xiarixiaoyao commented on a change in pull request #4910:
URL: https://github.com/apache/hudi/pull/4910#discussion_r832211880



##########
File path: 
hudi-client/hudi-spark-client/src/main/java/org/apache/hudi/client/utils/SparkInternalSchemaConverter.java
##########
@@ -0,0 +1,500 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.hudi.client.utils;
+
+import org.apache.hudi.common.util.collection.Pair;
+import org.apache.hudi.internal.schema.InternalSchema;
+import org.apache.hudi.internal.schema.Type;
+import org.apache.hudi.internal.schema.Types;
+import org.apache.hudi.internal.schema.action.InternalSchemaMerger;
+import org.apache.hudi.internal.schema.utils.InternalSchemaUtils;
+import org.apache.spark.sql.execution.vectorized.WritableColumnVector;
+import org.apache.spark.sql.types.ArrayType;
+import org.apache.spark.sql.types.ArrayType$;
+import org.apache.spark.sql.types.BinaryType;
+import org.apache.spark.sql.types.BinaryType$;
+import org.apache.spark.sql.types.BooleanType;
+import org.apache.spark.sql.types.BooleanType$;
+import org.apache.spark.sql.types.ByteType;
+import org.apache.spark.sql.types.CharType;
+import org.apache.spark.sql.types.DataType;
+import org.apache.spark.sql.types.DateType;
+import org.apache.spark.sql.types.DateType$;
+import org.apache.spark.sql.types.Decimal;
+import org.apache.spark.sql.types.DecimalType;
+import org.apache.spark.sql.types.DecimalType$;
+import org.apache.spark.sql.types.DoubleType;
+import org.apache.spark.sql.types.DoubleType$;
+import org.apache.spark.sql.types.FloatType;
+import org.apache.spark.sql.types.FloatType$;
+import org.apache.spark.sql.types.IntegerType;
+import org.apache.spark.sql.types.IntegerType$;
+import org.apache.spark.sql.types.LongType;
+import org.apache.spark.sql.types.LongType$;
+import org.apache.spark.sql.types.MapType;
+import org.apache.spark.sql.types.MapType$;
+import org.apache.spark.sql.types.Metadata;
+import org.apache.spark.sql.types.ShortType;
+import org.apache.spark.sql.types.StringType;
+import org.apache.spark.sql.types.StringType$;
+import org.apache.spark.sql.types.StructField;
+import org.apache.spark.sql.types.StructType;
+import org.apache.spark.sql.types.StructType$;
+import org.apache.spark.sql.types.TimestampType;
+import org.apache.spark.sql.types.TimestampType$;
+import org.apache.spark.sql.types.UserDefinedType;
+import org.apache.spark.sql.types.VarcharType;
+
+import java.nio.charset.StandardCharsets;
+import java.sql.Date;
+import java.util.ArrayList;
+import java.util.Deque;
+import java.util.LinkedList;
+import java.util.List;
+import java.util.Map;
+import java.util.concurrent.atomic.AtomicInteger;
+import java.util.stream.Collectors;
+
+public class SparkInternalSchemaConverter {
+  private SparkInternalSchemaConverter() {
+
+  }
+
+  public static final String HOODIE_QUERY_SCHEMA = 
"hoodie.schema.internal.querySchema";
+  public static final String HOODIE_TABLE_PATH = "hoodie.tablePath";
+  /**
+   * Converts a spark schema to an hudi internal schema. Fields without IDs 
are kept and assigned fallback IDs.
