http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/EigenDecomposition.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/EigenDecomposition.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/decompositions/EigenDecomposition.java
deleted file mode 100644
index 66fe13c..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/EigenDecomposition.java
+++ /dev/null
@@ -1,923 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.decompositions;
-
-import org.apache.ignite.math.Matrix;
-import org.apache.ignite.math.Vector;
-import org.apache.ignite.math.functions.Functions;
-
-/**
- * This class provides EigenDecomposition of given matrix. The class is based 
on
- * class with similar name from <a href="http://mahout.apache.org/";>Apache 
Mahout</a> library.
- *
- * @see <a 
href=http://mathworld.wolfram.com/EigenDecomposition.html>MathWorld</a>
- */
-public class EigenDecomposition extends DecompositionSupport {
-    /** Row and column dimension (square matrix). */
-    private final int n;
-
-    /** Array for internal storage of eigen vectors. */
-    private final Matrix v;
-
-    /** Array for internal storage of eigenvalues. */
-    private final Vector d;
-    /** Array for internal storage of eigenvalues. */
-    private final Vector e;
-
-    /** */
-    public EigenDecomposition(Matrix matrix) {
-        this(matrix, isSymmetric(matrix));
-    }
-
-    /** */
-    public EigenDecomposition(Matrix matrix, boolean isSymmetric) {
-        n = matrix.columnSize();
-
-        d = likeVector(matrix);
-        e = likeVector(matrix);
-        v = like(matrix);
-
-        if (isSymmetric) {
-            v.assign(matrix);
-
-            // Tridiagonalize.
-            tred2();
-
-            // Diagonalize.
-            tql2();
-
-        }
-        else
-            // Reduce to Hessenberg form.
-            // Reduce Hessenberg to real Schur form.
-            hqr2(orthes(matrix));
-    }
-
-    /**
-     * Return the eigen vector matrix
-     *
-     * @return V
-     */
-    public Matrix getV() {
-        return like(v).assign(v);
-    }
-
-    /**
-     * Return the real parts of the eigenvalues
-     */
-    public Vector getRealEigenValues() {
-        return d;
-    }
-
-    /**
-     * Return the imaginary parts of the eigenvalues
-     */
-    public Vector getImagEigenvalues() {
-        return e;
-    }
-
-    /**
-     * Return the block diagonal eigenvalue matrix
-     *
-     * @return D
-     */
-    public Matrix getD() {
-        Matrix res = like(v, d.size(), d.size());
-        res.assign(0);
-        res.viewDiagonal().assign(d);
-        for (int i = 0; i < n; i++) {
-            double v = e.getX(i);
-            if (v > 0)
-                res.setX(i, i + 1, v);
-            else if (v < 0)
-                res.setX(i, i - 1, v);
-        }
-        return res;
-    }
-
-    /**
-     * Destroys decomposition components and other internal components of 
decomposition.
-     */
-    @Override public void destroy() {
-        e.destroy();
-        v.destroy();
-        d.destroy();
-    }
-
-    /** */
-    private void tred2() {
-        //  This is derived from the Algol procedures tred2 by
-        //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
-        //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
-        //  Fortran subroutine in EISPACK.
-
-        d.assign(v.viewColumn(n - 1));
-
-        // Householder reduction to tridiagonal form.
-
-        for (int i = n - 1; i > 0; i--) {
-
-            // Scale to avoid under/overflow.
-            double scale = d.viewPart(0, i).kNorm(1);
-            double h = 0.0;
-
-            if (scale == 0.0) {
-                e.setX(i, d.getX(i - 1));
-                for (int j = 0; j < i; j++) {
-                    d.setX(j, v.getX(i - 1, j));
-                    v.setX(i, j, 0.0);
-                    v.setX(j, i, 0.0);
-                }
-            }
-            else {
-
-                // Generate Householder vector.
-
-                for (int k = 0; k < i; k++) {
-                    d.setX(k, d.getX(k) / scale);
-                    h += d.getX(k) * d.getX(k);
-                }
-
-                double f = d.getX(i - 1);
-                double g = Math.sqrt(h);
-
-                if (f > 0)
-                    g = -g;
-
-                e.setX(i, scale * g);
-                h -= f * g;
-                d.setX(i - 1, f - g);
-
-                for (int j = 0; j < i; j++)
-                    e.setX(j, 0.0);
-
-                // Apply similarity transformation to remaining columns.
-
-                for (int j = 0; j < i; j++) {
-                    f = d.getX(j);
-                    v.setX(j, i, f);
-                    g = e.getX(j) + v.getX(j, j) * f;
-
-                    for (int k = j + 1; k <= i - 1; k++) {
-                        g += v.getX(k, j) * d.getX(k);
-                        e.setX(k, e.getX(k) + v.getX(k, j) * f);
-                    }
-
-                    e.setX(j, g);
-                }
-
-                f = 0.0;
-
-                for (int j = 0; j < i; j++) {
-                    e.setX(j, e.getX(j) / h);
-                    f += e.getX(j) * d.getX(j);
-                }
-
-                double hh = f / (h + h);
-
-                for (int j = 0; j < i; j++)
-                    e.setX(j, e.getX(j) - hh * d.getX(j));
-
-                for (int j = 0; j < i; j++) {
-                    f = d.getX(j);
-                    g = e.getX(j);
-
-                    for (int k = j; k <= i - 1; k++)
-                        v.setX(k, j, v.getX(k, j) - (f * e.getX(k) + g * 
d.getX(k)));
-
-                    d.setX(j, v.getX(i - 1, j));
-                    v.setX(i, j, 0.0);
-                }
-            }
-
-            d.setX(i, h);
-        }
-    }
-
-    /** */
-    private Matrix orthes(Matrix matrix) {
-        // Working storage for nonsymmetric algorithm.
