This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/incubator-hugegraph-doc.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 25095bbf Update hugegraph-benchmark-0.5.6.md (#226)
25095bbf is described below

commit 25095bbfc5378a0aa304c105845ea2eb21ce7812
Author: imbajin <[email protected]>
AuthorDate: Mon May 15 03:32:07 2023 +0000

    Update hugegraph-benchmark-0.5.6.md (#226)
    
    Completed conversion to English. 2e5bf8c640d8f602c03795953c71df3164cbf4ef
---
 docs/_print/index.html                             |   2 +-
 docs/index.xml                                     | 248 ++++++++++-----------
 docs/performance/_print/index.html                 |   2 +-
 .../hugegraph-benchmark-0.5.6/index.html           |  48 +---
 docs/performance/index.xml                         | 248 ++++++++++-----------
 en/index.html                                      |   2 +-
 en/sitemap.xml                                     |   2 +-
 sitemap.xml                                        |   2 +-
 8 files changed, 246 insertions(+), 308 deletions(-)

diff --git a/docs/_print/index.html b/docs/_print/index.html
index f2da85b1..7bcf0d3e 100644
--- a/docs/_print/index.html
+++ b/docs/_print/index.html
@@ -6583,7 +6583,7 @@ Merging mode as needed, and when the Restore is 
completed, restore the graph mod
 </span></span><span style=display:flex><span>
 </span></span><span style=display:flex><span><span 
style=color:#8f5902;font-style:italic>// what is the name of the brother and 
the name of the place?
 </span></span></span><span style=display:flex><span><span 
style=color:#8f5902;font-style:italic></span><span 
style=color:#000>g</span><span 
style=color:#ce5c00;font-weight:700>.</span><span 
style=color:#c4a000>V</span><span 
style=color:#ce5c00;font-weight:700>(</span><span 
style=color:#000>pluto</span><span 
style=color:#ce5c00;font-weight:700>).</span><span 
style=color:#c4a000>out</span><span 
style=color:#ce5c00;font-weight:700>(</span><span 
style=color:#4e9a06>&#39;brother&#39;</span><s [...]
-</span></span></code></pre></div><p>推荐使用<a 
href=/docs/quickstart/hugegraph-studio>HugeGraph-Studio</a> 
通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。</p><h4
 id=32-总结>3.2 总结</h4><p>HugeGraph 目前支持 <code>Gremlin</code> 的语法,用户可以通过 
<code>Gremlin / REST-API</code> 实现各种查询需求。</p></div><div class=td-content 
style=page-break-before:always><h1 id=pg-f0a22a813c843322c0d360d952e434ce>8 - 
PERFORMANCE</h1></div><div class=td-content><h1 id=pg-63f6d63db3ee3a5270 [...]
+</span></span></code></pre></div><p>推荐使用<a 
href=/docs/quickstart/hugegraph-studio>HugeGraph-Studio</a> 
通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。</p><h4
 id=32-总结>3.2 总结</h4><p>HugeGraph 目前支持 <code>Gremlin</code> 的语法,用户可以通过 
<code>Gremlin / REST-API</code> 实现各种查询需求。</p></div><div class=td-content 
style=page-break-before:always><h1 id=pg-f0a22a813c843322c0d360d952e434ce>8 - 
PERFORMANCE</h1></div><div class=td-content><h1 id=pg-63f6d63db3ee3a5270 [...]
 </span></span><span style=display:flex><span>  
batch_size_fail_threshold_in_kb: 1000
 </span></span></code></pre></div><ul><li>HugeGraphServer 与 HugeGremlinServer 
与cassandra都在同一机器上启动,server 相关的配置文件除主机和端口有修改外,其余均保持默认。</li></ul><h4 
id=13-名词解释>1.3 名词解释</h4><ul><li>Samples &ndash; 本次场景中一共完成了多少个线程</li><li>Average 
&ndash; 平均响应时间</li><li>Median &ndash; 统计意义上面的响应时间的中值</li><li>90% Line &ndash; 
所有线程中90%的线程的响应时间都小于xx</li><li>Min &ndash; 最小响应时间</li><li>Max &ndash; 
最大响应时间</li><li>Error &ndash; 出错率</li><li>Troughput &ndash; 吞吐量Â</li><li>KB/sec 
&ndash; 以流量做衡量的吞吐量</li></ul><p><em>注:时间的单位 [...]
 </span></span><span style=display:flex><span>git clone 
https://github.com/<span style=color:#4e9a06>${</span><span 
style=color:#000>GITHUB_USER_NAME</span><span 
style=color:#4e9a06>}</span>/hugegraph
diff --git a/docs/index.xml b/docs/index.xml
index 3688c998..bc728bdb 100644
--- a/docs/index.xml
+++ b/docs/index.xml
@@ -851,8 +851,8 @@
 &lt;div class="highlight">&lt;pre tabindex="0" 
style="background-color:#f8f8f8;-moz-tab-size:4;-o-tab-size:4;tab-size:4;">&lt;code
 class="language-shell" data-lang="shell">&lt;span 
style="display:flex;">&lt;span>&lt;span 
style="color:#8f5902;font-style:italic"># force push the local commit to fork 
repo&lt;/span>
 &lt;/span>&lt;/span>&lt;span style="display:flex;">&lt;span>git push -f origin 
bugfix-branch:bugfix-branch
 &lt;/span>&lt;/span>&lt;/code>&lt;/pre>&lt;/div>&lt;p>GitHub will 
automatically update the Pull Request after we push it, just wait for code 
review.&lt;/p></description></item><item><title>Docs: HugeGraph BenchMark 
Performance</title><link>/docs/performance/hugegraph-benchmark-0.5.6/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/performance/hugegraph-benchmark-0.5.6/</guid><description>
-&lt;h3 id="1-测试环境">1 测试环境&lt;/h3>
-&lt;h4 id="11-硬件信息">1.1 硬件信息&lt;/h4>
+&lt;h3 id="1-test-environment">1 Test environment&lt;/h3>
+&lt;h4 id="11-hardware-information">1.1 Hardware information&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -871,60 +871,45 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;h4 id="12-软件信息">1.2 软件信息&lt;/h4>
-&lt;h5 id="121-测试用例">1.2.1 测试用例&lt;/h5>
-&lt;p>测试使用&lt;a 
href="https://github.com/socialsensor/graphdb-benchmarks";>graphdb-benchmark&lt;/a>,一个图数据库测试集。该测试集主要包含4类测试:&lt;/p>
+&lt;h4 id="12-software-information">1.2 Software information&lt;/h4>
+&lt;h5 id="121-test-cases">1.2.1 Test cases&lt;/h5>
+&lt;p>Testing is done using the &lt;a 
href="https://github.com/socialsensor/graphdb-benchmarks";>graphdb-benchmark&lt;/a>,
 a benchmark suite for graph databases. This benchmark suite mainly consists of 
four types of tests:&lt;/p>
 &lt;ul>
-&lt;li>
-&lt;p>Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>Single Insertion,单条插入,每个顶点或者每条边立即提交&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>Query,主要是图数据库的基本查询操作:&lt;/p>
+&lt;li>Massive Insertion, which involves batch insertion of vertices and 
edges, with a certain number of vertices or edges being submitted at 
once.&lt;/li>
+&lt;li>Single Insertion, which involves the immediate insertion of each vertex 
or edge, one at a time.&lt;/li>
+&lt;li>Query, which mainly includes the basic query operations of the graph 
database:
 &lt;ul>
-&lt;li>Find Neighbors,查询所有顶点的邻居&lt;/li>
-&lt;li>Find Adjacent Nodes,查询所有边的邻接顶点&lt;/li>
-&lt;li>Find Shortest Path,查询第一个顶点到100个随机顶点的最短路径&lt;/li>
+&lt;li>Find Neighbors, which queries the neighbors of all vertices.&lt;/li>
+&lt;li>Find Adjacent Nodes, which queries the adjacent vertices of all 
edges.&lt;/li>
+&lt;li>Find Shortest Path, which queries the shortest path from the first 
vertex to 100 random vertices.&lt;/li>
 &lt;/ul>
 &lt;/li>
-&lt;li>
-&lt;p>Clustering,基于Louvain Method的社区发现算法&lt;/p>
-&lt;/li>
+&lt;li>Clustering, which is a community detection algorithm based on the 
Louvain Method.&lt;/li>
 &lt;/ul>
-&lt;h5 id="122-测试数据集">1.2.2 测试数据集&lt;/h5>
-&lt;p>测试使用人造数据和真实数据&lt;/p>
+&lt;h5 id="122-test-dataset">1.2.2 Test dataset&lt;/h5>
+&lt;p>Tests are conducted using both synthetic and real data.&lt;/p>
 &lt;ul>
 &lt;li>
-&lt;p>MIW、SIW和QW使用SNAP数据集&lt;/p>
+&lt;p>MIW, SIW, and QW use SNAP datasets:&lt;/p>
 &lt;ul>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/email-Enron.html";>Enron 
Dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/amazon0601.html";>Amazon 
dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/com-Youtube.html";>Youtube 
dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a 
href="http://snap.stanford.edu/data/com-LiveJournal.html";>LiveJournal 
dataset&lt;/a>&lt;/p>
-&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/email-Enron.html";>Enron 
Dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/amazon0601.html";>Amazon 
dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/com-Youtube.html";>Youtube 
dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a 
href="http://snap.stanford.edu/data/com-LiveJournal.html";>LiveJournal 
dataset&lt;/a>&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>CW使用&lt;a 
href="https://sites.google.com/site/andrealancichinetti/files";>LFR-Benchmark 
generator&lt;/a>生成的人造数据&lt;/p>
+&lt;p>CW uses synthetic data generated by the &lt;a 
href="https://sites.google.com/site/andrealancichinetti/files";>LFR-Benchmark 
generator&lt;/a>.&lt;/p>
 &lt;/li>
 &lt;/ul>
-&lt;h6 id="本测试用到的数据集规模">本测试用到的数据集规模&lt;/h6>
+&lt;p>The size of the datasets used in this test are not mentioned.&lt;/p>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>名称&lt;/th>
-&lt;th>vertex数目&lt;/th>
-&lt;th>edge数目&lt;/th>
-&lt;th>文件大小&lt;/th>
+&lt;th>Name&lt;/th>
+&lt;th>Number of Vertices&lt;/th>
+&lt;th>Number of Edges&lt;/th>
+&lt;th>File Size&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
@@ -954,29 +939,29 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;h4 id="13-服务配置">1.3 服务配置&lt;/h4>
+&lt;h4 id="13-service-configuration">1.3 Service configuration&lt;/h4>
 &lt;ul>
 &lt;li>
-&lt;p>HugeGraph版本:0.5.6,RestServer和Gremlin Server和backends都在同一台服务器上&lt;/p>
+&lt;p>HugeGraph version: 0.5.6, RestServer and Gremlin Server and backends are 
on the same server&lt;/p>
 &lt;ul>
-&lt;li>RocksDB版本:rocksdbjni-5.8.6&lt;/li>
+&lt;li>RocksDB version: rocksdbjni-5.8.6&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>Titan版本:0.5.4, 使用thrift+Cassandra模式&lt;/p>
+&lt;p>Titan version: 0.5.4, using thrift+Cassandra mode&lt;/p>
 &lt;ul>
-&lt;li>Cassandra版本:cassandra-3.10,commit-log 和 data 共用SSD&lt;/li>
+&lt;li>Cassandra version: cassandra-3.10, commit-log and data use SSD 
together&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>Neo4j版本:2.0.1&lt;/p>
+&lt;p>Neo4j version: 2.0.1&lt;/p>
 &lt;/li>
 &lt;/ul>
 &lt;blockquote>
-&lt;p>graphdb-benchmark适配的Titan版本为0.5.4&lt;/p>
+&lt;p>The Titan version adapted by graphdb-benchmark is 0.5.4.&lt;/p>
 &lt;/blockquote>
-&lt;h3 id="2-测试结果">2 测试结果&lt;/h3>
-&lt;h4 id="21-batch插入性能">2.1 Batch插入性能&lt;/h4>
+&lt;h3 id="2-test-results">2 Test results&lt;/h3>
+&lt;h4 id="21-batch-insertion-performance">2.1 Batch insertion 
performance&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -1011,23 +996,23 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Instructions&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;quot;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是批量插入的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB插入amazon0601数据集的300w条边,花费5.711s&lt;/li>
+&lt;li>The data scale is in the table header in terms of edges&lt;/li>
+&lt;li>The data in the table is the time for batch insertion, in 
seconds&lt;/li>
+&lt;li>For example, HugeGraph(RocksDB) spent 5.711 seconds to insert 3 million 
edges of the amazon0601 dataset.&lt;/li>
 &lt;/ul>
-&lt;h5 id="结论">结论&lt;/h5>
+&lt;h5 id="conclusion">Conclusion&lt;/h5>
 &lt;ul>
-&lt;li>批量插入性能 HugeGraph(RocksDB) &amp;gt; Neo4j &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
+&lt;li>The performance of batch insertion: HugeGraph(RocksDB) &amp;gt; Neo4j 
&amp;gt; Titan(thrift+Cassandra)&lt;/li>
 &lt;/ul>
-&lt;h4 id="22-遍历性能">2.2 遍历性能&lt;/h4>
-&lt;h5 id="221-术语说明">2.2.1 术语说明&lt;/h5>
+&lt;h4 id="22-traversal-performance">2.2 Traversal performance&lt;/h4>
+&lt;h5 id="221-explanation-of-terms">2.2.1 Explanation of terms&lt;/h5>
 &lt;ul>
-&lt;li>FN(Find Neighbor), 遍历所有vertex, 根据vertex查邻接edge, 通过edge和vertex查other 
vertex&lt;/li>
-&lt;li>FA(Find Adjacent), 遍历所有edge,根据edge获得source vertex和target vertex&lt;/li>
+&lt;li>FN(Find Neighbor): Traverse all vertices, find the adjacent edges based 
on each vertex, and use the edges and vertices to find the other vertices 
adjacent to the original vertex.&lt;/li>
+&lt;li>FA(Find Adjacent): Traverse all edges, get the source vertex and target 
vertex based on each edge.&lt;/li>
 &lt;/ul>
-&lt;h5 id="222-fn性能">2.2.2 FN性能&lt;/h5>
+&lt;h5 id="222-fn-performance">2.2.2 FN performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -1062,11 +1047,11 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Instructions&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以顶点为单位&lt;/li>
-&lt;li>表中数据是遍历顶点花费的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端遍历amazon0601的所有顶点,并查找邻接边和另一顶点,总共耗时45.118s&lt;/li>
+&lt;li>The data in the table header &amp;ldquo;( )&amp;rdquo; represents the 
data scale, in terms of vertices.&lt;/li>
+&lt;li>The data in the table represents the time spent traversing vertices, in 
seconds.&lt;/li>
+&lt;li>For example, HugeGraph uses the RocksDB backend to traverse all 
vertices in amazon0601, and search for adjacent edges and another vertex, which 
takes a total of 45.118 seconds.&lt;/li>
 &lt;/ul>
 &lt;h5 id="223-fa性能">2.2.3 FA性能&lt;/h5>
 &lt;table>
@@ -1103,24 +1088,25 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是遍历边花费的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端遍历amazon0601的所有边,并查询每条边的两个顶点,总共耗时10.764s&lt;/li>
+&lt;li>The data size in the header &amp;ldquo;( )&amp;rdquo; is based on the 
number of vertices.&lt;/li>
+&lt;li>The data in the table is the time it takes to traverse the vertices, in 
seconds.&lt;/li>
+&lt;li>For example, HugeGraph with RocksDB backend traverses all vertices in 
the amazon0601 dataset, and looks up adjacent edges and other vertices, taking 
a total of 45.118 seconds.&lt;/li>
+&lt;li>&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-1">结论&lt;/h6>
+&lt;h6 id="conclusion-1">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>遍历性能 Neo4j &amp;gt; HugeGraph(RocksDB) &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
+&lt;li>Traversal performance: Neo4j &amp;gt; HugeGraph(RocksDB) &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
 &lt;/ul>
-&lt;h4 id="23-hugegraph-图常用分析方法性能">2.3 HugeGraph-图常用分析方法性能&lt;/h4>
-&lt;h5 id="术语说明">术语说明&lt;/h5>
+&lt;h4 id="23-performance-of-common-graph-analysis-methods-in-hugegraph">2.3 
Performance of Common Graph Analysis Methods in HugeGraph&lt;/h4>
+&lt;h5 id="terminology-explanation">Terminology Explanation&lt;/h5>
 &lt;ul>
-&lt;li>FS(Find Shortest Path), 寻找最短路径&lt;/li>
-&lt;li>K-neighbor,从起始vertex出发,通过K跳边能够到达的所有顶点, 包括1, 2, 3&amp;hellip;(K-1), 
K跳边可达vertex&lt;/li>
-&lt;li>K-out, 从起始vertex出发,恰好经过K跳out边能够到达的顶点&lt;/li>
+&lt;li>FS (Find Shortest Path): finding the shortest path between two 
vertices&lt;/li>
+&lt;li>K-neighbor: all vertices that can be reached by traversing K hops 
(including 1, 2, 3&amp;hellip;(K-1) hops) from the starting vertex&lt;/li>
+&lt;li>K-out: all vertices that can be reached by traversing exactly K 
out-edges from the starting vertex.&lt;/li>
 &lt;/ul>
-&lt;h5 id="fs性能">FS性能&lt;/h5>