+   *
+   * @param sparkSchema a spark schema
+   * @return a matching internal schema for the provided spark schema
+   */
+  public static InternalSchema convertStructTypeToInternalSchema(StructType 
sparkSchema) {
+    Type newType = buildTypeFromStructType(sparkSchema, true, new 
AtomicInteger(0));
+    return new InternalSchema(((Types.RecordType)newType).fields());
+  }
+
+  public static Type buildTypeFromStructType(DataType sparkType, Boolean 
firstVisitRoot, AtomicInteger nextId) {
+    if (sparkType instanceof StructType) {
+      StructField[] fields = ((StructType) sparkType).fields();
+      int nextAssignId = firstVisitRoot ? 0 : nextId.get();
+      nextId.set(nextAssignId + fields.length);
+      List<Type> newTypes = new ArrayList<>();
+      for (StructField f : fields) {
+        newTypes.add(buildTypeFromStructType(f.dataType(), false, nextId));
+      }
+      List<Types.Field> newFields = new ArrayList<>();
+      for (int i = 0; i < newTypes.size(); i++) {
+        StructField f = fields[i];
+        newFields.add(Types.Field.get(nextAssignId + i, f.nullable(), 
f.name(), newTypes.get(i),
+            f.getComment().isDefined() ? f.getComment().get() : null));
+      }
+      return Types.RecordType.get(newFields);
+    } else if (sparkType instanceof MapType) {
+      MapType map = (MapType) sparkType;
+      DataType keyType = map.keyType();
+      DataType valueType = map.valueType();
+      int keyId = nextId.get();
+      int valueId = keyId + 1;
+      nextId.set(valueId + 1);
+      return Types.MapType.get(keyId, valueId, 
buildTypeFromStructType(keyType, false, nextId),
+          buildTypeFromStructType(valueType, false, nextId), 
map.valueContainsNull());
+    } else if (sparkType instanceof ArrayType) {
+      ArrayType array = (ArrayType) sparkType;
+      DataType et = array.elementType();
+      int elementId = nextId.get();
+      nextId.set(elementId + 1);
+      return Types.ArrayType.get(elementId, array.containsNull(), 
buildTypeFromStructType(et, false, nextId));
+    } else if (sparkType instanceof UserDefinedType) {
+      throw new UnsupportedOperationException("User-defined types are not 
supported");
+    } else if (sparkType instanceof BooleanType) {
+      return Types.BooleanType.get();
+    } else if (sparkType instanceof IntegerType
+        || sparkType instanceof ShortType
+        || sparkType instanceof ByteType) {
+      return Types.IntType.get();
+    } else if (sparkType instanceof LongType) {
+      return Types.LongType.get();
+    } else if (sparkType instanceof FloatType) {
+      return Types.FloatType.get();
+    } else if (sparkType instanceof DoubleType) {
+      return Types.DoubleType.get();
+    } else if (sparkType instanceof StringType
+        || sparkType instanceof CharType
+        || sparkType instanceof VarcharType) {
+      return Types.StringType.get();
+    } else if (sparkType instanceof DateType) {
+      return Types.DateType.get();
+      // spark 3.3.0 support TimeStampNTZ, to do support spark3.3.0
+    } else if (sparkType instanceof TimestampType) {
+      return Types.TimestampType.get();
+    } else if (sparkType instanceof DecimalType) {
+      return Types.DecimalType.get(
+          ((DecimalType) sparkType).precision(),
+          ((DecimalType) sparkType).scale());
+    } else if (sparkType instanceof BinaryType) {
+      return Types.BinaryType.get();
+    } else {
+      throw new UnsupportedOperationException(String.format("Not a supported 
type: %s",  sparkType.catalogString()));
+    }
+  }
+
+  /**
+   * Converts a spark schema to an hudi internal schema, and prunes fields.
+   * Fields without IDs are kept and assigned fallback IDs.
+   *
+   * @param sparkSchema a pruned spark schema
+   * @param originSchema a internal schema for hoodie table
+   * @return a pruned internal schema for the provided spark schema
+   */
+  public static InternalSchema 
convertAndPruneStructTypeToInternalSchema(StructType sparkSchema, 
InternalSchema originSchema) {
+    List<String> pruneNames = collectColNamesFromSparkStruct(sparkSchema);
+    return InternalSchemaUtils.pruneInternalSchema(originSchema, pruneNames);
+  }
+
+  /**
+   * collect all the leaf nodes names.
+   *
+   * @param sparkSchema a spark schema
+   * @return leaf nodes full names.
