This is an automated email from the ASF dual-hosted git repository.

luoc pushed a commit to branch gh-pages
in repository https://gitbox.apache.org/repos/asf/drill.git


The following commit(s) were added to refs/heads/gh-pages by this push:
     new 823411e  gh-pages tutorial zh translation
823411e is described below

commit 823411e1dd40e037ad87f66d5316e139f95ba9fa
Author: kingswanwho <[email protected]>
AuthorDate: Tue Jul 20 09:55:27 2021 +0800

    gh-pages tutorial zh translation
---
 .../030-analyzing-the-yelp-academic-dataset.md     | 143 +++++++++------------
 .../040-learn-drill-with-the-mapr-sandbox.md       |  42 +++---
 .../005-about-the-mapr-sandbox.md                  |  17 +--
 3 files changed, 84 insertions(+), 118 deletions(-)

diff --git a/_docs/zh/tutorials/030-analyzing-the-yelp-academic-dataset.md 
b/_docs/zh/tutorials/030-analyzing-the-yelp-academic-dataset.md
index e5c0ca3..9d450c8 100644
--- a/_docs/zh/tutorials/030-analyzing-the-yelp-academic-dataset.md
+++ b/_docs/zh/tutorials/030-analyzing-the-yelp-academic-dataset.md
@@ -4,41 +4,33 @@ slug: "Analyzing the Yelp Academic Dataset"
 parent: "教程"
 lang: "zh"
 ---
-Apache Drill is one of the fastest growing open source projects, with the 
community making rapid progress with monthly releases. The key difference is 
Drill’s agility and flexibility.
-Along with meeting the table stakes for SQL-on-Hadoop, which is to achieve low
-latency performance at scale, Drill allows users to analyze the data without
-any ETL or up-front schema definitions. The data can be in any file format
-such as text, JSON, or Parquet. Data can have simple types such as strings,
-integers, dates, or more complex multi-structured data, such as nested maps and
-arrays. Data can exist in any file system, local or distributed, such as HDFS 
or S3. Drill, has a “no schema” approach, which enables you to get
-value from your data in just a few minutes.
-
-Let’s quickly walk through the steps required to install Drill and run it
-against the Yelp data set. The publicly available data set used for this
-example is downloadable from [Yelp](http://www.yelp.com/dataset_challenge)
-(business reviews) and is in JSON format.
+
+Drill 的与众不同之处在于敏捷性和灵活性。
+为了满足 SQL 查询 Hadoop,并规模化减少延迟,Drill 允许用户不必进行 ETL 流程或者 预先定义 
schema。文件可以是任意格式,比如:纯文本,JSON 或者 Parquet。
+数据可以是简单的字符串,整数,日期,也可以是更复杂的多结构数据,比如嵌套Map和数组。数据可以保存在任意文件系统,本地或者分布式,比如 HDFS 或者 
S3。Drill 具备 “no schema” 方法,
+使你可以在几分钟内从你的数据中得到数值。
+
+让我们一起快速的安装 Drill 并加载 Yelp 
数据集的步骤。示例中所用的公开数据集下载自[Yelp](http://www.yelp.com/dataset_challenge)(商家回顾),数据格式为 
JSON。
 
 ----------
 
-## Installing and Starting Drill
+## 安装并运行 Drill
 
-### Download Apache Drill onto your local machine
+### 下载 Drill 到你的电脑中
 
-To experiment with Drill locally, follow the installation instructions in 
[Drill in 10 Minutes]({{site.baseurl}}/docs/drill-in-10-minutes/).
+本地试用 Drill,请遵循此安装指南[10分钟了解 Drill]({{site.baseurl}}/docs/drill-in-10-minutes/)。
 
-Alternatively, you can [install Drill in distributed mode]({{ site.baseurl 
}}/docs/installing-drill-in-distributed-mode) if you
-want to scale your environment.
+另一种方案,如果你想扩展你的环境,你可以[分布式安装 
Drill]({{site.baseurl}}/docs/installing-drill-in-distributed-mode)。
 
-Let’s try out some SQL examples to understand how Drill makes the raw data
-analysis extremely easy.
+我们一起尝试一些 SQL 示例来了解 Drill 如何将原始数据分析变得如此简单。
 
-{% include startnote.html %}You need to substitute your local path to the Yelp 
data set in the angle-bracketed portion of the FROM clause of each query you 
run.{% include endnote.html %}
+{% include startnote.html %}你需要将每次查询语句中 FROM 部分尖括号中的内容替换成你本地存储 Yelp 数据的路径。{% 
include endnote.html %}
 