+&lt;h5 id="fs-performance">FS performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -1155,35 +1141,35 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是找到&lt;strong>从第一个顶点出发到达随机选择的100个顶点的最短路径&lt;/strong>的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端在图amazon0601中查找第一个顶点到100个随机顶点的最短路径,总共耗时0.103s&lt;/li>
+&lt;li>The data in the header &amp;ldquo;()&amp;rdquo; represents the data 
scale in terms of edges&lt;/li>
+&lt;li>The data in the table is the time it takes to find the shortest path 
&lt;strong>from the first vertex to 100 randomly selected vertices&lt;/strong> 
in seconds&lt;/li>
+&lt;li>For example, HugeGraph using the RocksDB backend to find the shortest 
path from the first vertex to 100 randomly selected vertices in the amazon0601 
graph took a total of 0.103s.&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-2">结论&lt;/h6>
+&lt;h6 id="conclusion-2">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>在数据规模小或者顶点关联关系少的场景下,HugeGraph性能优于Neo4j和Titan&lt;/li>
-&lt;li>随着数据规模增大且顶点的关联度增高,HugeGraph与Neo4j性能趋近,都远高于Titan&lt;/li>
+&lt;li>In scenarios with small data size or few vertex relationships, 
HugeGraph outperforms Neo4j and Titan.&lt;/li>
+&lt;li>As the data size increases and the degree of vertex association 
increases, the performance of HugeGraph and Neo4j tends to be similar, both far 
exceeding Titan.&lt;/li>
 &lt;/ul>
-&lt;h5 id="k-neighbor性能">K-neighbor性能&lt;/h5>
+&lt;h5 id="k-neighbor-performance">K-neighbor Performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>顶点&lt;/th>
-&lt;th>深度&lt;/th>
-&lt;th>一度&lt;/th>
-&lt;th>二度&lt;/th>
-&lt;th>三度&lt;/th>
-&lt;th>四度&lt;/th>
-&lt;th>五度&lt;/th>
-&lt;th>六度&lt;/th>
+&lt;th>Vertex&lt;/th>
+&lt;th>Depth&lt;/th>
+&lt;th>Degree 1&lt;/th>
+&lt;th>Degree 2&lt;/th>
+&lt;th>Degree 3&lt;/th>
+&lt;th>Degree 4&lt;/th>
+&lt;th>Degree 5&lt;/th>
+&lt;th>Degree 6&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
 &lt;tr>
 &lt;td>v1&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.031s&lt;/td>
 &lt;td>0.033s&lt;/td>
 &lt;td>0.048s&lt;/td>
@@ -1193,17 +1179,17 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.027s&lt;/td>
 &lt;td>0.034s&lt;/td>
-&lt;td>0.115&lt;/td>
+&lt;td>0.115s&lt;/td>
 &lt;td>1.36s&lt;/td>
 &lt;td>OOM&lt;/td>
 &lt;td>&amp;ndash;&lt;/td>
 &lt;/tr>
 &lt;tr>
 &lt;td>v1111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.039s&lt;/td>
 &lt;td>0.027s&lt;/td>
 &lt;td>0.052s&lt;/td>
@@ -1213,28 +1199,28 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM&lt;/li>
+&lt;li>HugeGraph-Server&amp;rsquo;s JVM memory is set to 32GB and may 
experience OOM when the data is too large.&lt;/li>
 &lt;/ul>
-&lt;h5 id="k-out性能">K-out性能&lt;/h5>
+&lt;h5 id="k-out-performance">K-out performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>顶点&lt;/th>
-&lt;th>深度&lt;/th>
-&lt;th>一度&lt;/th>
-&lt;th>二度&lt;/th>
-&lt;th>三度&lt;/th>
-&lt;th>四度&lt;/th>
-&lt;th>五度&lt;/th>
-&lt;th>六度&lt;/th>
+&lt;th>Vertex&lt;/th>
+&lt;th>Depth&lt;/th>
+&lt;th>1st Degree&lt;/th>
+&lt;th>2nd Degree&lt;/th>
+&lt;th>3rd Degree&lt;/th>
+&lt;th>4th Degree&lt;/th>
+&lt;th>5th Degree&lt;/th>
+&lt;th>6th Degree&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
 &lt;tr>
 &lt;td>v1&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.054s&lt;/td>
 &lt;td>0.057s&lt;/td>
 &lt;td>0.109s&lt;/td>
@@ -1243,7 +1229,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>133&lt;/td>
 &lt;td>2453&lt;/td>
@@ -1254,7 +1240,7 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.032s&lt;/td>
 &lt;td>0.042s&lt;/td>
 &lt;td>0.136s&lt;/td>
@@ -1263,7 +1249,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>211&lt;/td>
 &lt;td>4944&lt;/td>
@@ -1274,7 +1260,7 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v1111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.039s&lt;/td>
 &lt;td>0.045s&lt;/td>
 &lt;td>0.053s&lt;/td>
@@ -1283,7 +1269,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>140&lt;/td>
 &lt;td>2555&lt;/td>
@@ -1294,24 +1280,24 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM&lt;/li>
+&lt;li>The JVM memory of HugeGraph-Server is set to 32GB, and OOM may occur 
when the data is too large.&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-3">结论&lt;/h6>
+&lt;h6 id="conclusion-3">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>FS场景,HugeGraph性能优于Neo4j和Titan&lt;/li>
-&lt;li>K-neighbor和K-out场景,HugeGraph能够实现在5度范围内秒级返回结果&lt;/li>
+&lt;li>In the FS scenario, HugeGraph outperforms Neo4j and Titan in terms of 
performance.&lt;/li>
+&lt;li>In the K-neighbor and K-out scenarios, HugeGraph can achieve results 
returned within seconds within 5 degrees.&lt;/li>
 &lt;/ul>
-&lt;h4 id="24-图综合性能测试-cw">2.4 图综合性能测试-CW&lt;/h4>
+&lt;h4 id="24-comprehensive-performance-test---cw">2.4 Comprehensive 
Performance Test - CW&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>数据库&lt;/th>
-&lt;th>规模1000&lt;/th>
-&lt;th>规模5000&lt;/th>
-&lt;th>规模10000&lt;/th>
-&lt;th>规模20000&lt;/th>
+&lt;th>Database&lt;/th>
+&lt;th>Size 1000&lt;/th>
+&lt;th>Size 5000&lt;/th>
+&lt;th>Size 10000&lt;/th>
+&lt;th>Size 20000&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
@@ -1338,16 +1324,16 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>&amp;ldquo;规模&amp;quot;以顶点为单位&lt;/li>
-&lt;li>表中数据是社区发现完成需要的时间,单位是s,例如HugeGraph使用RocksDB后端在规模10000的数据集,社区聚合不再变化,需要耗时744.780s&lt;/li>
-&lt;li>CW测试是CRUD的综合评估&lt;/li>
-&lt;li>该测试中HugeGraph跟Titan一样,没有通过client,直接对core操作&lt;/li>
+&lt;li>The &amp;ldquo;scale&amp;rdquo; is based on the number of 
vertices.&lt;/li>
+&lt;li>The data in the table is the time required to complete community 
discovery, in seconds. For example, if HugeGraph uses the RocksDB backend and 
operates on a dataset of 10,000 vertices, and the community aggregation is no 
longer changing, it takes 744.780 seconds.&lt;/li>
+&lt;li>The CW test is a comprehensive evaluation of CRUD operations.&lt;/li>
+&lt;li>In this test, HugeGraph, like Titan, did not use the client and 
directly operated on the core.&lt;/li>
 &lt;/ul>
-&lt;h5 id="结论-4">结论&lt;/h5>
+&lt;h5 id="conclusion-4">Conclusion&lt;/h5>
 &lt;ul>
-&lt;li>社区聚类算法性能 Neo4j &amp;gt; HugeGraph &amp;gt; Titan&lt;/li>
+&lt;li>Performance of community detection algorithm: Neo4j &amp;gt; HugeGraph 
&amp;gt; Titan&lt;/li>
 &lt;/ul></description></item><item><title>Docs: HugeGraph-Server Quick 
Start</title><link>/docs/quickstart/hugegraph-server/</link><pubDate>Mon, 01 
Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/quickstart/hugegraph-server/</guid><description>
 &lt;h3 id="1-hugegraph-server-overview">1 HugeGraph-Server Overview&lt;/h3>
 &lt;p>&lt;code>HugeGraph-Server&lt;/code> is the core part of the HugeGraph 
Project, contains submodules such as Core、Backend、API.&lt;/p>
diff --git a/docs/performance/_print/index.html 
b/docs/performance/_print/index.html
index d6c18fd3..5a912e07 100644
--- a/docs/performance/_print/index.html
+++ b/docs/performance/_print/index.html
@@ -1,6 +1,6 @@
 <!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><link rel=canonical type=text/html 
href=/docs/performance/><link rel=alternate type=application/rss+xml 
href=/docs/performance/index.xml><meta name=robots content="noindex, 
nofollow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x [...]