-        Vector ort = likeVector(matrix);
-        Matrix hessenBerg = like(matrix).assign(matrix);
-
-        //  This is derived from the Algol procedures orthes and ortran,
-        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
-        //  Vol.ii-Linear Algebra, and the corresponding
-        //  Fortran subroutines in EISPACK.
-
-        int low = 0;
-        int high = n - 1;
-
-        for (int m = low + 1; m <= high - 1; m++) {
-
-            // Scale column.
-
-            Vector hCol = hessenBerg.viewColumn(m - 1).viewPart(m, high - m + 
1);
-            double scale = hCol.kNorm(1);
-
-            if (scale != 0.0) {
-                // Compute Householder transformation.
-                ort.viewPart(m, high - m + 1).map(hCol, Functions.plusMult(1 / 
scale));
-                double h = ort.viewPart(m, high - m + 1).getLengthSquared();
-
-                double g = Math.sqrt(h);
-
-                if (ort.getX(m) > 0)
-                    g = -g;
-
-                h -= ort.getX(m) * g;
-                ort.setX(m, ort.getX(m) - g);
-
-                // Apply Householder similarity transformation
-                // H = (I-u*u'/h)*H*(I-u*u')/h)
-
-                Vector ortPiece = ort.viewPart(m, high - m + 1);
-
-                for (int j = m; j < n; j++) {
-                    double f = 
ortPiece.dot(hessenBerg.viewColumn(j).viewPart(m, high - m + 1)) / h;
-                    hessenBerg.viewColumn(j).viewPart(m, high - m + 
1).map(ortPiece, Functions.plusMult(-f));
-                }
-
-                for (int i = 0; i <= high; i++) {
-                    double f = ortPiece.dot(hessenBerg.viewRow(i).viewPart(m, 
high - m + 1)) / h;
-                    hessenBerg.viewRow(i).viewPart(m, high - m + 
1).map(ortPiece, Functions.plusMult(-f));
-                }
-
-                ort.setX(m, scale * ort.getX(m));
-                hessenBerg.setX(m, m - 1, scale * g);
-            }
-        }
-
-        // Accumulate transformations (Algol's ortran).
-
-        v.assign(0);
-        v.viewDiagonal().assign(1);
-
-        for (int m = high - 1; m >= low + 1; m--) {
-            if (hessenBerg.getX(m, m - 1) != 0.0) {
-                ort.viewPart(m + 1, high - m).assign(hessenBerg.viewColumn(m - 
1).viewPart(m + 1, high - m));
-
-                for (int j = m; j <= high; j++) {
-                    double g = ort.viewPart(m, high - m + 
1).dot(v.viewColumn(j).viewPart(m, high - m + 1));
-
-                    // Double division avoids possible underflow
-                    g = g / ort.getX(m) / hessenBerg.getX(m, m - 1);
-                    v.viewColumn(j).viewPart(m, high - m + 
1).map(ort.viewPart(m, high - m + 1), Functions.plusMult(g));
-                }
-            }
-        }
-
-        return hessenBerg;
-    }
-
-    /** Symmetric tridiagonal QL algorithm. */
-    private void tql2() {
-        //  This is derived from the Algol procedures tql2, by
-        //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
-        //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
-        //  Fortran subroutine in EISPACK.
-
-        e.viewPart(0, n - 1).assign(e.viewPart(1, n - 1));
-        e.setX(n - 1, 0.0);
-
-        double f = 0.0;
-        double tst1 = 0.0;
-        double eps = Math.pow(2.0, -52.0);
-
-        for (int l = 0; l < n; l++) {
-            // Find small subdiagonal element.
-
-            tst1 = Math.max(tst1, Math.abs(d.getX(l)) + Math.abs(e.getX(l)));
-            int m = l;
-
-            while (m < n) {
-                if (Math.abs(e.getX(m)) <= eps * tst1)
-                    break;
-
-                m++;
-            }
-
-            // If m == l, d.getX(l) is an eigenvalue,
-            // otherwise, iterate.
-
-            if (m > l) {
-                do {
-                    // Compute implicit shift
-
-                    double g = d.getX(l);
-                    double p = (d.getX(l + 1) - g) / (2.0 * e.getX(l));
-                    double r = Math.hypot(p, 1.0);
-
-                    if (p < 0)
-                        r = -r;
-
-                    d.setX(l, e.getX(l) / (p + r));
-                    d.setX(l + 1, e.getX(l) * (p + r));
-                    double dl1 = d.getX(l + 1);
-                    double h = g - d.getX(l);
-
-                    for (int i = l + 2; i < n; i++)
-                        d.setX(i, d.getX(i) - h);
-
-                    f += h;
-
-                    // Implicit QL transformation.