 ----------
 
-## Querying Data with Drill   
-   
-### 1\. View the contents of the Yelp business data
+## 通过 Drill 查询数据
+
+### 1\. 查看 Yelp 商家数据的内容 
 
     0: jdbc:drill:zk=local> !set maxwidth 10000
 
@@ -52,13 +44,13 @@ analysis extremely easy.
     | vcNAWiLM4dR7D2nwwJ7nCA | 4840 E Indian School Rd Ste 101, Phoenix, AZ 
85018 | fill 
in{"Tuesday":{"close":"17:00","open":"08:00"},"Friday":{"close":"17:00","open":"08:00"},"Monday":{"close":"17:00","open":"08:00"},"Wednesday":{"close":"17:00","open":"08:00"},"Thursday":{"close":"17:00","open":"08:00"},"Sunday":{},"Saturday":{}}
 | true | ["Doctors","Health & Medical"] | Phoenix | 7            | Eric 
Goldberg, MD | -111.983758 | AZ    | 3.5   | 33.499313 | {"By Appointment 
Only":true, [...]
     
|------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------|---------|--------------|-------------------|-------------|-------|-------|-----------|-----------------------------
 [...]
 
-{% include startnote.html %}This document aligns Drill output for example 
purposes. Drill output is not aligned in this case.{% include endnote.html %}
+{% include startnote.html %}本文档为了展示目的对齐了 Drill 的输出。实际上 Drill 的输出不会这样对齐。{% 
include endnote.html %}
 
-You can directly query self-describing files such as JSON, Parquet, and text. 
There is no need to create metadata definitions in the Hive metastore.
+你可以直接查询自我描述的文件格式,如 JSON,Parquet,和纯文本。不必为 Hive 元存储创建元数据。
 
-### 2\. Explore the business data set further
+### 2\. 更进一步探索商家数据集
 
-#### Total reviews in the data set
+#### 数据集中的总评价数
 
     0: jdbc:drill:zk=local> select sum(review_count) as totalreviews 
     from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json`;
@@ -69,7 +61,7 @@ You can directly query self-describing files such as JSON, 
Parquet, and text. Th
     | 1236445      |
     |--------------|
 
-#### Top states and cities in total number of reviews
+#### 评论数最高的州和城市
 
     0: jdbc:drill:zk=local> select state, city, count(*) totalreviews 
     from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` 
@@ -90,7 +82,7 @@ You can directly query self-describing files such as JSON, 
Parquet, and text. Th
     | AZ         | Glendale   | 1196         |
     |------------|------------|--------------|
 
-#### Average number of reviews per business star rating
+#### 每个评分星级下的平均评论数
 
     0: jdbc:drill:zk=local> select stars,trunc(avg(review_count)) reviewsavg 
     from dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json`
@@ -110,7 +102,7 @@ You can directly query self-describing files such as JSON, 
Parquet, and text. Th
     | 1.0        | 4.0        |
     |------------|------------|
 
-#### Top businesses with high review counts (> 1000)
+#### 评论数最多的商家 (> 1000)
 
     0: jdbc:drill:zk=local> select name, state, city, `review_count` from
     dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json`
@@ -131,7 +123,7 @@ You can directly query self-describing files such as JSON, 
Parquet, and text. Th
     | Aria Hotel & Casino           | NV          | Las Vegas  | 2224          
|
     
|-------------------------------|-------------|----------------------------|
 
-#### Saturday open and close times for a few businesses
+#### 一些商家周六的营业时间
 
     0: jdbc:drill:zk=local> select b.name, b.hours.Saturday.`open`,
     b.hours.Saturday.`close`  
@@ -154,17 +146,14 @@ You can directly query self-describing files such as 
JSON, Parquet, and text. Th
     | Spartan Animal Hospital    | 07:30      | 18:00      |
     |----------------------------|------------|------------|
 
-Note how Drill can traverse and refer through multiple levels of nesting.
+请注意 Drill 如何遍历和引用多层级的嵌套数据。
+
 
-### 3\. Get the amenities of each business in the data set
+### 3\. 从数据集中得到每个商家的便利设施情况
 
-Note that the attributes column in the Yelp business data set has a different
-element for every row, representing that businesses can have separate
-amenities. Drill makes it easy to quickly access data sets with changing
-schemas.
+请注意 Yelp 商家数据集中,属性列的每一行都有不同的元素,代表商家有不同的便利设施。Drill 通过改变 schema 更简单的快速访问数据集。
 
