问 Glue(暂未支持)          
                                           | 否       | 空     |
-
-### Hive Glue Catalog 缓存参数(仅 Hive Glue 有效,默认关闭)
-
-#### 表缓存
-
-| 参数名称                         | 描述                         | 默认值  |
-|----------------------------------|------------------------------|---------|
-| `aws.glue.cache.table.enable`    | 是否启用表缓存              | `false` |
-| `aws.glue.cache.table.size`      | 表缓存最大条目数            | `1000`  |
-| `aws.glue.cache.table.ttl-mins`  | 表缓存存活时间(分钟)     | `30`    |
-
-#### 数据库缓存
-
-| 参数名称                      | 描述                         | 默认值  |
-|-------------------------------|------------------------------|---------|
-| `aws.glue.cache.db.enable`     | 是否启用数据库缓存          | `false` |
-| `aws.glue.cache.db.size`       | 数据库缓存最大条目数        | `1000`  |
-| `aws.glue.cache.db.ttl-mins`   | 数据库缓存存活时间(分钟)  | `30`    |
-
----
-
-### Hive Glue Catalog 示例
+### 示例
 
 ```sql
 CREATE CATALOG hive_glue_catalog WITH (
@@ -106,48 +48,64 @@ CREATE CATALOG hive_glue_catalog WITH (
 );
 ```
 
----
-
-## 四、Glue Catalog 认证方式说明
-
-访问 AWS Glue Catalog 需要进行身份认证,目前支持的两种方式如下(**当前仅支持方式一**):
+## Iceberg Glue Catalog
 
-### 方式一:使用 Access Key / Secret Key(已支持 ✅)
+Iceberg Glue Catalog 通过 Glue Client 访问 Glue。配置如下:
 
-通过设置 `glue.access_key` 和 `glue.secret_key` 来进行静态身份认证。
+| 参数名称                 | 描述                                                    
     | 是否必须 | 默认值     |
+|-------------------------|--------------------------------------------------------------|----------|------------|
+| `type`                  | 固定为 `iceberg`                                      
       | 是       | 无         |
+| `iceberg.catalog.type`  | 固定为 `glue`                                         
      | 是       | 无         |
+| `warehouse`             | Iceberg 
数据仓库路径,例如:`s3://my-bucket/iceberg-warehouse/` | 是       | s3://doris |
+| `glue.region`           | AWS Glue 所在区域,例如:`us-east-1`                       
 | 是       | 无         |
+| `glue.endpoint`         | AWS Glue 
endpoint,例如:`https://glue.us-east-1.amazonaws.com` | 是       | 无         |
+| `glue.access_key`       | AWS Access Key ID                                  
         | 是       | 空         |
+| `glue.secret_key`       | AWS Secret Access Key                              
         | 是       | 空         |
+| `glue.catalog_id`       | Glue Catalog ID(暂未支持)                              
    | 否       | 空         |
+| `glue.role_arn`         | IAM Role ARN,用于访问 Glue(暂未支持)                      
| 否       | 空         |
+| `glue.external_id`      | IAM External ID,用于访问 Glue(暂未支持)                   
| 否       | 空         |
 
-| 参数名称           | 描述                                 | 是否必须 | 示例              
             |
-|--------------------|--------------------------------------|----------|--------------------------------|
-| `glue.access_key`  | AWS Access Key ID,用于身份验证      | 是       | 
`AKIA***************`         |
-| `glue.secret_key`  | AWS Secret Access Key                | 是       | 
`wJalrXUtnFEMI/K7MDENG/bPxRfi` |
+### 示例
 
-#### 适用场景:
-- 本地测试、开发环境
-- 运行环境中没有统一的 IAM Role 授权管理
-- 快速集成使用
-
-#### 注意事项:
-- AK/SK 具有权限管理风险,建议避免硬编码到代码或配置文件中。
-- 在生产环境中推荐使用 IAM Role 的方式替代。
-
----
-
-### 方式二:使用 IAM Role(暂未支持 ❌)
+```sql
+CREATE CATALOG iceberg_glue_catalog WITH (
+  'type' = 'iceberg',
+  'iceberg.catalog.type' = 'glue',
+  'glue.region' = 'us-east-1',
+  'glue.endpoint' = 'https://glue.us-east-1.amazonaws.com',
+  'glue.access_key' = '<YOUR_ACCESS_KEY>',
+  'glue.secret_key' = '<YOUR_SECRET_KEY>'
+);
+```
 
-通过配置 `glue.role_arn` 和 `glue.external_id`,授权当前程序以某个角色的身份访问 Glue。
+## Iceberg Glue Rest Catalog
 
