soumilshah1995 commented on issue #8040:
URL: https://github.com/apache/hudi/issues/8040#issuecomment-1449098572

   i think i have tried deleting column with glue 4.0 and table type as MOR 
   i am getting following error 
   
![image](https://user-images.githubusercontent.com/39345855/222008686-ff25961b-90ce-4a2c-a89f-97875ece5390.png)
   
   # Code to other can replicate 
   ```
   try:
       import sys
       import os
       from pyspark.context import SparkContext
       from pyspark.sql.session import SparkSession
       from awsglue.context import GlueContext
       from awsglue.job import Job
       from awsglue.dynamicframe import DynamicFrame
       from pyspark.sql.functions import col, to_timestamp, 
monotonically_increasing_id, to_date, when
       from pyspark.sql.functions import *
       from awsglue.utils import getResolvedOptions
       from pyspark.sql.types import *
       from datetime import datetime, date
       import boto3
       from functools import reduce
       from pyspark.sql import Row
   
       import uuid
       from faker import Faker
   except Exception as e:
       print("Modules are missing : {} ".format(e))
   
   spark = (SparkSession.builder.config('spark.serializer', 
'org.apache.spark.serializer.KryoSerializer') \
            .config('spark.sql.hive.convertMetastoreParquet', 'false') \
            .config('spark.sql.catalog.spark_catalog', 
'org.apache.spark.sql.hudi.catalog.HoodieCatalog') \
            .config('spark.sql.extensions', 
'org.apache.spark.sql.hudi.HoodieSparkSessionExtension') \
            .config('spark.sql.legacy.pathOptionBehavior.enabled', 
'true').getOrCreate())
   
   sc = spark.sparkContext
   glueContext = GlueContext(sc)
   job = Job(glueContext)
   logger = glueContext.get_logger()
   
   # =================================INSERTING DATA 
=====================================
   global faker
   faker = Faker()
   
   
   class DataGenerator(object):
   
       @staticmethod
       def get_data():
           return [
               (
                   uuid.uuid4().__str__(),
                   faker.name(),
                   faker.random_element(elements=('IT', 'HR', 'Sales', 
'Marketing')),
                   faker.random_element(elements=('CA', 'NY', 'TX', 'FL', 'IL', 
'RJ')),
                   str(faker.random_int(min=10000, max=150000)),
                   str(faker.random_int(min=18, max=60)),
                   str(faker.random_int(min=0, max=100000)),
                   str(faker.unix_time()),
                   faker.email(),
                   faker.credit_card_number(card_type='amex'),
   
               ) for x in range(100)
           ]
   
   
   data = DataGenerator.get_data()
   columns = ["emp_id", "employee_name", "department", "state", "salary", 
"age", "bonus", "ts", "email", "credit_card"]
   spark_df = spark.createDataFrame(data=data, schema=columns)
   
   # ============================== Settings 
=======================================
   db_name = "hudidb"
   table_name = "employees"
   recordkey = 'emp_id'
   precombine = "ts"
   PARTITION_FIELD = 'state'
   path = "s3://hudi-demos-emr-serverless-project-soumil/tmp1/"
   method = 'upsert'
   table_type = "MERGE_ON_READ"
   # 
====================================================================================
   
   hudi_part_write_config = {
       'className': 'org.apache.hudi',
   
       'hoodie.table.name': table_name,
       'hoodie.datasource.write.table.type': table_type,
       'hoodie.datasource.write.operation': method,
       'hoodie.datasource.write.recordkey.field': recordkey,
       'hoodie.datasource.write.precombine.field': precombine,
   
       'hoodie.datasource.hive_sync.mode': 'hms',
       'hoodie.datasource.hive_sync.enable': 'true',
       'hoodie.datasource.hive_sync.use_jdbc': 'false',
       'hoodie.datasource.hive_sync.support_timestamp': 'false',
       'hoodie.datasource.hive_sync.database': db_name,
       'hoodie.datasource.hive_sync.table': table_name,
   
   }
   
   
spark_df.write.format("hudi").options(**hudi_part_write_config).mode("append").save(path)
   
   
   # ================================================================
   #                         Adding NEW COLUMN
   # ================================================================
   
   
   class DataGenerator(object):
   
       @staticmethod
       def get_data():
           return [
               (
                   uuid.uuid4().__str__(),
                   faker.name(),
                   faker.random_element(elements=('IT', 'HR', 'Sales', 
'Marketing')),
                   faker.random_element(elements=('CA', 'NY', 'TX', 'FL', 'IL', 
'RJ')),
                   str(faker.random_int(min=10000, max=150000)),
                   str(faker.random_int(min=18, max=60)),
                   str(faker.random_int(min=0, max=100000)),
                   str(faker.unix_time()),
                   faker.email(),
                   faker.credit_card_number(card_type='amex'),
                   faker.date().__str__()
   
               ) for x in range(100)
           ]
   
   
   data = DataGenerator.get_data()
   columns = ["emp_id", "employee_name", "department", "state", "salary", 
"age", "bonus", "ts", "email", "credit_card",
              "new_date_col"]
   spark_df = spark.createDataFrame(data=data, schema=columns)
   
spark_df.write.format("hudi").options(**hudi_part_write_config).mode("append").save(path)
   
   try:
       print("Try1")
       table_name_test = f"{table_name}_ro"
       query = f"alter table {db_name}.{table_name_test} drop column 
credit_card"
       spark.sql(query)
   except Exception as e:
       print("ERR1", e)
   
   try:
       print("Try2")
       table_name_test = f"{table_name}_rt"
       query = f"alter table {db_name}.{table_name_test} drop column 
credit_card"
       spark.sql(query)
   except Exception as e:
       print("ERR2", e)
   ```
   
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to