-
-                    p = d.getX(m);
-                    double c = 1.0;
-                    double c2 = c;
-                    double c3 = c;
-                    double el1 = e.getX(l + 1);
-                    double s = 0.0;
-                    double s2 = 0.0;
-
-                    for (int i = m - 1; i >= l; i--) {
-                        c3 = c2;
-                        c2 = c;
-                        s2 = s;
-                        g = c * e.getX(i);
-                        h = c * p;
-                        r = Math.hypot(p, e.getX(i));
-                        e.setX(i + 1, s * r);
-                        s = e.getX(i) / r;
-                        c = p / r;
-                        p = c * d.getX(i) - s * g;
-                        d.setX(i + 1, h + s * (c * g + s * d.getX(i)));
-
-                        // Accumulate transformation.
-
-                        for (int k = 0; k < n; k++) {
-                            h = v.getX(k, i + 1);
-                            v.setX(k, i + 1, s * v.getX(k, i) + c * h);
-                            v.setX(k, i, c * v.getX(k, i) - s * h);
-                        }
-                    }
-
-                    p = -s * s2 * c3 * el1 * e.getX(l) / dl1;
-                    e.setX(l, s * p);
-                    d.setX(l, c * p);
-
-                    // Check for convergence.
-
-                }
-                while (Math.abs(e.getX(l)) > eps * tst1);
-            }
-
-            d.setX(l, d.getX(l) + f);
-            e.setX(l, 0.0);
-        }
-
-        // Sort eigenvalues and corresponding vectors.
-
-        for (int i = 0; i < n - 1; i++) {
-            int k = i;
-            double p = d.getX(i);
-
-            for (int j = i + 1; j < n; j++)
-                if (d.getX(j) > p) {
-                    k = j;
-                    p = d.getX(j);
-                }
-
-            if (k != i) {
-                d.setX(k, d.getX(i));
-                d.setX(i, p);
-
-                for (int j = 0; j < n; j++) {
-                    p = v.getX(j, i);
-                    v.setX(j, i, v.getX(j, k));
-                    v.setX(j, k, p);
-                }
-            }
-        }
-    }
-
-    /** */
-    private void hqr2(Matrix h) {
-        //  This is derived from the Algol procedure hqr2,
-        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
-        //  Vol.ii-Linear Algebra, and the corresponding
-        //  Fortran subroutine in EISPACK.
-
-        // Initialize
-
-        int nn = this.n;
-        int n = nn - 1;
-        int low = 0;
-        int high = nn - 1;
-        double eps = Math.pow(2.0, -52.0);
-        double exshift = 0.0;
-        double p = 0;
-        double q = 0;
-        double r = 0;
-        double s = 0;
-        double z = 0;
-        double w;
-        double x;
-        double y;
-
-        // Store roots isolated by balanc and compute matrix norm
-
-        double norm = h.foldMap(Functions.PLUS, Functions.ABS, 0.0);
-
-        // Outer loop over eigenvalue index
-
-        int iter = 0;
-        while (n >= low) {
-            // Look for single small sub-diagonal element
-            int l = n;
-
-            while (l > low) {
-                s = Math.abs(h.getX(l - 1, l - 1)) + Math.abs(h.getX(l, l));
-
-                if (s == 0.0)
-                    s = norm;
-
-                if (Math.abs(h.getX(l, l - 1)) < eps * s)
-                    break;
-
-                l--;
-            }
-
-            // Check for convergence
-
-            if (l == n) {
-                // One root found
-                h.setX(n, n, h.getX(n, n) + exshift);
-                d.setX(n, h.getX(n, n));
-                e.setX(n, 0.0);
-                n--;
-                iter = 0;
-            }
-            else if (l == n - 1) {
-                // Two roots found
-                w = h.getX(n, n - 1) * h.getX(n - 1, n);
-                p = (h.getX(n - 1, n - 1) - h.getX(n, n)) / 2.0;
-                q = p * p + w;
-                z = Math.sqrt(Math.abs(q));
-                h.setX(n, n, h.getX(n, n) + exshift);
-                h.setX(n - 1, n - 1, h.getX(n - 1, n - 1) + exshift);
-                x = h.getX(n, n);
-
-                // Real pair
-                if (q >= 0) {
-                    if (p >= 0)
-                        z = p + z;
-                    else
-                        z = p - z;
-
-                    d.setX(n - 1, x + z);
-                    d.setX(n, d.getX(n - 1));
-
-                    if (z != 0.0)
-                        d.setX(n, x - w / z);
-
-                    e.setX(n - 1, 0.0);
-                    e.setX(n, 0.0);
-                    x = h.getX(n, n - 1);
-                    s = Math.abs(x) + Math.abs(z);
-                    p = x / s;
-                    q = z / s;
-                    r = Math.sqrt(p * p + q * q);
-                    p /= r;
-                    q /= r;
-
-                    // Row modification
-
-                    for (int j = n - 1; j < nn; j++) {
-                        z = h.getX(n - 1, j);
-                        h.setX(n - 1, j, q * z + p * h.getX(n, j));
-                        h.setX(n, j, q * h.getX(n, j) - p * z);
-                    }
-
-                    // Column modification
-
-                    for (int i = 0; i <= n; i++) {
-                        z = h.getX(i, n - 1);