-| 参数名称           | 描述                                                   | 是否必须 
| 示例                                                                 |
-|--------------------|--------------------------------------------------------|----------|----------------------------------------------------------------------|
-| `glue.role_arn`    | 目标 IAM Role 的 ARN(Amazon Resource Name)          | 
是(若启用此方式) | `arn:aws:iam::123456789012:role/MyGlueAccessRole`             |
-| `glue.external_id` | 外部 ID,通常用于跨账号访问 Glue,防止角色被滥用       | 否       | 
`external-glue-id-abc123`                                            |
+Iceberg Glue Rest Catalog 通过 Glue Rest Catalog 接口访问 Glue。目前仅支持存储在 AWS S3 Table 
Bucket 中的 Iceberg 表。配置如下:
 
-#### 适用场景:
-- 生产环境中使用 **IAM Role 访问策略**进行权限管理
-- 支持 **跨 AWS 账号** 的 Glue Catalog 访问
-- 避免将 AK/SK 暴露在配置中,更加安全可靠
+| 参数名称                         | 描述                                            
                  | 是否必须 | 默认值 |
+|----------------------------------|-------------------------------------------------------------------|----------|--------|
+| `type`                           | 固定为 `iceberg`                             
                     | 是       | 无     |
+| `iceberg.catalog.type`           | 固定为 `rest`                                
                     | 是       | 无     |
+| `iceberg.rest.uri`               | Glue Rest 
服务端点,例如:`https://glue.ap-east-1.amazonaws.com/iceberg` | 是       | 无     |
+| `warehouse`                      | Iceberg 
数据仓库路径,例如:`<account_id>:s3tablescatalog/<bucket_name>` | 是       | 无     |
+| `iceberg.rest.sigv4-enabled`     | 启动 V4 签名格式,固定为 `true`                     
               | 是       | 无     |
+| `iceberg.rest.signing-name`      | 签名类型,固定为 `glue`                           
                | 是       | 空     |
+| `iceberg.rest.access-key-id`     | 访问 Glue 的 Access Key(同时也用于访问 S3 Bucket)   
             | 是       | 空     |
+| `iceberg.rest.secret-access-key` | 访问 Glue 的 Secret Key(同时也用于访问 S3 Bucket)   
             | 是       | 空     |
+| `iceberg.rest.signing-region`    | AWS Glue 所在区域,例如:`us-east-1`              
                | 是       | 空     |
 
-#### 注意事项:
-- 当前此方式尚未在系统中实现,仅作参数预留。
-- 启用此方式后,将忽略 `glue.access_key` 和 `glue.secret_key` 配置。
-- 未来支持后可作为企业级 Glue 接入的推荐方式。
+### 示例
 
+```sql
+CREATE CATALOG glue_s3 PROPERTIES (
+  'type' = 'iceberg',
+  'iceberg.catalog.type' = 'rest',
+  'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+  'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+  'iceberg.rest.sigv4-enabled' = 'true',
+  'iceberg.rest.signing-name' = 'glue',
+  'iceberg.rest.access-key-id' = '<ak>',
+  'iceberg.rest.secret-access-key' = '<sk>',
+  'iceberg.rest.signing-region' = '<region>'
+);
+```
diff --git 
a/i18n/zh-CN/docusaurus-plugin-content-docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
 
b/i18n/zh-CN/docusaurus-plugin-content-docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
index 39b5408fa24..ee1f9534385 100644
--- 
a/i18n/zh-CN/docusaurus-plugin-content-docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
+++ 
b/i18n/zh-CN/docusaurus-plugin-content-docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ S3 Table Bucket 是 S3 推出的第三种 Bucket 类型,和之前的 General p
 
 ### 02 创建 Iceberg Catalog
 
-创建一个 `s3tables` 类型的 Iceberg Catalog
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- 创建一个 `s3tables` 类型的 Iceberg Catalog
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- 通过 Glue Rest Catalog 连接 `s3 tables`
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 访问 S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-我们可以再插入一批数据,然后使用 `iceberg_meta()` 函数查看 Iceberg 的 Snapshots:
+我们可以再插入一批数据,然后使用 `$snapshots` 系统表查看 Iceberg 的 Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216
diff --git 
a/i18n/zh-CN/docusaurus-plugin-content-docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
 
b/i18n/zh-CN/docusaurus-plugin-content-docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
index 39b5408fa24..ee1f9534385 100644
--- 
a/i18n/zh-CN/docusaurus-plugin-content-docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
+++ 
b/i18n/zh-CN/docusaurus-plugin-content-docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ S3 Table Bucket 是 S3 推出的第三种 Bucket 类型,和之前的 General p
 
