This is an automated email from the ASF dual-hosted git repository.

paulk pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/groovy-website.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 5b982cd  minor tweaks
5b982cd is described below

commit 5b982cdd94928292ab4906ea565586511d683af2
Author: Paul King <[email protected]>
AuthorDate: Fri Feb 28 04:16:23 2025 +1000

    minor tweaks
---
 site/src/site/blog/wayang-tensorflow.adoc | 14 ++++++++------
 1 file changed, 8 insertions(+), 6 deletions(-)

diff --git a/site/src/site/blog/wayang-tensorflow.adoc 
b/site/src/site/blog/wayang-tensorflow.adoc
index 8cb1d7f..0322e1c 100644
--- a/site/src/site/blog/wayang-tensorflow.adoc
+++ b/site/src/site/blog/wayang-tensorflow.adoc
@@ -14,10 +14,10 @@ 
https://groovy.apache.org/blog/classifying-iris-flowers-with-deep[Deep Learning
 * Classifying iris flowers using the
 https://groovy.apache.org/blog/groovy-oracle23ai[Oracle 23ai Vector data type]
 
-> image:https://www.apache.org/logos/res/wayang/default.png[wayang 
logo,100,float="right"]
+> image:https://www.apache.org/logos/res/wayang/default.png[wayang 
logo,120,float="right"]
 > [blue]_Let's look at classifying iris flowers using Apache Wayang
 > and TensorFlow with Groovy_
->
+> &nbsp;
 
 We'll look at an implementation heavily based on the
 Java test in the Apache Wayang
@@ -37,7 +37,8 @@ Now we can define a helper method to convert from our test 
and training CSV file
 def fileOperation(URI uri, boolean random) {
     var textFileSource = new TextFileSource(uri.toString()) // <1>
     var line2tupleOp = new MapOperator<>(line -> line.split(",").with{ // <2>
-        new Tuple(it[0..-2]*.toFloat() as float[], LABEL_MAP[it[-1]]) }, 
String, Tuple)
+        new Tuple(it[0..-2]*.toFloat() as float[], LABEL_MAP[it[-1]])
+    }, String, Tuple)
 
     var mapData = new MapOperator<>(tuple -> (float[]) tuple.field0, Tuple, 
float[]) // <3>
     var mapLabel = new MapOperator<>(tuple -> (Integer) tuple.field1, Tuple, 
Integer) // <3>
@@ -120,9 +121,10 @@ int batchSize = 45
 int epoch = 10
 var option = new DLTrainingOperator.Option(criterion, optimizer, batchSize, 
epoch)
 option.setAccuracyCalculation(new Mean(0).with(
-    new Cast(Op.DType.FLOAT32).with(new Eq().with(
-        new ArgMax(1).with(new Input(Input.Type.PREDICTED, Op.DType.FLOAT32)),
-        new Input(Input.Type.LABEL, Op.DType.INT32)
+    new Cast(Op.DType.FLOAT32).with(
+        new Eq().with(new ArgMax(1).with(
+            new Input(Input.Type.PREDICTED, Op.DType.FLOAT32)),
+            new Input(Input.Type.LABEL, Op.DType.INT32)
 ))))
 var trainingOp = new DLTrainingOperator<>(model, option, float[], Integer)
 ----

Reply via email to