-                        h.setX(i, n - 1, q * z + p * h.getX(i, n));
-                        h.setX(i, n, q * h.getX(i, n) - p * z);
-                    }
-
-                    // Accumulate transformations
-
-                    for (int i = low; i <= high; i++) {
-                        z = v.getX(i, n - 1);
-                        v.setX(i, n - 1, q * z + p * v.getX(i, n));
-                        v.setX(i, n, q * v.getX(i, n) - p * z);
-                    }
-
-                    // Complex pair
-
-                }
-                else {
-                    d.setX(n - 1, x + p);
-                    d.setX(n, x + p);
-                    e.setX(n - 1, z);
-                    e.setX(n, -z);
-                }
-
-                n -= 2;
-                iter = 0;
-
-                // No convergence yet
-
-            }
-            else {
-                // Form shift
-                x = h.getX(n, n);
-                y = 0.0;
-                w = 0.0;
-
-                if (l < n) {
-                    y = h.getX(n - 1, n - 1);
-                    w = h.getX(n, n - 1) * h.getX(n - 1, n);
-                }
-
-                // Wilkinson's original ad hoc shift
-
-                if (iter == 10) {
-                    exshift += x;
-
-                    for (int i = low; i <= n; i++)
-                        h.setX(i, i, x);
-
-                    s = Math.abs(h.getX(n, n - 1)) + Math.abs(h.getX(n - 1, n 
- 2));
-                    x = y = 0.75 * s;
-                    w = -0.4375 * s * s;
-                }
-
-                // MATLAB's new ad hoc shift
-
-                if (iter == 30) {
-                    s = (y - x) / 2.0;
-                    s = s * s + w;
-
-                    if (s > 0) {
-                        s = Math.sqrt(s);
-
-                        if (y < x)
-                            s = -s;
-
-                        s = x - w / ((y - x) / 2.0 + s);
-
-                        for (int i = low; i <= n; i++)
-                            h.setX(i, i, h.getX(i, i) - s);
-
-                        exshift += s;
-                        x = y = w = 0.964;
-                    }
-                }
-
-                iter++;   // (Could check iteration count here.)
-
-                // Look for two consecutive small sub-diagonal elements
-
-                int m = n - 2;
-
-                while (m >= l) {
-                    z = h.getX(m, m);
-                    r = x - z;
-                    s = y - z;
-                    p = (r * s - w) / h.getX(m + 1, m) + h.getX(m, m + 1);
-                    q = h.getX(m + 1, m + 1) - z - r - s;
-                    r = h.getX(m + 2, m + 1);
-                    s = Math.abs(p) + Math.abs(q) + Math.abs(r);
-                    p /= s;
-                    q /= s;
-                    r /= s;
-
-                    if (m == l)
-                        break;
-
-                    double hmag = Math.abs(h.getX(m - 1, m - 1)) + 
Math.abs(h.getX(m + 1, m + 1));
-                    double threshold = eps * Math.abs(p) * (Math.abs(z) + 
hmag);
-
-                    if (Math.abs(h.getX(m, m - 1)) * (Math.abs(q) + 
Math.abs(r)) < threshold)
-                        break;
-
-                    m--;
-                }
-
-                for (int i = m + 2; i <= n; i++) {
-                    h.setX(i, i - 2, 0.0);
-
-                    if (i > m + 2)
-                        h.setX(i, i - 3, 0.0);
-                }
-
-                // Double QR step involving rows l:n and columns m:n
-
-                for (int k = m; k <= n - 1; k++) {
-                    boolean notlast = k != n - 1;
-
-                    if (k != m) {
-                        p = h.getX(k, k - 1);
-                        q = h.getX(k + 1, k - 1);
-                        r = notlast ? h.getX(k + 2, k - 1) : 0.0;
-                        x = Math.abs(p) + Math.abs(q) + Math.abs(r);
-                        if (x != 0.0) {
-                            p /= x;
-                            q /= x;
-                            r /= x;
-                        }
-                    }
-
-                    if (x == 0.0)
-                        break;
-
-                    s = Math.sqrt(p * p + q * q + r * r);
-
-                    if (p < 0)
-                        s = -s;
-
-                    if (s != 0) {
-                        if (k != m)
-                            h.setX(k, k - 1, -s * x);
-                        else if (l != m)
-                            h.setX(k, k - 1, -h.getX(k, k - 1));
-
-                        p += s;
-                        x = p / s;
-                        y = q / s;
-                        z = r / s;
-                        q /= p;
-                        r /= p;
-
-                        // Row modification
-
-                        for (int j = k; j < nn; j++) {
-                            p = h.getX(k, j) + q * h.getX(k + 1, j);
-
-                            if (notlast) {
-                                p += r * h.getX(k + 2, j);
-                                h.setX(k + 2, j, h.getX(k + 2, j) - p * z);
-                            }
-
-                            h.setX(k, j, h.getX(k, j) - p * x);
-                            h.setX(k + 1, j, h.getX(k + 1, j) - p * y);
-                        }
-
-                        // Column modification
-
-                        for (int i = 0; i <= Math.min(n, k + 3); i++) {
