This is an automated email from the ASF dual-hosted git repository.

yuqi4733 pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/gravitino.git


The following commit(s) were added to refs/heads/main by this push:
     new 209001cfbe [#9622] improvement(docs): Add guide for Lance REST 
integration with Spark and Ray (#9623)
209001cfbe is described below

commit 209001cfbeee48b8ef4d8734540aa898556a0ea7
Author: Mini Yu <[email protected]>
AuthorDate: Thu Jan 22 21:05:23 2026 +0800

    [#9622] improvement(docs): Add guide for Lance REST integration with Spark 
and Ray (#9623)
    
    ### What changes were proposed in this pull request?
    
    This pull request adds a new documentation page that explains how to
    integrate the Lance REST service with Spark and Ray using their
    respective connectors. The guide covers prerequisites, compatibility,
    example usage for both Spark and Ray, troubleshooting tips, and a
    compatibility matrix for versions.
    
    
    ### Why are the changes needed?
    
    For a better user experience
    Fix: #9622
    
    ### Does this PR introduce _any_ user-facing change?
    
    N/A.
    
    ### How was this patch tested?
    
    N/A.
---
 docs/lakehouse-generic-lance-table.md |  28 ++++
 docs/lance-rest-integration.md        | 232 ++++++++++++++++++++++++++++++++++
 docs/lance-rest-service.md            |   5 +-
 3 files changed, 264 insertions(+), 1 deletion(-)

diff --git a/docs/lakehouse-generic-lance-table.md 
b/docs/lakehouse-generic-lance-table.md
index 62f7b6ef22..12e853fee6 100644
--- a/docs/lakehouse-generic-lance-table.md
+++ b/docs/lakehouse-generic-lance-table.md
@@ -302,3 +302,31 @@ done
 
 Other table operations (load, alter, drop, truncate) follow standard 
relational catalog patterns. See [Table 
Operations](./manage-relational-metadata-using-gravitino.md#table-operations) 
for details.
 