-First, change Drill to work in all text mode (so we can take a look at all of
-the data).
+首先,更改配置使 Drill 可以识别所有的文本格式(我们便可查看所有的数据)。
 
     0: jdbc:drill:zk=local> alter system set `store.json.all_text_mode` = true;
     |------------|-----------------------------------|
@@ -173,7 +162,7 @@ the data).
     | true       | store.json.all_text_mode updated. |
     |------------|-----------------------------------|
 
-Then, query the attribute’s data.
+接下来,查询 "attribute" 所对应的数据。
 
     0: jdbc:drill:zk=local> select attributes from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` limit 10;
 
@@ -192,10 +181,9 @@ Then, query the attribute’s data.
     | {"Good For":{},"Ambience":{},"Parking":{},"Music":{},"Hair Types 
Specialized In":{},"Payment Types":{},"Dietary Restrictions":{}}                
                                 |
     
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 
-{% include startnote.html %}This document aligns Drill output for example 
purposes. Drill output is not aligned in this case.{% include endnote.html %}
+{% include startnote.html %}本文档为了展示目的对齐了 Drill 的输出。实际上 Drill 的输出不会这样对齐。{% 
include endnote.html %}
 
-Turn off the all text mode so we can continue to perform arithmetic operations
-on data.
+关闭所有的文本格式,我们可以继续对数据进行算数操作。
 
     0: jdbc:drill:zk=local> alter system set `store.json.all_text_mode` = 
false;
     |-------|------------------------------------|
@@ -204,9 +192,9 @@ on data.
     | true  | store.json.all_text_mode updated.  |
     |-------|------------------------------------|
 
-### 4\. Explore the restaurant businesses in the data set
+### 4\. 探索数据集中所有的餐饮商家
 
-#### Number of restaurants in the data set
+#### 数据集中所有的餐厅
 
     0: jdbc:drill:zk=local> select count(*) as TotalRestaurants from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` where 
true=repeated_contains(categories,'Restaurants');
     |------------------|
@@ -215,7 +203,7 @@ on data.
     | 14303            |
     |------------------|
 
-#### Top restaurants in number of reviews
+#### 评论最多的餐厅
 
     0: jdbc:drill:zk=local> select name,state,city,`review_count` from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` where 
true=repeated_contains(categories,'Restaurants') order by `review_count` desc 
limit 10;
 
@@ -234,7 +222,7 @@ on data.
     | Mesa Grill             | NV    | Las Vegas | 2004         |
     |------------------------|-------|-----------|--------------|
 
-#### Top restaurants in number of listed categories
+#### 商品种类最多的餐厅
 
     0: jdbc:drill:zk=local> select name,repeated_count(categories) as 
categorycount, categories from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` where 
true=repeated_contains(categories,'Restaurants') order by 
repeated_count(categories) desc limit 10;
 
@@ -253,9 +241,9 @@ on data.
     | House of Blues                  | 8             | ["Arts & 
Entertainment","Music Venues","Restaurants","Hotels","Event Planning & 
Services","Hotels & Travel","American (New)","Nightlife"]         |
     
|---------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
 
-{% include startnote.html %}This document aligns Drill output for example 
purposes. Drill output is not aligned in this case.{% include endnote.html %}
+{% include startnote.html %}本文档为了展示目的对齐了 Drill 的输出。实际上 Drill 的输出不会这样对齐。{% 
include endnote.html %}
 
-#### Top first categories in number of review counts
+#### 评论最多的商品种类
 
     0: jdbc:drill:zk=local> select categories[0], count(categories[0]) as 
categorycount 
     from dfs.`/<path-to-yelp-dataset>/yelp_academic_dataset_business.json` 
@@ -277,9 +265,9 @@ on data.
     | Hair Salons          | 901           |
     |----------------------|---------------|
 
-### 5\. Explore the Yelp reviews dataset and combine with the businesses.
+### 5\. 探索 Yelp 评论数据集和商家信息。
 
-#### Take a look at the contents of the Yelp reviews dataset.
+#### 查看 Yelp 评论数据集。
 