 <link rel=stylesheet href=/css/prism.css><script 
type=application/javascript>var 
doNotTrack=!1;doNotTrack||(window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)},ga.l=+new
 
Date,ga("create","UA-00000000-0","auto"),ga("send","pageview"))</script><script 
async src=https://www.google-analytics.com/analytics.js></script></head><body 
class=td-section><header><nav class="js-navbar-scroll navbar navbar-expand 
navbar-dark flex-column flex-md-row td-navbar"><a class=navbar-brand href=/> 
[...]
-<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>PERFORMANCE</h1><ul><li>1: <a 
href=#pg-63f6d63db3ee3a5270fc1ca0a0c0e181>HugeGraph BenchMark 
Performance</a></li><li>2: <a 
href=#pg-699ebe5daed825049424b7539aad30f9>HugeGraph-API 
Performance</a></li><ul><li>2.1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2.2: <a href=#pg-fd5b165e28a07 [...]
+<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>PERFORMANCE</h1><ul><li>1: <a 
href=#pg-63f6d63db3ee3a5270fc1ca0a0c0e181>HugeGraph BenchMark 
Performance</a></li><li>2: <a 
href=#pg-699ebe5daed825049424b7539aad30f9>HugeGraph-API 
Performance</a></li><ul><li>2.1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2.2: <a href=#pg-fd5b165e28a07 [...]
 </span></span><span style=display:flex><span>  
batch_size_fail_threshold_in_kb: 1000
 </span></span></code></pre></div><ul><li>HugeGraphServer 与 HugeGremlinServer 
与cassandra都在同一机器上启动,server 相关的配置文件除主机和端口有修改外,其余均保持默认。</li></ul><h4 
id=13-名词解释>1.3 名词解释</h4><ul><li>Samples &ndash; 本次场景中一共完成了多少个线程</li><li>Average 
&ndash; 平均响应时间</li><li>Median &ndash; 统计意义上面的响应时间的中值</li><li>90% Line &ndash; 
所有线程中90%的线程的响应时间都小于xx</li><li>Min &ndash; 最小响应时间</li><li>Max &ndash; 
最大响应时间</li><li>Error &ndash; 出错率</li><li>Troughput &ndash; 吞吐量Â</li><li>KB/sec 
&ndash; 以流量做衡量的吞吐量</li></ul><p><em>注:时间的单位 [...]
 <script 
src=https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js 
integrity="sha512-UR25UO94eTnCVwjbXozyeVd6ZqpaAE9naiEUBK/A+QDbfSTQFhPGj5lOR6d8tsgbBk84Ggb5A3EkjsOgPRPcKA=="
 crossorigin=anonymous></script>
diff --git a/docs/performance/hugegraph-benchmark-0.5.6/index.html 
b/docs/performance/hugegraph-benchmark-0.5.6/index.html
index 1bef0b38..98575182 100644
--- a/docs/performance/hugegraph-benchmark-0.5.6/index.html
+++ b/docs/performance/hugegraph-benchmark-0.5.6/index.html
@@ -1,5 +1,5 @@
-<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><meta name=robots content="index, 
follow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x180.png 
sizes=180x180><link rel=icon type=image/png href=/favicons/favicon-16x16.png 
sizes=16x16><link rel=icon type=image/png href=/favicons [...]
-1.1 硬件信息
+<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><meta name=robots content="index, 
follow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x180.png 
sizes=180x180><link rel=icon type=image/png href=/favicons/favicon-16x16.png 
sizes=16x16><link rel=icon type=image/png href=/favicons [...]
+1.1 Hardware information
 
 
 
@@ -18,50 +18,16 @@ Memory
 
 
 
-1.2 软件信息
-1.2.1 …"><meta property="og:title" content="HugeGraph BenchMark 
Performance"><meta property="og:description" content="1 测试环境 1.1 硬件信息 CPU 
Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 750GB 
SSD 1.2 软件信息 1.2.1 测试用例 测试使用graphdb-benchmark,一个图数据库测试集。该测试集主要包含4类测试:
-Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交
-Single Insertion,单条插入,每个顶点或者每条边立即提交
-Query,主要是图数据库的基本查询操作:
-Find Neighbors,查询所有顶点的邻居 Find Adjacent Nodes,查询所有边的邻接顶点 Find Shortest 
Path,查询第一个顶点到100个随机顶点的最短路径 Clustering,基于Louvain Method的社区发现算法
-1.2.2 测试数据集 测试使用人造数据和真实数据
-MIW、SIW和QW使用SNAP数据集
-Enron Dataset
-Amazon dataset
-Youtube dataset
-LiveJournal dataset
-CW使用LFR-Benchmark generator生成的人造数据
-本测试用到的数据集规模 名称 vertex数目 edge数目 文件大小 email-enron.txt 36,691 367,661 4MB 
com-youtube.ungraph.txt 1,157,806 2,987,624 38.7MB amazon0601.txt 403,393 
3,387,388 47."><meta property="og:type" content="article"><meta 
property="og:url" content="/docs/performance/hugegraph-benchmark-0.5.6/"><meta 
property="article:section" content="docs"><meta 
property="article:modified_time" content="2022-09-15T12:59:59+08:00"><meta 
property="og:site_name" content="HugeGraph"><meta itemprop=name 
content="HugeGrap [...]
-Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交
-Single Insertion,单条插入,每个顶点或者每条边立即提交
-Query,主要是图数据库的基本查询操作:
-Find Neighbors,查询所有顶点的邻居 Find Adjacent Nodes,查询所有边的邻接顶点 Find Shortest 
Path,查询第一个顶点到100个随机顶点的最短路径 Clustering,基于Louvain Method的社区发现算法
-1.2.2 测试数据集 测试使用人造数据和真实数据
-MIW、SIW和QW使用SNAP数据集
-Enron Dataset
-Amazon dataset
-Youtube dataset
-LiveJournal dataset
-CW使用LFR-Benchmark generator生成的人造数据
-本测试用到的数据集规模 名称 vertex数目 edge数目 文件大小 email-enron.txt 36,691 367,661 4MB 
com-youtube.ungraph.txt 1,157,806 2,987,624 38.7MB amazon0601.txt 403,393 
3,387,388 47."><meta itemprop=dateModified 
content="2022-09-15T12:59:59+08:00"><meta itemprop=wordCount 
content="364"><meta itemprop=keywords content><meta name=twitter:card 
content="summary"><meta name=twitter:title content="HugeGraph BenchMark 
Performance"><meta name=twitter:description content="1 测试环境 1.1 硬件信息 CPU Memory 
网卡 磁盘 48 Intel(R) Xeo [...]
-Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交
-Single Insertion,单条插入,每个顶点或者每条边立即提交
-Query,主要是图数据库的基本查询操作:
-Find Neighbors,查询所有顶点的邻居 Find Adjacent Nodes,查询所有边的邻接顶点 Find Shortest 
Path,查询第一个顶点到100个随机顶点的最短路径 Clustering,基于Louvain Method的社区发现算法
-1.2.2 测试数据集 测试使用人造数据和真实数据
-MIW、SIW和QW使用SNAP数据集
-Enron Dataset
-Amazon dataset
-Youtube dataset
-LiveJournal dataset
-CW使用LFR-Benchmark generator生成的人造数据
-本测试用到的数据集规模 名称 vertex数目 edge数目 文件大小 email-enron.txt 36,691 367,661 4MB 
com-youtube.ungraph.txt 1,157,806 2,987,624 38.7MB amazon0601.txt 403,393 
3,387,388 47."><link rel=preload 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 as=style><link 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 rel=stylesheet integrity><script 
src=https://code.jquery.com/jquery-3.5.1.min.js 
integrity="sha256-9/aliU8dGd2tb6OSsuzixe [...]
+1.2 …"><meta property="og:title" content="HugeGraph BenchMark 
Performance"><meta property="og:description" content="1 Test environment 1.1 
Hardware information CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 
2.20GHz 128G 10000Mbps 750GB SSD 1.2 Software information 1.2.1 Test cases 
Testing is done using the graphdb-benchmark, a benchmark suite for graph 
databases. This benchmark suite mainly consists of four types of tests:
+Massive Insertion, which involves batch insertion of vertices and edges, with 
a certain number of vertices or edges being submitted at once."><meta 
property="og:type" content="article"><meta property="og:url" 
content="/docs/performance/hugegraph-benchmark-0.5.6/"><meta 
property="article:section" content="docs"><meta 
property="article:modified_time" content="2023-05-14T22:31:02-05:00"><meta 
property="og:site_name" content="HugeGraph"><meta itemprop=name 
content="HugeGraph BenchMark Perfor [...]
+Massive Insertion, which involves batch insertion of vertices and edges, with 
a certain number of vertices or edges being submitted at once."><meta 
itemprop=dateModified content="2023-05-14T22:31:02-05:00"><meta 
itemprop=wordCount content="1048"><meta itemprop=keywords content><meta 
name=twitter:card content="summary"><meta name=twitter:title content="HugeGraph 
BenchMark Performance"><meta name=twitter:description content="1 Test 
environment 1.1 Hardware information CPU Memory 网卡 磁盘 48 I [...]
+Massive Insertion, which involves batch insertion of vertices and edges, with 
a certain number of vertices or edges being submitted at once."><link 
rel=preload 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 as=style><link 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 rel=stylesheet integrity><script 
src=https://code.jquery.com/jquery-3.5.1.min.js 
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphb [...]
 <link rel=stylesheet href=/css/prism.css><script 
type=application/javascript>var 
doNotTrack=!1;doNotTrack||(window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)},ga.l=+new
 
Date,ga("create","UA-00000000-0","auto"),ga("send","pageview"))</script><script 
async src=https://www.google-analytics.com/analytics.js></script></head><body 
class=td-page><header><nav class="js-navbar-scroll navbar navbar-expand 
navbar-dark flex-column flex-md-row td-navbar"><a class=navbar-brand href=/><sp 
[...]
 <a 
href=https://github.com/apache/incubator-hugegraph-doc/edit/master/content/en/docs/performance/hugegraph-benchmark-0.5.6.md
 class=td-page-meta--edit target=_blank rel=noopener><i class="fa fa-edit 
fa-fw"></i> Edit this page</a>
 <a 
href="https://github.com/apache/incubator-hugegraph-doc/new/master/content/en/docs/performance/hugegraph-benchmark-0.5.6.md?filename=change-me.md&value=---%0Atitle%3A+%22Long+Page+Title%22%0AlinkTitle%3A+%22Short+Nav+Title%22%0Aweight%3A+100%0Adescription%3A+%3E-%0A+++++Page+description+for+heading+and+indexes.%0A---%0A%0A%23%23+Heading%0A%0AEdit+this+template+to+create+your+new+page.%0A%0A%2A+Give+it+a+good+name%2C+ending+in+%60.md%60+-+e.g.+%60getting-started.md%60%0A%2A+Edit+the+%2
 [...]
 <a 
href="https://github.com/apache/incubator-hugegraph-doc/issues/new?title=HugeGraph%20BenchMark%20Performance";
 class=td-page-meta--issue target=_blank rel=noopener><i class="fab fa-github 
fa-fw"></i> Create documentation issue</a>
 <a href=https://github.com/apache/incubator-hugegraph/issues/new 
class=td-page-meta--project-issue target=_blank rel=noopener><i class="fas 
fa-tasks fa-fw"></i> Create project issue</a>
-<a id=print href=/docs/performance/_print/><i class="fa fa-print fa-fw"></i> 
Print entire section</a></div><div class=td-toc><nav 
id=TableOfContents><ul><li><ul><li><a href=#1-测试环境>1 测试环境</a></li><li><a 
href=#2-测试结果>2 测试结果</a></li></ul></li></ul></nav></div></aside><main 
class="col-12 col-md-9 col-xl-8 pl-md-5" role=main><nav aria-label=breadcrumb 
class=td-breadcrumbs><ol class=breadcrumb><li class=breadcrumb-item><a 
href=/docs/>Documentation</a></li><li class=breadcrumb-item><a href=/do [...]
+<a id=print href=/docs/performance/_print/><i class="fa fa-print fa-fw"></i> 
Print entire section</a></div><div class=td-toc><nav 
id=TableOfContents><ul><li><ul><li><a href=#1-test-environment>1 Test 
environment</a></li><li><a href=#2-test-results>2 Test 
results</a></li></ul></li></ul></nav></div></aside><main class="col-12 col-md-9 
col-xl-8 pl-md-5" role=main><nav aria-label=breadcrumb class=td-breadcrumbs><ol 
class=breadcrumb><li class=breadcrumb-item><a href=/docs/>Documentation</a></ 
[...]
 <script 
src=https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js 
integrity="sha512-UR25UO94eTnCVwjbXozyeVd6ZqpaAE9naiEUBK/A+QDbfSTQFhPGj5lOR6d8tsgbBk84Ggb5A3EkjsOgPRPcKA=="
 crossorigin=anonymous></script>
 <script src=/js/tabpane-persist.js></script>
 <script 
src=/js/main.min.aa9f4c5dae6a98b2c46277f4c56f1673a2b000d1756ce4ffae93784cab25e6d5.js
 integrity="sha256-qp9MXa5qmLLEYnf0xW8Wc6KwANF1bOT/rpN4TKsl5tU=" 
crossorigin=anonymous></script>
diff --git a/docs/performance/index.xml b/docs/performance/index.xml
index 396863ef..4ba887f9 100644
--- a/docs/performance/index.xml
+++ b/docs/performance/index.xml
@@ -1,6 +1,6 @@
 <rss version="2.0" 
xmlns:atom="http://www.w3.org/2005/Atom";><channel><title>HugeGraph – 
PERFORMANCE</title><link>/docs/performance/</link><description>Recent content 
in PERFORMANCE on HugeGraph</description><generator>Hugo -- 
gohugo.io</generator><atom:link href="/docs/performance/index.xml" rel="self" 
type="application/rss+xml"/><item><title>Docs: HugeGraph BenchMark 
Performance</title><link>/docs/performance/hugegraph-benchmark-0.5.6/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 +0000</pub [...]