 ### 02 创建 Iceberg Catalog
 
-创建一个 `s3tables` 类型的 Iceberg Catalog
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- 创建一个 `s3tables` 类型的 Iceberg Catalog
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- 通过 Glue Rest Catalog 连接 `s3 tables`
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 访问 S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-我们可以再插入一批数据,然后使用 `iceberg_meta()` 函数查看 Iceberg 的 Snapshots:
+我们可以再插入一批数据,然后使用 `$snapshots` 系统表查看 Iceberg 的 Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216
diff --git 
a/versioned_docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md 
b/versioned_docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
index 4e056f91afb..cb16b6f8bc3 100644
--- a/versioned_docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
+++ b/versioned_docs/version-2.1/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ Here we create a Table Bucket named doris-s3-table-bucket. 
After creation, we wi
 
 ### 02 Create Iceberg Catalog
 
-Create an Iceberg Catalog of type `s3tables`
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- Create an Iceberg Catalog of type `s3tables`
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- Connecting to `s3 tables` using Glue Rest Catalog 
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 Access S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-We can insert another batch of data, then use the `iceberg_meta()` function to 
view Iceberg Snapshots:
+We can insert another batch of data, then use the `$snapshots` system table to 
view Iceberg Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216
diff --git 
a/versioned_docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md 
b/versioned_docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
index 4e056f91afb..cb16b6f8bc3 100644
--- a/versioned_docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
+++ b/versioned_docs/version-3.0/lakehouse/best-practices/doris-aws-s3tables.md
@@ -33,19 +33,35 @@ Here we create a Table Bucket named doris-s3-table-bucket. 
After creation, we wi
 
 ### 02 Create Iceberg Catalog
 
-Create an Iceberg Catalog of type `s3tables`
-
-```sql
-CREATE CATALOG iceberg_s3 PROPERTIES (
-    'type' = 'iceberg',
-    'iceberg.catalog.type' = 's3tables',
-    'warehouse' = 
'arn:aws:s3tables:us-east-1:169698000000:bucket/doris-s3-table-bucket',
-    's3.region' = 'us-east-1',
-    's3.endpoint' = 's3.us-east-1.amazonaws.com',
-    's3.access_key' = 'AKIASPAWQE3ITEXAMPLE',
-    's3.secret_key' = 'l4rVnn3hCmwEXAMPLE/lht4rMIfbhVfEXAMPLE'
-);
-```
+- Create an Iceberg Catalog of type `s3tables`
+
+    ```sql
+    CREATE CATALOG iceberg_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 's3tables',
+        'warehouse' = 
'arn:aws:s3tables:<region>:<acount_id>:bucket/<s3_table_bucket_name>',
+        's3.region' = '<region>',
+        's3.endpoint' = 's3.<region>.amazonaws.com',
+        's3.access_key' = '<ak>',
+        's3.secret_key' = '<sk>'
+    );
+    ```
+
+- Connecting to `s3 tables` using Glue Rest Catalog 
+
+    ```sql
+    CREATE CATALOG glue_s3 PROPERTIES (
+        'type' = 'iceberg',
+        'iceberg.catalog.type' = 'rest',
+        'iceberg.rest.uri' = 'https://glue.<region>.amazonaws.com/iceberg',
+        'iceberg.rest.warehouse' = 
'<acount_id>:s3tablescatalog/<s3_table_bucket_name>',
+        'iceberg.rest.sigv4-enabled' = 'true',
+        'iceberg.rest.signing-name' = 'glue',
+        'iceberg.rest.access-key-id' = '<ak>',
+        'iceberg.rest.secret-access-key' = '<sk>',
+        'iceberg.rest.signing-region' = '<region>'
+    );
+    ```
 
 ### 03 Access S3Tables
 
@@ -107,7 +123,7 @@ Doris > SELECT * FROM partition_table;
 
 ### 05 Time Travel
 
-We can insert another batch of data, then use the `iceberg_meta()` function to 
view Iceberg Snapshots:
+We can insert another batch of data, then use the `$snapshots` system table to 
view Iceberg Snapshots:
 
 ```sql
 Doris > INSERT INTO partition_table VALUES
@@ -118,10 +134,7 @@ Query OK, 2 rows affected (9.76 sec)
 ```
 
 ```
-Doris > SELECT * FROM iceberg_meta(
-    ->     'table' = 'iceberg_s3.my_namespace.partition_table',
-    ->     'query_type' = 'snapshots'
-    -> )\G
+Doris > SELECT * FROM partition_table$snapshots\G
 *************************** 1. row ***************************
  committed_at: 2025-01-15 23:27:01
   snapshot_id: 6834769222601914216


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to