-                            p = x * h.getX(i, k) + y * h.getX(i, k + 1);
-
-                            if (notlast) {
-                                p += z * h.getX(i, k + 2);
-                                h.setX(i, k + 2, h.getX(i, k + 2) - p * r);
-                            }
-
-                            h.setX(i, k, h.getX(i, k) - p);
-                            h.setX(i, k + 1, h.getX(i, k + 1) - p * q);
-                        }
-
-                        // Accumulate transformations
-
-                        for (int i = low; i <= high; i++) {
-                            p = x * v.getX(i, k) + y * v.getX(i, k + 1);
-
-                            if (notlast) {
-                                p += z * v.getX(i, k + 2);
-                                v.setX(i, k + 2, v.getX(i, k + 2) - p * r);
-                            }
-
-                            v.setX(i, k, v.getX(i, k) - p);
-                            v.setX(i, k + 1, v.getX(i, k + 1) - p * q);
-                        }
-                    }  // (s != 0)
-                }  // k loop
-            }  // check convergence
-        }  // while (n >= low)
-
-        // Back substitute to find vectors of upper triangular form
-
-        if (norm == 0.0)
-            return;
-
-        for (n = nn - 1; n >= 0; n--) {
-            p = d.getX(n);
-            q = e.getX(n);
-
-            // Real vector
-
-            double t;
-
-            if (q == 0) {
-                int l = n;
-                h.setX(n, n, 1.0);
-
-                for (int i = n - 1; i >= 0; i--) {
-                    w = h.getX(i, i) - p;
-                    r = 0.0;
-
-                    for (int j = l; j <= n; j++)
-                        r += h.getX(i, j) * h.getX(j, n);
-
-                    if (e.getX(i) < 0.0) {
-                        z = w;
-                        s = r;
-                    }
-                    else {
-                        l = i;
-
-                        if (e.getX(i) == 0.0) {
-                            if (w == 0.0)
-                                h.setX(i, n, -r / (eps * norm));
-                            else
-                                h.setX(i, n, -r / w);
-
-                            // Solve real equations
-
-                        }
-                        else {
-                            x = h.getX(i, i + 1);
-                            y = h.getX(i + 1, i);
-                            q = (d.getX(i) - p) * (d.getX(i) - p) + e.getX(i) 
* e.getX(i);
-                            t = (x * s - z * r) / q;
-                            h.setX(i, n, t);
-
-                            if (Math.abs(x) > Math.abs(z))
-                                h.setX(i + 1, n, (-r - w * t) / x);
-                            else
-                                h.setX(i + 1, n, (-s - y * t) / z);
-                        }
-
-                        // Overflow control
-
-                        t = Math.abs(h.getX(i, n));
-
-                        if (eps * t * t > 1) {
-                            for (int j = i; j <= n; j++)
-                                h.setX(j, n, h.getX(j, n) / t);
-                        }
-                    }
-                }
-
-                // Complex vector
-
-            }
-            else if (q < 0) {
-                int l = n - 1;
-
-                // Last vector component imaginary so matrix is triangular
-
-                if (Math.abs(h.getX(n, n - 1)) > Math.abs(h.getX(n - 1, n))) {
-                    h.setX(n - 1, n - 1, q / h.getX(n, n - 1));
-                    h.setX(n - 1, n, -(h.getX(n, n) - p) / h.getX(n, n - 1));
-                }
-                else {
-                    cdiv(0.0, -h.getX(n - 1, n), h.getX(n - 1, n - 1) - p, q);
-                    h.setX(n - 1, n - 1, cdivr);
-                    h.setX(n - 1, n, cdivi);
-                }
-
-                h.setX(n, n - 1, 0.0);
-                h.setX(n, n, 1.0);
-
-                for (int i = n - 2; i >= 0; i--) {
-                    double ra = 0.0;
-                    double sa = 0.0;
-
-                    for (int j = l; j <= n; j++) {
-                        ra += h.getX(i, j) * h.getX(j, n - 1);
-                        sa += h.getX(i, j) * h.getX(j, n);
-                    }
-
-                    w = h.getX(i, i) - p;
-
-                    if (e.getX(i) < 0.0) {
-                        z = w;
-                        r = ra;
-                        s = sa;
-                    }
-                    else {
-                        l = i;
-
-                        if (e.getX(i) == 0) {
-                            cdiv(-ra, -sa, w, q);
-                            h.setX(i, n - 1, cdivr);
-                            h.setX(i, n, cdivi);
-                        }
-                        else {
-
-                            // Solve complex equations
-
-                            x = h.getX(i, i + 1);
-                            y = h.getX(i + 1, i);
-
-                            double vr = (d.getX(i) - p) * (d.getX(i) - p) + 
e.getX(i) * e.getX(i) - q * q;
-                            double vi = (d.getX(i) - p) * 2.0 * q;
-
-                            if (vr == 0.0 && vi == 0.0) {
-                                double hmag = Math.abs(x) + Math.abs(y);
-                                vr = eps * norm * (Math.abs(w) + Math.abs(q) + 
hmag + Math.abs(z));