-&lt;h3 id="1-测试环境">1 测试环境&lt;/h3>
-&lt;h4 id="11-硬件信息">1.1 硬件信息&lt;/h4>
+&lt;h3 id="1-test-environment">1 Test environment&lt;/h3>
+&lt;h4 id="11-hardware-information">1.1 Hardware information&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -19,60 +19,45 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;h4 id="12-软件信息">1.2 软件信息&lt;/h4>
-&lt;h5 id="121-测试用例">1.2.1 测试用例&lt;/h5>
-&lt;p>测试使用&lt;a 
href="https://github.com/socialsensor/graphdb-benchmarks";>graphdb-benchmark&lt;/a>,一个图数据库测试集。该测试集主要包含4类测试:&lt;/p>
+&lt;h4 id="12-software-information">1.2 Software information&lt;/h4>
+&lt;h5 id="121-test-cases">1.2.1 Test cases&lt;/h5>
+&lt;p>Testing is done using the &lt;a 
href="https://github.com/socialsensor/graphdb-benchmarks";>graphdb-benchmark&lt;/a>,
 a benchmark suite for graph databases. This benchmark suite mainly consists of 
four types of tests:&lt;/p>
 &lt;ul>
-&lt;li>
-&lt;p>Massive Insertion,批量插入顶点和边,一定数量的顶点或边一次性提交&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>Single Insertion,单条插入,每个顶点或者每条边立即提交&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>Query,主要是图数据库的基本查询操作:&lt;/p>
+&lt;li>Massive Insertion, which involves batch insertion of vertices and 
edges, with a certain number of vertices or edges being submitted at 
once.&lt;/li>
+&lt;li>Single Insertion, which involves the immediate insertion of each vertex 
or edge, one at a time.&lt;/li>
+&lt;li>Query, which mainly includes the basic query operations of the graph 
database:
 &lt;ul>
-&lt;li>Find Neighbors,查询所有顶点的邻居&lt;/li>
-&lt;li>Find Adjacent Nodes,查询所有边的邻接顶点&lt;/li>
-&lt;li>Find Shortest Path,查询第一个顶点到100个随机顶点的最短路径&lt;/li>
+&lt;li>Find Neighbors, which queries the neighbors of all vertices.&lt;/li>
+&lt;li>Find Adjacent Nodes, which queries the adjacent vertices of all 
edges.&lt;/li>
+&lt;li>Find Shortest Path, which queries the shortest path from the first 
vertex to 100 random vertices.&lt;/li>
 &lt;/ul>
 &lt;/li>
-&lt;li>
-&lt;p>Clustering,基于Louvain Method的社区发现算法&lt;/p>
-&lt;/li>
+&lt;li>Clustering, which is a community detection algorithm based on the 
Louvain Method.&lt;/li>
 &lt;/ul>
-&lt;h5 id="122-测试数据集">1.2.2 测试数据集&lt;/h5>
-&lt;p>测试使用人造数据和真实数据&lt;/p>
+&lt;h5 id="122-test-dataset">1.2.2 Test dataset&lt;/h5>
+&lt;p>Tests are conducted using both synthetic and real data.&lt;/p>
 &lt;ul>
 &lt;li>
-&lt;p>MIW、SIW和QW使用SNAP数据集&lt;/p>
+&lt;p>MIW, SIW, and QW use SNAP datasets:&lt;/p>
 &lt;ul>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/email-Enron.html";>Enron 
Dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/amazon0601.html";>Amazon 
dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a href="http://snap.stanford.edu/data/com-Youtube.html";>Youtube 
dataset&lt;/a>&lt;/p>
-&lt;/li>
-&lt;li>
-&lt;p>&lt;a 
href="http://snap.stanford.edu/data/com-LiveJournal.html";>LiveJournal 
dataset&lt;/a>&lt;/p>
-&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/email-Enron.html";>Enron 
Dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/amazon0601.html";>Amazon 
dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a href="http://snap.stanford.edu/data/com-Youtube.html";>Youtube 
dataset&lt;/a>&lt;/li>
+&lt;li>&lt;a 
href="http://snap.stanford.edu/data/com-LiveJournal.html";>LiveJournal 
dataset&lt;/a>&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>CW使用&lt;a 
href="https://sites.google.com/site/andrealancichinetti/files";>LFR-Benchmark 
generator&lt;/a>生成的人造数据&lt;/p>
+&lt;p>CW uses synthetic data generated by the &lt;a 
href="https://sites.google.com/site/andrealancichinetti/files";>LFR-Benchmark 
generator&lt;/a>.&lt;/p>
 &lt;/li>
 &lt;/ul>
-&lt;h6 id="本测试用到的数据集规模">本测试用到的数据集规模&lt;/h6>
+&lt;p>The size of the datasets used in this test are not mentioned.&lt;/p>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>名称&lt;/th>
-&lt;th>vertex数目&lt;/th>
-&lt;th>edge数目&lt;/th>
-&lt;th>文件大小&lt;/th>
+&lt;th>Name&lt;/th>
+&lt;th>Number of Vertices&lt;/th>
+&lt;th>Number of Edges&lt;/th>
+&lt;th>File Size&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
@@ -102,29 +87,29 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;h4 id="13-服务配置">1.3 服务配置&lt;/h4>
+&lt;h4 id="13-service-configuration">1.3 Service configuration&lt;/h4>
 &lt;ul>
 &lt;li>
-&lt;p>HugeGraph版本:0.5.6,RestServer和Gremlin Server和backends都在同一台服务器上&lt;/p>
+&lt;p>HugeGraph version: 0.5.6, RestServer and Gremlin Server and backends are 
on the same server&lt;/p>
 &lt;ul>
-&lt;li>RocksDB版本:rocksdbjni-5.8.6&lt;/li>
+&lt;li>RocksDB version: rocksdbjni-5.8.6&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>Titan版本:0.5.4, 使用thrift+Cassandra模式&lt;/p>
+&lt;p>Titan version: 0.5.4, using thrift+Cassandra mode&lt;/p>
 &lt;ul>
-&lt;li>Cassandra版本:cassandra-3.10,commit-log 和 data 共用SSD&lt;/li>
+&lt;li>Cassandra version: cassandra-3.10, commit-log and data use SSD 
together&lt;/li>
 &lt;/ul>
 &lt;/li>
 &lt;li>
-&lt;p>Neo4j版本:2.0.1&lt;/p>
+&lt;p>Neo4j version: 2.0.1&lt;/p>
 &lt;/li>
 &lt;/ul>
 &lt;blockquote>
-&lt;p>graphdb-benchmark适配的Titan版本为0.5.4&lt;/p>
+&lt;p>The Titan version adapted by graphdb-benchmark is 0.5.4.&lt;/p>
 &lt;/blockquote>
-&lt;h3 id="2-测试结果">2 测试结果&lt;/h3>
-&lt;h4 id="21-batch插入性能">2.1 Batch插入性能&lt;/h4>
+&lt;h3 id="2-test-results">2 Test results&lt;/h3>
+&lt;h4 id="21-batch-insertion-performance">2.1 Batch insertion 
performance&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -159,23 +144,23 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Instructions&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;quot;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是批量插入的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB插入amazon0601数据集的300w条边,花费5.711s&lt;/li>
+&lt;li>The data scale is in the table header in terms of edges&lt;/li>
+&lt;li>The data in the table is the time for batch insertion, in 
seconds&lt;/li>
+&lt;li>For example, HugeGraph(RocksDB) spent 5.711 seconds to insert 3 million 
edges of the amazon0601 dataset.&lt;/li>
 &lt;/ul>
-&lt;h5 id="结论">结论&lt;/h5>
+&lt;h5 id="conclusion">Conclusion&lt;/h5>
 &lt;ul>
-&lt;li>批量插入性能 HugeGraph(RocksDB) &amp;gt; Neo4j &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
+&lt;li>The performance of batch insertion: HugeGraph(RocksDB) &amp;gt; Neo4j 
&amp;gt; Titan(thrift+Cassandra)&lt;/li>
 &lt;/ul>
-&lt;h4 id="22-遍历性能">2.2 遍历性能&lt;/h4>