+### Using Lance table with MinIO
+To use Lance tables stored in MinIO with Gravitino, ensure that the MinIO 
storage backend is properly configured. Below is an example of how to set up 
and use Lance tables with MinIO.
+
+```shell
+curl -X POST -H "Accept: application/vnd.gravitino.v1+json" \
+  -H "Content-Type: application/json" -d '{
+  "name": "lance_orders",
+  "comment": "Order table stored in MinIO",
+  "columns": [
+    {
+      "name": "id",
+      "type": "integer",
+      "comment": "Primary identifier",
+      "nullable": false
+    }
+  ],
+  "properties": {
+    "format": "lance",
+    "location": "s3://bucket1/lance_orders",
+    "lance.storage.access_key_id": "ak",
+    "lance.storage.endpoint": "http://minio:9000";,
+    "lance.storage.secret_access_key": "sk",
+    "lance.storage.allow_http": "true"
+  }
+}' 
http://localhost:8090/api/metalakes/test/catalogs/lance_catalog/schemas/sales/tables
+
+```
+
diff --git a/docs/lance-rest-integration.md b/docs/lance-rest-integration.md
new file mode 100644
index 0000000000..8fd1fc36b6
--- /dev/null
+++ b/docs/lance-rest-integration.md
@@ -0,0 +1,232 @@
+---
+title: "Lance REST Integration"
+slug: /lance-rest-integration
+keywords:
+  - lance
+  - lance-rest
+  - spark
+  - ray
+  - integration
+license: "This software is licensed under the Apache License version 2."
+---
+
+## Overview
+
+This guide provides comprehensive instructions for integrating the Apache 
Gravitino Lance REST service with data processing engines that support the 
Lance format, including Apache Spark via the [Lance Spark 
connector](https://lance.org/integrations/spark/) and Ray via the [Lance Ray 
connector](https://lance.org/integrations/ray/).
+
+This documentation assumes familiarity with the Lance REST service setup as 
described in the [Lance REST Service](./lance-rest-service) documentation.
+
+## Compatibility Matrix
+
+The following table outlines the tested compatibility between Gravitino 
versions and Lance connector versions:
+
+| Gravitino Version (Lance REST) | Supported lance-spark Versions | Supported 
lance-ray Versions |
+|--------------------------------|--------------------------------|------------------------------|
+| 1.1.1                          | 0.0.10 – 0.0.15                | 0.0.6 – 
0.0.8                |
+
+:::note
+- These version ranges show which versions are expected to work together.
+- Not all versions in these ranges have been tested. Only some versions were 
tested.
+- Before using in production, please test the exact connector versions in your 
own environment.
+- The Lance ecosystem is changing quickly, so some versions may introduce 
breaking changes.
+:::
+
+### Why Maintain a Compatibility Matrix?
+
+The Lance ecosystem is under active development, with frequent updates to APIs 
and features. Gravitino's Lance REST service depends on specific connector 
behaviors to ensure reliable operation. Using incompatible versions may result 
in:
+
+- Runtime errors or exceptions
+- Data corruption or loss
+- Unexpected behavior in query execution
+- Performance degradation
+
+## Prerequisites
+
+Before proceeding, ensure the following requirements are met:
+
+1. **Gravitino Server**: A running Gravitino server instance with the Lance 
REST service enabled
+    - Default endpoint: `http://localhost:9101/lance`
+
+2. **Lance Catalog**: A Lance catalog created in Gravitino using either:
+    - Lance REST namespace API (`CreateNamespace` operation - see [Lance REST 
Service documentation](./lance-rest-service.md)
+    - Gravitino REST API, for more, please refer to 
[lakehouse-generic-catalog](./lakehouse-generic-catalog.md)
+    - Example catalog name: `lance_catalog`
+
+3. **Lance Spark Bundle** (for Spark integration):
+    - Downloaded `lance-spark` bundle JAR matching your Apache Spark version
+    - Note the absolute file path for configuration
+
+4. **Python Dependencies**:
+    - For Spark integration: `pyspark`
+    - For Ray integration: `ray`, `lance-namespace`, `lance-ray`
+
+## Spark Integration
+
+### Configuration
+
+The following example demonstrates how to configure a PySpark session to 
interact with Lance REST and perform table operations using Spark SQL.
+
+```python
+from pyspark.sql import SparkSession
+import os
+import logging
+
+# Configure logging for debugging
+logging.basicConfig(level=logging.INFO)
+
+# Configure Spark to use the lance-spark bundle
+# Replace /path/to/lance-spark-bundle-3.5_2.12-X.X.XX.jar with your actual JAR 
path and version;
+# refer to the compatibility matrix for supported lance-spark versions.
+os.environ["PYSPARK_SUBMIT_ARGS"] = (
+    "--jars /path/to/lance-spark-bundle-3.5_2.12-0.0.15.jar "
+    "--conf 
\"spark.driver.extraJavaOptions=--add-opens=java.base/sun.nio.ch=ALL-UNNAMED\" "
+    "--conf 
\"spark.executor.extraJavaOptions=--add-opens=java.base/sun.nio.ch=ALL-UNNAMED\"
 "
+    "--master local[1] pyspark-shell"
+)
+
+# Initialize Spark session with Lance REST catalog configuration
+# Note: The catalog "lance_catalog" must exist in Gravitino before running 
this code, you can create
+# it via Lance REST API `CreateNamespace` or Gravitino REST API 
`CreateCatalog`.
+spark = SparkSession.builder \
+    .appName("lance_rest_integration") \
+    .config("spark.sql.catalog.lance", 
"com.lancedb.lance.spark.LanceNamespaceSparkCatalog") \
+    .config("spark.sql.catalog.lance.impl", "rest") \
+    .config("spark.sql.catalog.lance.uri", "http://localhost:9101/lance";) \