     0: jdbc:drill:zk=local> select * 
     from dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_review.json` 
limit 1;
@@ -289,11 +277,9 @@ on data.
     | {"funny":0,"useful":2,"cool":1} | Xqd0DzHaiyRqVH3WRG7hzg | 
15SdjuK7DmYqUAj6rjGowg | 5     | 2007-05-17 | dr. goldberg offers everything i 
look for in a general practitioner. | review | vcNAWiLM4dR7D2nwwJ7nCA |
     
|---------------------------------|------------------------|------------------------|-------|------------|----------------------------------------------------------------------|--------|------------------------|
 
-#### Top businesses with cool rated reviews
+#### 拥有最多好评的商家
 
-Note that we are combining the Yelp business data set that has the overall
-review_count to the Yelp review data, which holds additional details on each
-of the reviews themselves.
+注意,我们连接了 Yelp 商户数据集和评论数据集,所以具有了 Yelp 评论数据的整体评论数,使每一个评论具有了更详细的信息。
 
     0: jdbc:drill:zk=local> Select b.name 
     from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json` b 
@@ -310,13 +296,11 @@ of the reviews themselves.
     | Wicked Spoon                  |
     |-------------------------------|
 
-#### Create a view with the combined business and reviews data sets
+#### 创建了连接商户和评论数据集后的视图
 
-Note that Drill views are lightweight, and can just be created in the local
-file system. Drill in standalone mode comes with a dfs.tmp workspace, which we
-can use to create views (or you can can define your own workspaces on a local
-or distributed file system). If you want to persist the data physically
-instead of in a logical view, you can use CREATE TABLE AS syntax.
+Drill 的视图是轻量级的,且只是创建在本地文件系统。
+Drill 在独立模式运行下,会有一个 dfs.tmp 工作空间,我们会用来创建视图(或者你可以在本地文件系统或者分布式文件系统上自定义工作空间)。
+如果你想保存这些视图,可以使用 CREATE TABLE AS 语法。
 
     0: jdbc:drill:zk=local> create or replace view dfs.tmp.businessreviews as 
     Select 
b.name,b.stars,b.state,b.city,r.votes.funny,r.votes.useful,r.votes.cool, 
r.`date` 
@@ -328,7 +312,7 @@ instead of in a logical view, you can use CREATE TABLE AS 
syntax.
     | true       | View 'businessreviews' created successfully in 'dfs.tmp' 
schema |
     
|------------|-----------------------------------------------------------------|
 
-Let’s get the total number of records from the view.
+我们得到视图中的总记录数
 
     0: jdbc:drill:zk=local> select count(*) as Total from 
dfs.tmp.businessreviews;
     |------------|
@@ -337,21 +321,16 @@ Let’s get the total number of records from the view.
     | 1125458    |
     |------------|
 
-In addition to these queries, you can get many deep insights using
-Drill’s [SQL functionality]({{ site.baseurl }}/docs/sql-reference). If you are 
not comfortable with writing queries manually, you
-can use a BI/Analytics tools such as Tableau/MicroStrategy to query raw
-files/Hive/HBase data or Drill-created views directly using Drill [ODBC/JDBC
-drivers]({{ site.baseurl }}/docs/odbc-jdbc-interfaces).
+在这些查询之外,你可以利用 Drill 的 [SQL 函数]({{ site.baseurl }}/docs/sql-reference) 进行更深入的分析。
+如果你不习惯手写查询,你可以利用商务智能分析工具如 Tableau/MicroStrategy 来查询原始 文件/Hive/HBase 
数据,或者通过[ODBC/JDBC
+drivers]({{ site.baseurl }}/docs/odbc-jdbc-interfaces)直接创建 Drill 视图。
 
-The goal of Apache Drill is to provide the freedom and flexibility in
-exploring data in ways we have never seen before with SQL technologies. The
-community is working on more exciting features around nested data and
-supporting data with changing schemas in upcoming releases.
+Apache Drill 的目标在于通过 SQL 技术自由和灵活的探索数据。社区正在围绕嵌套数据努力提供更多令人兴奋的特性,
+并在接下来的版本中支持更改数据的 schema。
 
-The FLATTEN function can be used to dynamically rationalize semi-structured
-data so you can apply even deeper SQL functionality. Here is a sample query:
+FLATTEN 函数可以动态的合理化半结构数据,可以帮助你应用于更复杂的 SQL 函数。参考下列示例:
 
-#### Get a flattened list of categories for each business
+#### 得到每个商户的平面化商品种类列表
 