-&lt;h5 id="221-术语说明">2.2.1 术语说明&lt;/h5>
+&lt;h4 id="22-traversal-performance">2.2 Traversal performance&lt;/h4>
+&lt;h5 id="221-explanation-of-terms">2.2.1 Explanation of terms&lt;/h5>
 &lt;ul>
-&lt;li>FN(Find Neighbor), 遍历所有vertex, 根据vertex查邻接edge, 通过edge和vertex查other 
vertex&lt;/li>
-&lt;li>FA(Find Adjacent), 遍历所有edge,根据edge获得source vertex和target vertex&lt;/li>
+&lt;li>FN(Find Neighbor): Traverse all vertices, find the adjacent edges based 
on each vertex, and use the edges and vertices to find the other vertices 
adjacent to the original vertex.&lt;/li>
+&lt;li>FA(Find Adjacent): Traverse all edges, get the source vertex and target 
vertex based on each edge.&lt;/li>
 &lt;/ul>
-&lt;h5 id="222-fn性能">2.2.2 FN性能&lt;/h5>
+&lt;h5 id="222-fn-performance">2.2.2 FN performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -210,11 +195,11 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Instructions&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以顶点为单位&lt;/li>
-&lt;li>表中数据是遍历顶点花费的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端遍历amazon0601的所有顶点,并查找邻接边和另一顶点,总共耗时45.118s&lt;/li>
+&lt;li>The data in the table header &amp;ldquo;( )&amp;rdquo; represents the 
data scale, in terms of vertices.&lt;/li>
+&lt;li>The data in the table represents the time spent traversing vertices, in 
seconds.&lt;/li>
+&lt;li>For example, HugeGraph uses the RocksDB backend to traverse all 
vertices in amazon0601, and search for adjacent edges and another vertex, which 
takes a total of 45.118 seconds.&lt;/li>
 &lt;/ul>
 &lt;h5 id="223-fa性能">2.2.3 FA性能&lt;/h5>
 &lt;table>
@@ -251,24 +236,25 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是遍历边花费的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端遍历amazon0601的所有边,并查询每条边的两个顶点,总共耗时10.764s&lt;/li>
+&lt;li>The data size in the header &amp;ldquo;( )&amp;rdquo; is based on the 
number of vertices.&lt;/li>
+&lt;li>The data in the table is the time it takes to traverse the vertices, in 
seconds.&lt;/li>
+&lt;li>For example, HugeGraph with RocksDB backend traverses all vertices in 
the amazon0601 dataset, and looks up adjacent edges and other vertices, taking 
a total of 45.118 seconds.&lt;/li>
+&lt;li>&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-1">结论&lt;/h6>
+&lt;h6 id="conclusion-1">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>遍历性能 Neo4j &amp;gt; HugeGraph(RocksDB) &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
+&lt;li>Traversal performance: Neo4j &amp;gt; HugeGraph(RocksDB) &amp;gt; 
Titan(thrift+Cassandra)&lt;/li>
 &lt;/ul>
-&lt;h4 id="23-hugegraph-图常用分析方法性能">2.3 HugeGraph-图常用分析方法性能&lt;/h4>
-&lt;h5 id="术语说明">术语说明&lt;/h5>
+&lt;h4 id="23-performance-of-common-graph-analysis-methods-in-hugegraph">2.3 
Performance of Common Graph Analysis Methods in HugeGraph&lt;/h4>
+&lt;h5 id="terminology-explanation">Terminology Explanation&lt;/h5>
 &lt;ul>
-&lt;li>FS(Find Shortest Path), 寻找最短路径&lt;/li>
-&lt;li>K-neighbor,从起始vertex出发,通过K跳边能够到达的所有顶点, 包括1, 2, 3&amp;hellip;(K-1), 
K跳边可达vertex&lt;/li>
-&lt;li>K-out, 从起始vertex出发,恰好经过K跳out边能够到达的顶点&lt;/li>
+&lt;li>FS (Find Shortest Path): finding the shortest path between two 
vertices&lt;/li>
+&lt;li>K-neighbor: all vertices that can be reached by traversing K hops 
(including 1, 2, 3&amp;hellip;(K-1) hops) from the starting vertex&lt;/li>
+&lt;li>K-out: all vertices that can be reached by traversing exactly K 
out-edges from the starting vertex.&lt;/li>
 &lt;/ul>
-&lt;h5 id="fs性能">FS性能&lt;/h5>
+&lt;h5 id="fs-performance">FS performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -303,35 +289,35 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>表头&amp;rdquo;()&amp;ldquo;中数据是数据规模,以边为单位&lt;/li>
-&lt;li>表中数据是找到&lt;strong>从第一个顶点出发到达随机选择的100个顶点的最短路径&lt;/strong>的时间,单位是s&lt;/li>
-&lt;li>例如,HugeGraph使用RocksDB后端在图amazon0601中查找第一个顶点到100个随机顶点的最短路径,总共耗时0.103s&lt;/li>
+&lt;li>The data in the header &amp;ldquo;()&amp;rdquo; represents the data 
scale in terms of edges&lt;/li>
+&lt;li>The data in the table is the time it takes to find the shortest path 
&lt;strong>from the first vertex to 100 randomly selected vertices&lt;/strong> 
in seconds&lt;/li>
+&lt;li>For example, HugeGraph using the RocksDB backend to find the shortest 
path from the first vertex to 100 randomly selected vertices in the amazon0601 
graph took a total of 0.103s.&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-2">结论&lt;/h6>
+&lt;h6 id="conclusion-2">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>在数据规模小或者顶点关联关系少的场景下,HugeGraph性能优于Neo4j和Titan&lt;/li>
-&lt;li>随着数据规模增大且顶点的关联度增高,HugeGraph与Neo4j性能趋近,都远高于Titan&lt;/li>
+&lt;li>In scenarios with small data size or few vertex relationships, 
HugeGraph outperforms Neo4j and Titan.&lt;/li>
+&lt;li>As the data size increases and the degree of vertex association 
increases, the performance of HugeGraph and Neo4j tends to be similar, both far 
exceeding Titan.&lt;/li>
 &lt;/ul>
-&lt;h5 id="k-neighbor性能">K-neighbor性能&lt;/h5>
+&lt;h5 id="k-neighbor-performance">K-neighbor Performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>顶点&lt;/th>
-&lt;th>深度&lt;/th>
-&lt;th>一度&lt;/th>
-&lt;th>二度&lt;/th>
-&lt;th>三度&lt;/th>
-&lt;th>四度&lt;/th>
-&lt;th>五度&lt;/th>
-&lt;th>六度&lt;/th>
+&lt;th>Vertex&lt;/th>
+&lt;th>Depth&lt;/th>
+&lt;th>Degree 1&lt;/th>
+&lt;th>Degree 2&lt;/th>
+&lt;th>Degree 3&lt;/th>
+&lt;th>Degree 4&lt;/th>
+&lt;th>Degree 5&lt;/th>
+&lt;th>Degree 6&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
 &lt;tr>
 &lt;td>v1&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.031s&lt;/td>
 &lt;td>0.033s&lt;/td>
 &lt;td>0.048s&lt;/td>
@@ -341,17 +327,17 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.027s&lt;/td>
 &lt;td>0.034s&lt;/td>
-&lt;td>0.115&lt;/td>
+&lt;td>0.115s&lt;/td>
 &lt;td>1.36s&lt;/td>
 &lt;td>OOM&lt;/td>
 &lt;td>&amp;ndash;&lt;/td>
 &lt;/tr>
 &lt;tr>
 &lt;td>v1111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.039s&lt;/td>
 &lt;td>0.027s&lt;/td>
 &lt;td>0.052s&lt;/td>
@@ -361,28 +347,28 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM&lt;/li>
+&lt;li>HugeGraph-Server&amp;rsquo;s JVM memory is set to 32GB and may 
experience OOM when the data is too large.&lt;/li>
 &lt;/ul>
-&lt;h5 id="k-out性能">K-out性能&lt;/h5>
+&lt;h5 id="k-out-performance">K-out performance&lt;/h5>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>顶点&lt;/th>
-&lt;th>深度&lt;/th>
-&lt;th>一度&lt;/th>