+    .config("spark.sql.catalog.lance.parent", "lance_catalog") \
+    .config("spark.sql.defaultCatalog", "lance") \
+    .getOrCreate()
+
+# Enable debug logging for troubleshooting
+spark.sparkContext.setLogLevel("DEBUG")
+
+# Create schema (database)
+spark.sql("CREATE DATABASE IF NOT EXISTS sales")
+
+# Create Lance table with explicit location
+spark.sql("""
+    CREATE TABLE sales.orders (
+        id INT,
+        score FLOAT
+    )
+    USING lance
+    LOCATION '/tmp/sales/orders.lance/'
+    TBLPROPERTIES ('format' = 'lance')
+""")
+
+# Insert sample data
+spark.sql("INSERT INTO sales.orders VALUES (1, 1.1)")
+
+# Query data
+spark.sql("SELECT * FROM sales.orders").show()
+```
+
+### Storage Location Configuration
+
+The `LOCATION` clause in the `CREATE TABLE` statement is optional. When 
omitted, lance-spark automatically determines an appropriate storage location 
based on catalog properties.
+For detailed information on location resolution logic, refer to the [Lakehouse 
Generic Catalog 
documentation](./lakehouse-generic-catalog.md#key-property-location).
+
+For cloud storage backends such as Amazon S3 or MinIO, specify credentials and 
endpoint configuration in the table properties:
+
+```python
+spark.sql("""
+    CREATE TABLE sales.orders (
+        id INT,
+        score FLOAT
+    )
+    USING lance
+    LOCATION 's3://bucket/tmp/sales/orders.lance/'
+    TBLPROPERTIES (
+        'format' = 'lance',
+        'lance.storage.access_key_id' = 'your_access_key',
+        'lance.storage.secret_access_key' = 'your_secret_key',
+        'lance.storage.endpoint' = 'http://minio:9000',
+        'lance.storage.allow_http' = 'true'
+    )
+""")
+```
+
+## Ray Integration
+
+### Installation
+
+Install the required Ray integration packages:
+
+```shell
+pip install lance-ray
+```
+
+:::info
+- Ray will be automatically installed if not already present
+- lance-ray is currently tested with Ray versions 2.41.0 to 2.50.0
+- Ensure Ray version compatibility in your environment before deployment
+:::
+
+### Usage Example
+
+The following example demonstrates reading and writing Lance datasets through 
the Lance REST namespace using Ray:
+
+```python
+import ray
+import lance_namespace as ln
+from lance_ray import read_lance, write_lance
+
+# Initialize Ray runtime
+ray.init()
+
+# Connect to Lance REST namespace
+namespace = ln.connect("rest", {"uri":  "http://localhost:9101/lance"})
+
+# Create sample dataset
+data = ray.data.range(1000).map(
+    lambda row: {"id": row["id"], "value": row["id"] * 2}
+)
+
+# Write dataset to Lance table
+# Note: Both the catalog "lance_catalog" and schema "sales" must exist in 
Gravitino, you can create
+# them via Lance REST API `CreateNamespace` or Gravitino REST API 
`CreateCatalog` and `CreateSchema`.
+write_lance(
+    data, 
+    namespace=namespace, 
+    table_id=["lance_catalog", "sales", "orders"]
+)
+
+# Read dataset from Lance table
+ray_dataset = read_lance(
+    namespace=namespace, 
+    table_id=["lance_catalog", "sales", "orders"]
+)
+
+# Perform filtering operation
+result = ray_dataset.filter(lambda row: row["value"] < 100).count()
+print(f"Filtered row count: {result}")
+```
+
+## Additional Engine Support
+
+The Lance REST service is compatible with other data processing engines that 
support the Lance format, including:
+
+- **DuckDB**: For analytical SQL queries
+- **Pandas**: For Python-based data manipulation
+- **DataFusion**: For Rust-based query execution
+
+Note: These three engines do not support Lance REST natively yet, but can 
still interact with Lance datasets through table location paths retrieved from 
the Lance REST service.
+
+For engine-specific integration instructions, consult the [Lance Integration 
Documentation](https://lance.org/integrations).
+
+### General Integration Pattern
+
+Most Lance-compatible engines follow this general pattern:
+
+1. Establish connection to Lance REST service endpoint
+2. Authenticate using appropriate credentials
+3. Reference tables using the hierarchical namespace structure
+4. Execute read/write operations using engine-native APIs
+
+Refer to each engine's specific documentation for detailed configuration 
parameters and code examples.
+
+## Additional Resources
+
+- [Lance REST Service Documentation](./lance-rest-service)
+- [Lance Format Specification](https://lance.org/)
+- [Apache Gravitino Documentation](https://gravitino.apache.org/)
+- [Lakehouse Generic Catalog Guide](./lakehouse-generic-catalog.md)
\ No newline at end of file
diff --git a/docs/lance-rest-service.md b/docs/lance-rest-service.md
index 895b4ce270..febfa7dc8e 100644
--- a/docs/lance-rest-service.md
+++ b/docs/lance-rest-service.md
@@ -235,7 +235,6 @@ URL encoded:        lance_catalog%24schema%24table01
 - Currently supports only **two levels of namespaces** before tables
 - Tables **cannot** be nested deeper than schema level  
 - Parent catalog must be created in Gravitino before using Lance REST API
-- Metadata operations require Gravitino server to be available
 - Namespace deletion is recursive and irreversible
 :::
 
@@ -401,3 +400,7 @@ ns.create_table(create_table_request, body)
 
 </TabItem>
 </Tabs>
+
+## Integration with Lance REST
+
+To use the Lance REST service with Apache Spark, Ray and other engines, please 
refer to [lance-rest-integration](./lance-rest-integration.md) for more details.
\ No newline at end of file

Reply via email to