-                            }
-
-                            cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * 
ra, vr, vi);
-
-                            h.setX(i, n - 1, cdivr);
-                            h.setX(i, n, cdivi);
-
-                            if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
-                                h.setX(i + 1, n - 1, (-ra - w * h.getX(i, n - 
1) + q * h.getX(i, n)) / x);
-                                h.setX(i + 1, n, (-sa - w * h.getX(i, n) - q * 
h.getX(i, n - 1)) / x);
-                            }
-                            else {
-                                cdiv(-r - y * h.getX(i, n - 1), -s - y * 
h.getX(i, n), z, q);
-
-                                h.setX(i + 1, n - 1, cdivr);
-                                h.setX(i + 1, n, cdivi);
-                            }
-                        }
-
-                        // Overflow control
-
-                        t = Math.max(Math.abs(h.getX(i, n - 1)), 
Math.abs(h.getX(i, n)));
-
-                        if (eps * t * t > 1)
-                            for (int j = i; j <= n; j++) {
-                                h.setX(j, n - 1, h.getX(j, n - 1) / t);
-                                h.setX(j, n, h.getX(j, n) / t);
-                            }
-                    }
-                }
-            }
-        }
-
-        // Vectors of isolated roots
-
-        for (int i = 0; i < nn; i++)
-            if (i < low || i > high) {
-                for (int j = i; j < nn; j++)
-                    v.setX(i, j, h.getX(i, j));
-            }
-
-        // Back transformation to get eigen vectors of original matrix
-
-        for (int j = nn - 1; j >= low; j--)
-            for (int i = low; i <= high; i++) {
-                z = 0.0;
-
-                for (int k = low; k <= Math.min(j, high); k++)
-                    z += v.getX(i, k) * h.getX(k, j);
-
-                v.setX(i, j, z);
-            }
-    }
-
-    /** */
-    private static boolean isSymmetric(Matrix matrix) {
-        int cols = matrix.columnSize();
-        int rows = matrix.rowSize();
-
-        if (cols != rows)
-            return false;
-
-        for (int i = 0; i < cols; i++)
-            for (int j = 0; j < rows; j++) {
-                if (matrix.getX(i, j) != matrix.get(j, i))
-                    return false;
-            }
-
-        return true;
-    }
-
-    /** Complex scalar division - real part. */
-    private double cdivr;
-    /** Complex scalar division - imaginary part. */
-    private double cdivi;
-
-    /** */
-    private void cdiv(double xr, double xi, double yr, double yi) {
-        double r;
-        double d;
-
-        if (Math.abs(yr) > Math.abs(yi)) {
-            r = yi / yr;
-            d = yr + r * yi;
-            cdivr = (xr + r * xi) / d;
-            cdivi = (xi - r * xr) / d;
-        }
-        else {
-            r = yr / yi;
-            d = yi + r * yr;
-            cdivr = (r * xr + xi) / d;
-            cdivi = (r * xi - xr) / d;
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/LUDecomposition.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/LUDecomposition.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/decompositions/LUDecomposition.java
deleted file mode 100644
index 82c90ec..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/LUDecomposition.java
+++ /dev/null
@@ -1,366 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.decompositions;
-
-import org.apache.ignite.math.Matrix;
-import org.apache.ignite.math.Vector;
-import org.apache.ignite.math.exceptions.CardinalityException;
-import org.apache.ignite.math.exceptions.SingularMatrixException;
-
-/**
- * Calculates the LU-decomposition of a square matrix.
- *
- * This class inspired by class from Apache Common Math with similar name.
- *
- * @see <a 
href="http://mathworld.wolfram.com/LUDecomposition.html";>MathWorld</a>
- * @see <a href="http://en.wikipedia.org/wiki/LU_decomposition";>Wikipedia</a>
- */
-public class LUDecomposition extends DecompositionSupport {
-    /** Default bound to determine effective singularity in LU decomposition. 
*/
-    private static final double DEFAULT_TOO_SMALL = 1e-11;
-
-    /** Pivot permutation associated with LU decomposition. */
-    private final Vector pivot;
-    /** Parity of the permutation associated with the LU decomposition. */
-    private boolean even;
-    /** Singularity indicator. */
-    private boolean singular;
-    /** Cached value of L. */
-    private Matrix cachedL;
-    /** Cached value of U. */
-    private Matrix cachedU;
-    /** Cached value of P. */
-    private Matrix cachedP;
-    /** Original matrix. */
-    private Matrix matrix;
-    /** Entries of LU decomposition. */
-    private Matrix lu;
-
-    /**
-     * Calculates the LU-decomposition of the given matrix.
-     * This constructor uses 1e-11 as default value for the singularity
-     * threshold.
-     *
-     * @param matrix Matrix to decompose.
-     * @throws CardinalityException if matrix is not square.
-     */
-    public LUDecomposition(Matrix matrix) {
-        this(matrix, DEFAULT_TOO_SMALL);
-    }
-
-    /**
-     * Calculates the LUP-decomposition of the given matrix.
-     *
-     * @param matrix Matrix to decompose.
-     * @param singularityThreshold threshold (based on partial row norm).
-     * @throws CardinalityException if matrix is not square.