     0: jdbc:drill:zk=local> select name, flatten(categories) as category 
     from 
dfs.`/<path-to-yelp-dataset>/yelp/yelp_academic_dataset_business.json`  limit 
20;
@@ -380,7 +359,7 @@ data so you can apply even deeper SQL functionality. Here 
is a sample query:
     | Spartan Animal Hospital     | Veterinarians                   |
     |-----------------------------|---------------------------------|
 
-#### Top categories used in business reviews
+#### 商户评论中提到最多的商品种类
 
     0: jdbc:drill:zk=local> select celltbl.catl, count(celltbl.catl) 
categorycnt 
     from (select flatten(categories) catl from 
dfs.`/yelp_academic_dataset_business.json` ) celltbl 
@@ -401,12 +380,12 @@ data so you can apply even deeper SQL functionality. Here 
is a sample query:
     | Fashion          | 1897        |
     |------------------|-------------|
 
-Stay tuned for more features and upcoming activities in the Drill community.
+与 Drill 社区保持密切联系来获得更多的特性以及了解即将到来的活动。
 
-To learn more about Drill, please refer to the following resources:
+想更多了解 Drill,请参考如下资源:
 
-  * Download Drill here: <http://getdrill.org/drill/download>
-  * [10 reasons we think Drill is cool]({{site.baseurl}}/docs/why-drill)
-  * [A simple 10-minute tutorial]({{ site.baseurl }}/docs/drill-in-10-minutes>)
-  * [More tutorials]({{ site.baseurl }}/docs/tutorials-introduction/)
+  * 下载 Drill: ({{ site.baseurl }}/download/)
+  * [选择 Drill 的十个原因]({{site.baseurl}}/docs/why-drill)
+  * [简单的10分钟教程]({{ site.baseurl }}/docs/drill-in-10-minutes>)
+  * [更多教程]({{ site.baseurl }}/docs/tutorials-introduction/)
 
diff --git a/_docs/zh/tutorials/040-learn-drill-with-the-mapr-sandbox.md 
b/_docs/zh/tutorials/040-learn-drill-with-the-mapr-sandbox.md
index 7d577c2..8c53769 100644
--- a/_docs/zh/tutorials/040-learn-drill-with-the-mapr-sandbox.md
+++ b/_docs/zh/tutorials/040-learn-drill-with-the-mapr-sandbox.md
@@ -4,34 +4,24 @@ slug: "Learn Drill with the MapR Sandbox"
 parent: "教程"
 lang: "zh"
 ---
-This tutorial uses the MapR Sandbox, which is a Hadoop environment pre-
-configured with Apache Drill.
+这个教程使用 MapR sandbox,是一个预装了 Apache Drill 的 Hadoop 环境。
 
-To complete the tutorial on the MapR Sandbox with Apache Drill, work through
-the following pages in order:
+要完成本个预装 Apache Drill 的 MapR Sandbox 教程,请按顺序完成下列页面中的步骤。
 
-  * [Installing the Apache Drill Sandbox]({{ site.baseurl 
}}/docs/installing-the-apache-drill-sandbox)
-  * [Getting to Know the Drill Setup]({{ site.baseurl 
}}/docs/getting-to-know-the-drill-sandbox)
-  * [Lesson 1: Learn About the Data Set]({{ site.baseurl 
}}/docs/lesson-1-learn-about-the-data-set)
-  * [Lesson 2: Run Queries with ANSI SQL]({{ site.baseurl 
}}/docs/lesson-2-run-queries-with-ansi-sql)
-  * [Lesson 3: Run Queries on Complex Data Types]({{ site.baseurl 
}}/docs/lesson-3-run-queries-on-complex-data-types)
-  * [Summary]({{ site.baseurl }}/docs/summary)
+  * [安装 Apache Drill sandbox]({{ site.baseurl 
}}/docs/installing-the-apache-drill-sandbox)
+  * [了解 Drill sandbox 的设置]({{ site.baseurl 
}}/docs/getting-to-know-the-drill-sandbox)
+  * [第一课: 学习数据集]({{ site.baseurl }}/docs/lesson-1-learn-about-the-data-set)
+  * [第二课: 使用 ANSI SQL 查询]({{ site.baseurl 
}}/docs/lesson-2-run-queries-with-ansi-sql)
+  * [第三课: 查询复杂数据类型]({{ site.baseurl 
}}/docs/lesson-3-run-queries-on-complex-data-types)
+  * [总结]({{ site.baseurl }}/docs/summary)
 