+   */
+  public static List<String> collectColNamesFromSparkStruct(StructType 
sparkSchema) {
+    List<String> result =  new ArrayList<>();
+    collectColNamesFromStructType(sparkSchema, new LinkedList<>(), result);
+    return result;
+  }
+
+  private static void collectColNamesFromStructType(DataType sparkType, 
Deque<String> fieldNames, List<String> resultSet) {
+    if (sparkType instanceof StructType) {
+      StructField[] fields = ((StructType) sparkType).fields();
+      for (StructField f : fields) {
+        fieldNames.push(f.name());
+        collectColNamesFromStructType(f.dataType(), fieldNames, resultSet);
+        fieldNames.pop();
+        addFullName(f.dataType(), f.name(), fieldNames, resultSet);
+      }
+    } else if (sparkType instanceof MapType) {
+      MapType map = (MapType) sparkType;
+      DataType keyType = map.keyType();
+      DataType valueType = map.valueType();
+      // key
+      fieldNames.push("key");
+      collectColNamesFromStructType(keyType, fieldNames, resultSet);
+      fieldNames.pop();
+      addFullName(keyType,"key", fieldNames, resultSet);
+      // value
+      fieldNames.push("value");
+      collectColNamesFromStructType(valueType, fieldNames, resultSet);
+      fieldNames.poll();
+      addFullName(valueType,"value", fieldNames, resultSet);
+    } else if (sparkType instanceof ArrayType) {
+      ArrayType array = (ArrayType) sparkType;
+      DataType et = array.elementType();
+      fieldNames.push("element");
+      collectColNamesFromStructType(et, fieldNames, resultSet);
+      fieldNames.pop();
+      addFullName(et, "element", fieldNames, resultSet);
+    } else if (sparkType instanceof UserDefinedType) {
+      throw new UnsupportedOperationException("User-defined types are not 
supported");
+    } else {
+      // do nothings
+    }
+  }
+
+  private static void addFullName(DataType sparkType, String name, 
Deque<String> fieldNames, List<String> resultSet) {
+    if (!(sparkType instanceof StructType) && !(sparkType instanceof 
ArrayType) && !(sparkType instanceof MapType)) {
+      resultSet.add(InternalSchemaUtils.createFullName(name, fieldNames));
+    }
+  }
+
+  public static StructType mergeSchema(InternalSchema fileSchema, 
InternalSchema querySchema) {
+    InternalSchema schema = new InternalSchemaMerger(fileSchema, querySchema, 
true, true).mergeSchema();
+    return constructSparkSchemaFromInternalSchema(schema);
+  }
+
+  public static Map<Integer, Pair<DataType, DataType>> 
collectTypeChangedCols(InternalSchema schema, InternalSchema other) {
+    return InternalSchemaUtils
+        .collectTypeChangedCols(schema, other)
+        .entrySet()
+        .stream()
+        .collect(Collectors.toMap(e -> e.getKey(), e -> 
Pair.of(constructSparkSchemaFromType(e.getValue().getLeft()), 
constructSparkSchemaFromType(e.getValue().getRight()))));
+  }
+
+  public static StructType 
constructSparkSchemaFromInternalSchema(InternalSchema schema) {
+    return (StructType) constructSparkSchemaFromType(schema.getRecord());
+  }
+
+  private static DataType constructSparkSchemaFromType(Type type) {
+    switch (type.typeId()) {
+      case RECORD:
+        Types.RecordType record = (Types.RecordType) type;
+        List<Types.Field> fields = record.fields();
+        List<StructField> structFields = new ArrayList<>();
+        for (Types.Field f : fields) {
+          DataType dataType = constructSparkSchemaFromType(f.type());
+          StructField structField = StructField.apply(f.name(), dataType, 
f.isOptional(), Metadata.empty());
+          structField = f.doc() == null ? structField : 
structField.withComment(f.doc());
+          structFields.add(structField);
+        }
+        return StructType$.MODULE$.apply(structFields);
+      case ARRAY:
+        Types.ArrayType array = (Types.ArrayType) type;
+        DataType elementType = 
constructSparkSchemaFromType(array.elementType());
+        return ArrayType$.MODULE$.apply(elementType, 
array.isElementOptional());
+      case MAP:
+        Types.MapType map = (Types.MapType) type;
+        DataType keyDataType = constructSparkSchemaFromType(map.keyType());
+        DataType valueDataType = constructSparkSchemaFromType(map.valueType());
+        return MapType$.MODULE$.apply(keyDataType, valueDataType, 
map.isValueOptional());
+      case BOOLEAN:
+        return BooleanType$.MODULE$;
+      case INT:
+        return IntegerType$.MODULE$;
+      case LONG:
+        return LongType$.MODULE$;
+      case FLOAT:
+        return FloatType$.MODULE$;
+      case DOUBLE:
+        return DoubleType$.MODULE$;
+      case DATE:
+        return DateType$.MODULE$;
+      case TIME:
+        throw new UnsupportedOperationException(String.format("cannot convert 
%s type to Spark", type));
+      case TIMESTAMP:
+        // todo support TimeStampNTZ
+        return TimestampType$.MODULE$;
+      case STRING:
+        return StringType$.MODULE$;
+      case UUID:
+        return StringType$.MODULE$;
+      case FIXED:
+        return BinaryType$.MODULE$;
+      case BINARY:
+        return BinaryType$.MODULE$;
+      case DECIMAL:
+        Types.DecimalType decimal = (Types.DecimalType) type;
+        return DecimalType$.MODULE$.apply(decimal.precision(), 
decimal.scale());
+      default:
+        throw new UnsupportedOperationException(String.format("cannot convert 
unknown type: %s to Spark", type));
+    }
+  }
+
+  /**
+   * Convert Int/long type to other Type.