-&lt;th>二度&lt;/th>
-&lt;th>三度&lt;/th>
-&lt;th>四度&lt;/th>
-&lt;th>五度&lt;/th>
-&lt;th>六度&lt;/th>
+&lt;th>Vertex&lt;/th>
+&lt;th>Depth&lt;/th>
+&lt;th>1st Degree&lt;/th>
+&lt;th>2nd Degree&lt;/th>
+&lt;th>3rd Degree&lt;/th>
+&lt;th>4th Degree&lt;/th>
+&lt;th>5th Degree&lt;/th>
+&lt;th>6th Degree&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
 &lt;tr>
 &lt;td>v1&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.054s&lt;/td>
 &lt;td>0.057s&lt;/td>
 &lt;td>0.109s&lt;/td>
@@ -391,7 +377,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>133&lt;/td>
 &lt;td>2453&lt;/td>
@@ -402,7 +388,7 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.032s&lt;/td>
 &lt;td>0.042s&lt;/td>
 &lt;td>0.136s&lt;/td>
@@ -411,7 +397,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>211&lt;/td>
 &lt;td>4944&lt;/td>
@@ -422,7 +408,7 @@
 &lt;/tr>
 &lt;tr>
 &lt;td>v1111&lt;/td>
-&lt;td>时间&lt;/td>
+&lt;td>Time&lt;/td>
 &lt;td>0.039s&lt;/td>
 &lt;td>0.045s&lt;/td>
 &lt;td>0.053s&lt;/td>
@@ -431,7 +417,7 @@
 &lt;td>OOM&lt;/td>
 &lt;/tr>
 &lt;tr>
-&lt;td>度&lt;/td>
+&lt;td>Degree&lt;/td>
 &lt;td>10&lt;/td>
 &lt;td>140&lt;/td>
 &lt;td>2555&lt;/td>
@@ -442,24 +428,24 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>HugeGraph-Server的JVM内存设置为32GB,数据量过大时会出现OOM&lt;/li>
+&lt;li>The JVM memory of HugeGraph-Server is set to 32GB, and OOM may occur 
when the data is too large.&lt;/li>
 &lt;/ul>
-&lt;h6 id="结论-3">结论&lt;/h6>
+&lt;h6 id="conclusion-3">Conclusion&lt;/h6>
 &lt;ul>
-&lt;li>FS场景,HugeGraph性能优于Neo4j和Titan&lt;/li>
-&lt;li>K-neighbor和K-out场景,HugeGraph能够实现在5度范围内秒级返回结果&lt;/li>
+&lt;li>In the FS scenario, HugeGraph outperforms Neo4j and Titan in terms of 
performance.&lt;/li>
+&lt;li>In the K-neighbor and K-out scenarios, HugeGraph can achieve results 
returned within seconds within 5 degrees.&lt;/li>
 &lt;/ul>
-&lt;h4 id="24-图综合性能测试-cw">2.4 图综合性能测试-CW&lt;/h4>
+&lt;h4 id="24-comprehensive-performance-test---cw">2.4 Comprehensive 
Performance Test - CW&lt;/h4>
 &lt;table>
 &lt;thead>
 &lt;tr>
-&lt;th>数据库&lt;/th>
-&lt;th>规模1000&lt;/th>
-&lt;th>规模5000&lt;/th>
-&lt;th>规模10000&lt;/th>
-&lt;th>规模20000&lt;/th>
+&lt;th>Database&lt;/th>
+&lt;th>Size 1000&lt;/th>
+&lt;th>Size 5000&lt;/th>
+&lt;th>Size 10000&lt;/th>
+&lt;th>Size 20000&lt;/th>
 &lt;/tr>
 &lt;/thead>
 &lt;tbody>
@@ -486,16 +472,16 @@
 &lt;/tr>
 &lt;/tbody>
 &lt;/table>
-&lt;p>&lt;em>说明&lt;/em>&lt;/p>
+&lt;p>&lt;em>Explanation&lt;/em>&lt;/p>
 &lt;ul>
-&lt;li>&amp;ldquo;规模&amp;quot;以顶点为单位&lt;/li>
-&lt;li>表中数据是社区发现完成需要的时间,单位是s,例如HugeGraph使用RocksDB后端在规模10000的数据集,社区聚合不再变化,需要耗时744.780s&lt;/li>
-&lt;li>CW测试是CRUD的综合评估&lt;/li>
-&lt;li>该测试中HugeGraph跟Titan一样,没有通过client,直接对core操作&lt;/li>
+&lt;li>The &amp;ldquo;scale&amp;rdquo; is based on the number of 
vertices.&lt;/li>
+&lt;li>The data in the table is the time required to complete community 
discovery, in seconds. For example, if HugeGraph uses the RocksDB backend and 
operates on a dataset of 10,000 vertices, and the community aggregation is no 
longer changing, it takes 744.780 seconds.&lt;/li>
+&lt;li>The CW test is a comprehensive evaluation of CRUD operations.&lt;/li>
+&lt;li>In this test, HugeGraph, like Titan, did not use the client and 
directly operated on the core.&lt;/li>
 &lt;/ul>
-&lt;h5 id="结论-4">结论&lt;/h5>
+&lt;h5 id="conclusion-4">Conclusion&lt;/h5>
 &lt;ul>
-&lt;li>社区聚类算法性能 Neo4j &amp;gt; HugeGraph &amp;gt; Titan&lt;/li>
+&lt;li>Performance of community detection algorithm: Neo4j &amp;gt; HugeGraph 
&amp;gt; Titan&lt;/li>
 &lt;/ul></description></item><item><title>Docs: HugeGraph-API 
Performance</title><link>/docs/performance/api-preformance/</link><pubDate>Mon, 
01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/performance/api-preformance/</guid><description>
 &lt;p>The HugeGraph API performance test mainly tests 
HugeGraph-Server&amp;rsquo;s ability to concurrently process RESTful API 
requests, including:&lt;/p>
 &lt;ul>
diff --git a/en/index.html b/en/index.html
index 2b641798..017c4d50 100644
--- a/en/index.html
+++ b/en/index.html
@@ -1 +1 @@
-<!doctype html><html lang=en><head><title>/</title><link rel=canonical 
href=/><meta name=robots content="noindex"><meta charset=utf-8><meta 
http-equiv=refresh content="0; url=/"></head></html>
\ No newline at end of file
+<!doctype html><html lang=cn><head><title>/</title><link rel=canonical 
href=/><meta name=robots content="noindex"><meta charset=utf-8><meta 
http-equiv=refresh content="0; url=/"></head></html>
\ No newline at end of file
diff --git a/en/sitemap.xml b/en/sitemap.xml
index 3ff705a5..8da9671a 100644
--- a/en/sitemap.xml
+++ b/en/sitemap.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"; 
xmlns:xhtml="http://www.w3.org/1999/xhtml";><url><loc>/docs/guides/architectural/</loc><lastmod>2023-05-12T23:46:05-05:00</lastmod><xhtml:link
 rel="alternate" hreflang="cn" 
href="/cn/docs/guides/architectural/"/><xhtml:link rel="alternate" 
hreflang="en" 
href="/docs/guides/architectural/"/></url><url><loc>/docs/config/config-guide/</loc><lastmod>2023-05-10T12:08:15+08:00</last
 [...]
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"; 
xmlns:xhtml="http://www.w3.org/1999/xhtml";><url><loc>/docs/guides/architectural/</loc><lastmod>2023-05-12T23:46:05-05:00</lastmod><xhtml:link
 rel="alternate" hreflang="cn" 
href="/cn/docs/guides/architectural/"/><xhtml:link rel="alternate" 
hreflang="en" 
href="/docs/guides/architectural/"/></url><url><loc>/docs/config/config-guide/</loc><lastmod>2023-05-10T12:08:15+08:00</last
 [...]
\ No newline at end of file
diff --git a/sitemap.xml b/sitemap.xml
index b5b50c11..340ffb4d 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8" standalone="yes"?><sitemapindex 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9";><sitemap><loc>/en/sitemap.xml</loc><lastmod>2023-05-14T22:30:51-05:00</lastmod></sitemap><sitemap><loc>/cn/sitemap.xml</loc><lastmod>2023-05-14T22:39:27+08:00</lastmod></sitemap></sitemapindex>
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8" standalone="yes"?><sitemapindex 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9";><sitemap><loc>/cn/sitemap.xml</loc><lastmod>2023-05-14T22:39:27+08:00</lastmod></sitemap><sitemap><loc>/en/sitemap.xml</loc><lastmod>2023-05-14T22:31:02-05:00</lastmod></sitemap></sitemapindex>
\ No newline at end of file

Reply via email to