-## MapR Sandbox with Apache Drill
+## 预装 Apache Drill 的 MapR sandbox
+预装了 Apache Drill 的 MapR sandbox 是 Hadoop 环境的一部分。预装 Apache Drill 的 MapR sandbox
+一个全功能的单节点集群,可以用来对 Hadoop 环境中的 Apache Drill 有一个全面了解。
+商业和技术分析师,产品经理,开发者可以使用 sandbox 环境进行多种类型的查询来体验 Apache Drill 强大的功能。
+一旦你对 Drill 产生兴趣,参考 [Apache Drill 官方网站](http://drill.apache.org) 和 [Apache 
Drill 文档]({{ site.baseurl }}/docs) 
+来获取更多详细信息。
 
-MapR includes Apache Drill as part of the Hadoop distribution. The MapR
-Sandbox with Apache Drill is a fully functional single-node cluster that can
-be used to get an overview on Apache Drill in a Hadoop environment. Business
-and technical analysts, product managers, and developers can use the sandbox
-environment to get a feel for the power and capabilities of Apache Drill by
-performing various types of queries. Once you get a flavor for the technology,
-refer to the [Apache Drill web site](http://drill.apache.org) and
-[Apache Drill documentation
-]({{ site.baseurl }}/docs)for more
-details.
-
-Hadoop is not a prerequisite for Drill and users can start ramping
-up with Drill by running SQL queries directly on the local file system. Refer
-to [Apache Drill in 10 minutes]({{ site.baseurl }}/docs/drill-in-10-minutes) 
for an introduction to using Drill in local
-(embedded) mode.
+Hadoop 不是使用 Drill 的必备条件,用户可以直接在本地文件系统安装并启动 Drill,同时进行 SQL 查询。参考 
+[10分钟了解 Drill]({{ site.baseurl }}/docs/drill-in-10-minutes) 
来学习在本地文件系统(嵌入式模式)中使用 Drill。
 
diff --git 
a/_docs/zh/tutorials/learn-drill-with-the-mapr-sandbox/005-about-the-mapr-sandbox.md
 
b/_docs/zh/tutorials/learn-drill-with-the-mapr-sandbox/005-about-the-mapr-sandbox.md
index 3e25240..a317548 100644
--- 
a/_docs/zh/tutorials/learn-drill-with-the-mapr-sandbox/005-about-the-mapr-sandbox.md
+++ 
b/_docs/zh/tutorials/learn-drill-with-the-mapr-sandbox/005-about-the-mapr-sandbox.md
@@ -4,15 +4,12 @@ slug: "About the MapR Sandbox"
 parent: "搭配 MapR Sandbox 学习 Drill"
 lang: "zh"
 ---
-This tutorial uses the MapR Sandbox, which is a Hadoop environment 
pre-configured with Drill. MapR includes Drill as part of the Hadoop 
distribution. The MapR
-Sandbox with Drill is a fully functional single-node cluster that can
-be used to get an overview of Drill in a Hadoop environment. Business
-and technical analysts, product managers, and developers can use the sandbox
-environment to get a feel for the power and capabilities of Drill by
-performing various types of queries. 
+这个教程使用 MapR sandbox,是一个预装了 Apache Drill 的 Hadoop 环境。 预装了 Apache Drill 的 MapR 
sandbox 是 Hadoop 环境的一部分。预装 Apache Drill 的 MapR sandbox
+一个全功能的单节点集群,可以用来对 Hadoop 环境中的 Apache Drill 有一个全面了解。
+商业和技术分析师,产品经理,开发者可以使用 sandbox 环境进行多种类型的查询来体验 Apache Drill 强大的功能。
+一旦你对 Drill 产生兴趣,参考 [Apache Drill 官方网站](http://drill.apache.org) 和 [Apache 
Drill 文档]({{ site.baseurl }}/docs)
+来获取更多详细信息。
 
-Hadoop is not a prerequisite for Drill and users can start ramping
-up with Drill by running SQL queries directly on the local file system. Refer
-to [Apache Drill in 10 minutes]({{ site.baseurl }}/docs/drill-in-10-minutes) 
for an introduction to using Drill in local
-(embedded) mode.
+Hadoop 不是使用 Drill 的必备条件,用户可以直接在本地文件系统安装并启动 Drill,同时进行 SQL 查询。参考
+[10分钟了解 Drill]({{ site.baseurl }}/docs/drill-in-10-minutes) 
来学习在本地文件系统(嵌入式模式)中使用 Drill。
 

Reply via email to