alexeykudinkin commented on a change in pull request #4789:
URL: https://github.com/apache/hudi/pull/4789#discussion_r814236329
##########
File path:
hudi-client/hudi-spark-client/src/main/scala/org/apache/hudi/AvroConversionUtils.scala
##########
@@ -18,20 +18,105 @@
package org.apache.hudi
-import org.apache.avro.Schema
-import org.apache.avro.JsonProperties
+import org.apache.avro.Schema.Type
import org.apache.avro.generic.{GenericRecord, GenericRecordBuilder,
IndexedRecord}
+import org.apache.avro.{AvroRuntimeException, JsonProperties, Schema}
+import org.apache.hudi.HoodieSparkUtils.sparkAdapter
import org.apache.hudi.avro.HoodieAvroUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.avro.SchemaConverters
-import org.apache.spark.sql.types.StructType
+import org.apache.spark.sql.catalyst.InternalRow
+import org.apache.spark.sql.catalyst.encoders.RowEncoder
+import org.apache.spark.sql.types.{DataType, StructType}
import org.apache.spark.sql.{Dataset, Row, SparkSession}
-import scala.collection.JavaConverters._
import scala.collection.JavaConversions._
+import scala.collection.JavaConverters._
object AvroConversionUtils {
+ /**
+ * Check the nullability of the input Avro type and resolve it when it is
nullable. The first
+ * return value is a [[Boolean]] indicating if the input Avro type is
nullable. The second
+ * return value is either provided Avro type if it's not nullable, or its
resolved non-nullable part
+ * in case it is
+ */
+ def resolveAvroTypeNullability(avroType: Schema): (Boolean, Schema) = {
Review comment:
This is borrowed from Spark 3
##########
File path:
hudi-client/hudi-spark-client/src/main/scala/org/apache/hudi/AvroConversionHelper.scala
##########
@@ -1,380 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.hudi
-
-import java.nio.ByteBuffer
-import java.sql.{Date, Timestamp}
-import java.time.Instant
-
-import org.apache.avro.Conversions.DecimalConversion
-import org.apache.avro.LogicalTypes.{TimestampMicros, TimestampMillis}
-import org.apache.avro.Schema.Type._
-import org.apache.avro.generic.GenericData.{Fixed, Record}
-import org.apache.avro.generic.{GenericData, GenericFixed, GenericRecord}
-import org.apache.avro.{LogicalTypes, Schema}
-
-import org.apache.spark.sql.Row
-import org.apache.spark.sql.avro.SchemaConverters
-import org.apache.spark.sql.catalyst.expressions.GenericRow
-import org.apache.spark.sql.catalyst.util.DateTimeUtils
-import org.apache.spark.sql.types._
-
-import org.apache.hudi.AvroConversionUtils._
-import org.apache.hudi.exception.HoodieIncompatibleSchemaException
-
-import scala.collection.JavaConverters._
-
-object AvroConversionHelper {
-
- private def createDecimal(decimal: java.math.BigDecimal, precision: Int,
scale: Int): Decimal = {
- if (precision <= Decimal.MAX_LONG_DIGITS) {
- // Constructs a `Decimal` with an unscaled `Long` value if possible.
- Decimal(decimal.unscaledValue().longValue(), precision, scale)
- } else {
- // Otherwise, resorts to an unscaled `BigInteger` instead.
- Decimal(decimal, precision, scale)
- }
- }
-
- /**
- *
- * Returns a converter function to convert row in avro format to GenericRow
of catalyst.
- *
- * @param sourceAvroSchema Source schema before conversion inferred from
avro file by passed in
- * by user.
- * @param targetSqlType Target catalyst sql type after the conversion.
- * @return returns a converter function to convert row in avro format to
GenericRow of catalyst.
- */
- def createConverterToRow(sourceAvroSchema: Schema,
Review comment:
This code is just removed, instead we now rely on Spark's
`Avro{Serializer,Deserializer}` impls.
Only subtle difference b/w this code and Spark serializers/de is the fact
that this one is doing "forgiving" conversion of struct schemas, while Spark's
one is strict. This has already been addressed at the caller's side
##########
File path:
hudi-client/hudi-spark-client/src/main/scala/org/apache/spark/sql/avro/HoodieAvroDeserializerTrait.scala
##########
@@ -0,0 +1,35 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.avro
+
+/**
+ * Deserializes Avro payload into Catalyst object
+ *
+ * NOTE: This is low-level component operating on Spark internal data-types
(comprising [[InternalRow]]).
+ * If you're looking to convert Avro into "deserialized" [[Row]]
(comprised of Java native types),
+ * please check [[AvroConversionUtils]]
+ */
+trait HoodieAvroDeserializerTrait {
+ final def deserialize(data: Any): Option[Any] =
+ doDeserialize(data) match {
+ case opt: Option[_] => opt // As of Spark 3.1, this will return data
wrapped with Option, so we fetch the data
Review comment:
Good catch! Code is already bifurcated b/w Spark 2 and Spark 3, this is
just overlooked remnant
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]