-     */
-    public LUDecomposition(Matrix matrix, double singularityThreshold) {
-        assert matrix != null;
-
-        int rows = matrix.rowSize();
-        int cols = matrix.columnSize();
-
-        if (rows != cols)
-            throw new CardinalityException(rows, cols);
-
-        this.matrix = matrix;
-
-        lu = copy(matrix);
-
-        pivot = likeVector(matrix);
-
-        for (int i = 0; i < pivot.size(); i++)
-            pivot.setX(i, i);
-
-        even = true;
-        singular = false;
-
-        cachedL = null;
-        cachedU = null;
-        cachedP = null;
-
-        for (int col = 0; col < cols; col++) {
-
-            //upper
-            for (int row = 0; row < col; row++) {
-                Vector luRow = lu.viewRow(row);
-                double sum = luRow.get(col);
-
-                for (int i = 0; i < row; i++)
-                    sum -= luRow.getX(i) * lu.getX(i, col);
-
-                luRow.setX(col, sum);
-            }
-
-            // permutation row
-            int max = col;
-
-            double largest = Double.NEGATIVE_INFINITY;
-
-            // lower
-            for (int row = col; row < rows; row++) {
-                Vector luRow = lu.viewRow(row);
-                double sum = luRow.getX(col);
-
-                for (int i = 0; i < col; i++)
-                    sum -= luRow.getX(i) * lu.getX(i, col);
-
-                luRow.setX(col, sum);
-
-                if (Math.abs(sum) > largest) {
-                    largest = Math.abs(sum);
-                    max = row;
-                }
-            }
-
-            // Singularity check
-            if (Math.abs(lu.getX(max, col)) < singularityThreshold) {
-                singular = true;
-                return;
-            }
-
-            // Pivot if necessary
-            if (max != col) {
-                double tmp;
-                Vector luMax = lu.viewRow(max);
-                Vector luCol = lu.viewRow(col);
-
-                for (int i = 0; i < cols; i++) {
-                    tmp = luMax.getX(i);
-                    luMax.setX(i, luCol.getX(i));
-                    luCol.setX(i, tmp);
-                }
-
-                int temp = (int)pivot.getX(max);
-                pivot.setX(max, pivot.getX(col));
-                pivot.setX(col, temp);
-
-                even = !even;
-            }
-
-            // Divide the lower elements by the "winning" diagonal elt.
-            final double luDiag = lu.getX(col, col);
-
-            for (int row = col + 1; row < cols; row++) {
-                double val = lu.getX(row, col) / luDiag;
-                lu.setX(row, col, val);
-            }
-        }
-    }
-
-    /**
-     * Destroys decomposition components and other internal components of 
decomposition.
-     */
-    @Override public void destroy() {
-        if (cachedL != null)
-            cachedL.destroy();
-        if (cachedU != null)
-            cachedU.destroy();
-        if (cachedP != null)
-            cachedP.destroy();
-        lu.destroy();
-    }
-
-    /**
-     * Returns the matrix L of the decomposition.
-     * <p>L is a lower-triangular matrix</p>
-     *
-     * @return the L matrix (or null if decomposed matrix is singular).
-     */
-    public Matrix getL() {
-        if ((cachedL == null) && !singular) {
-            final int m = pivot.size();
-
-            cachedL = like(matrix);
-            cachedL.assign(0.0);
-
-            for (int i = 0; i < m; ++i) {
-                for (int j = 0; j < i; ++j)
-                    cachedL.setX(i, j, lu.getX(i, j));
-
-                cachedL.setX(i, i, 1.0);
-            }
-        }
-
-        return cachedL;
-    }
-
-    /**
-     * Returns the matrix U of the decomposition.
-     * <p>U is an upper-triangular matrix</p>
-     *
-     * @return the U matrix (or null if decomposed matrix is singular).
-     */
-    public Matrix getU() {
-        if ((cachedU == null) && !singular) {
-            final int m = pivot.size();
-
-            cachedU = like(matrix);
-            cachedU.assign(0.0);
-
-            for (int i = 0; i < m; ++i)
-                for (int j = i; j < m; ++j)
-                    cachedU.setX(i, j, lu.getX(i, j));
-        }
-
-        return cachedU;
-    }
-
-    /**
-     * Returns the P rows permutation matrix.
-     * <p>P is a sparse matrix with exactly one element set to 1.0 in
-     * each row and each column, all other elements being set to 0.0.</p>
-     * <p>The positions of the 1 elements are given by the {@link #getPivot()
-     * pivot permutation vector}.</p>
-     *
-     * @return the P rows permutation matrix (or null if decomposed matrix is 
singular).
-     * @see #getPivot()
-     */
-    public Matrix getP() {
-        if ((cachedP == null) && !singular) {
-            final int m = pivot.size();
-
-            cachedP = like(matrix);
-            cachedP.assign(0.0);
-
-            for (int i = 0; i < m; ++i)
-                cachedP.setX(i, (int)pivot.get(i), 1.0);
-        }
-
-        return cachedP;
-    }
-
-    /**
-     * Returns the pivot permutation vector.
-     *
-     * @return the pivot permutation vector.
-     * @see #getP()
-     */
-    public Vector getPivot() {
-        return pivot.copy();
-    }
-
-    /**
-     * Return the determinant of the matrix.