+   * Now only support int/long -> long/float/double/string
+   * TODO: support more types
+   */
+  private static boolean convertIntLongType(WritableColumnVector oldV, 
WritableColumnVector newV, DataType newType, int len) {
+    boolean isInt = oldV.dataType() instanceof IntegerType;
+    if (newType instanceof LongType || newType instanceof FloatType
+        || newType instanceof DoubleType || newType instanceof StringType || 
newType instanceof DecimalType) {
+      for (int i = 0; i < len; i++) {
+        if (oldV.isNullAt(i)) {
+          newV.putNull(i);
+          continue;
+        }
+        // int/long -> long/float/double/string/decimal
+        if (newType instanceof LongType) {
+          newV.putLong(i, isInt ? oldV.getInt(i) : oldV.getLong(i));
+        } else if (newType instanceof FloatType) {
+          newV.putFloat(i, isInt ? oldV.getInt(i) : oldV.getLong(i));
+        } else if (newType instanceof DoubleType) {
+          newV.putDouble(i, isInt ? oldV.getInt(i) : oldV.getLong(i));
+        } else if (newType instanceof StringType) {
+          newV.putByteArray(i, ((isInt ? oldV.getInt(i) : oldV.getLong(i)) + 
"").getBytes(StandardCharsets.UTF_8));
+        } else if (newType instanceof DecimalType) {
+          Decimal oldDecimal = Decimal.apply(isInt ? oldV.getInt(i) : 
oldV.getLong(i));
+          oldDecimal.changePrecision(((DecimalType) newType).precision(), 
((DecimalType) newType).scale());
+          newV.putDecimal(i, oldDecimal, ((DecimalType) newType).precision());
+        }
+      }
+      return true;
+    }
+    return false;
+  }
+
+  /**
+   * Convert float type to other Type.
+   * Now only support float -> double/String
+   * TODO: support more types
+   */
+  private static boolean convertFloatType(WritableColumnVector oldV, 
WritableColumnVector newV, DataType newType, int len) {
+    if (newType instanceof DoubleType || newType instanceof StringType || 
newType instanceof DecimalType) {
+      for (int i = 0; i < len; i++) {
+        if (oldV.isNullAt(i)) {
+          newV.putNull(i);
+          continue;
+        }
+        // float -> double/string/decimal
+        if (newType instanceof DoubleType) {
+          newV.putDouble(i, Double.valueOf(oldV.getFloat(i) + ""));
+        } else if (newType instanceof StringType) {
+          newV.putByteArray(i, (oldV.getFloat(i) + 
"").getBytes(StandardCharsets.UTF_8));
+        } else if (newType instanceof DecimalType) {
+          Decimal oldDecimal = Decimal.apply(oldV.getFloat(i));
+          oldDecimal.changePrecision(((DecimalType) newType).precision(), 
((DecimalType) newType).scale());
+          newV.putDecimal(i, oldDecimal, ((DecimalType) newType).precision());
+        }
+      }
+      return true;
+    }
+    return false;
+  }
+
+  /**
+   * Convert double type to other Type.
+   * Now only support Double -> Decimal/String

Review comment:
       in the future, maybe we can support Double ->timestamp/date
   We can add new conversion requirements at any time, which is easy




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to