-     *
-     * @return determinant of the matrix.
-     */
-    public double determinant() {
-        if (singular)
-            return 0;
-
-        final int m = pivot.size();
-        double determinant = even ? 1 : -1;
-
-        for (int i = 0; i < m; i++)
-            determinant *= lu.getX(i, i);
-
-        return determinant;
-    }
-
-    /** */
-    public Vector solve(Vector b) {
-        final int m = pivot.size();
-
-        if (b.size() != m)
-            throw new CardinalityException(b.size(), m);
-
-        if (singular)
-            throw new SingularMatrixException();
-
-        final double[] bp = new double[m];
-
-        // Apply permutations to b
-        for (int row = 0; row < m; row++)
-            bp[row] = b.get((int)pivot.get(row));
-
-        // Solve LY = b
-        for (int col = 0; col < m; col++) {
-            final double bpCol = bp[col];
-
-            for (int i = col + 1; i < m; i++)
-                bp[i] -= bpCol * lu.get(i, col);
-        }
-
-        // Solve UX = Y
-        for (int col = m - 1; col >= 0; col--) {
-            bp[col] /= lu.get(col, col);
-            final double bpCol = bp[col];
-
-            for (int i = 0; i < col; i++)
-                bp[i] -= bpCol * lu.get(i, col);
-        }
-
-        return b.like(m).assign(bp);
-    }
-
-    /** */
-    public Matrix solve(Matrix b) {
-        final int m = pivot.size();
-
-        if (b.rowSize() != m)
-            throw new CardinalityException(b.rowSize(), m);
-
-        if (singular)
-            throw new SingularMatrixException();
-
-        final int nColB = b.columnSize();
-
-        // Apply permutations to b
-        final double[][] bp = new double[m][nColB];
-        for (int row = 0; row < m; row++) {
-            final double[] bpRow = bp[row];
-            final int pRow = (int)pivot.get(row);
-
-            for (int col = 0; col < nColB; col++)
-                bpRow[col] = b.get(pRow, col);
-        }
-
-        // Solve LY = b
-        for (int col = 0; col < m; col++) {
-            final double[] bpCol = bp[col];
-            for (int i = col + 1; i < m; i++) {
-                final double[] bpI = bp[i];
-                final double luICol = lu.get(i, col);
-
-                for (int j = 0; j < nColB; j++)
-                    bpI[j] -= bpCol[j] * luICol;
-            }
-        }
-
-        // Solve UX = Y
-        for (int col = m - 1; col >= 0; col--) {
-            final double[] bpCol = bp[col];
-            final double luDiag = lu.getX(col, col);
-
-            for (int j = 0; j < nColB; j++)
-                bpCol[j] /= luDiag;
-
-            for (int i = 0; i < col; i++) {
-                final double[] bpI = bp[i];
-                final double luICol = lu.get(i, col);
-
-                for (int j = 0; j < nColB; j++)
-                    bpI[j] -= bpCol[j] * luICol;
-            }
-        }
-
-        return b.like(b.rowSize(), b.columnSize()).assign(bp);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/QRDecomposition.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/QRDecomposition.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/decompositions/QRDecomposition.java
deleted file mode 100644
index 9608ed5..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/QRDecomposition.java
+++ /dev/null
@@ -1,186 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.decompositions;
-
-import org.apache.ignite.math.Matrix;
-import org.apache.ignite.math.Vector;
-import org.apache.ignite.math.functions.Functions;
-
-/**
- * For an {@code m x n} matrix {@code A} with {@code m >= n}, the QR 
decomposition
- * is an {@code m x n} orthogonal matrix {@code Q} and an {@code n x n} upper
- * triangular matrix {@code R} so that {@code A = Q*R}.
- */
-public class QRDecomposition extends DecompositionSupport {
-    /** */
-    private final Matrix q;
-    /** */
-    private final Matrix r;
-
-    /** */
-    private final Matrix mType;
-    /** */
-    private final boolean fullRank;
-
-    /** */
-    private final int rows;
-    /** */
-    private final int cols;
-
-    /**
-     * @param v Value to be checked for being an ordinary double.
-     */
-    private void checkDouble(double v) {
-        if (Double.isInfinite(v) || Double.isNaN(v))
-            throw new ArithmeticException("Invalid intermediate result");
-    }
-
-    /**
-     * Constructs a new QR decomposition object computed by Householder 
reflections.
-     *
-     * @param mtx A rectangular matrix.
-     */
-    public QRDecomposition(Matrix mtx) {
-        assert mtx != null;
-
-        rows = mtx.rowSize();
-
-        int min = Math.min(mtx.rowSize(), mtx.columnSize());
-
-        cols = mtx.columnSize();
-
-        mType = like(mtx, 1, 1);
-
-        Matrix qTmp = copy(mtx);
-
-        boolean fullRank = true;
-
-        r = like(mtx, min, cols);
-
-        for (int i = 0; i < min; i++) {
-            Vector qi = qTmp.viewColumn(i);
-
-            double alpha = qi.kNorm(2);
-
-            if (Math.abs(alpha) > Double.MIN_VALUE)
-                qi.map(Functions.div(alpha));
-            else {
-                checkDouble(alpha);
-
-                fullRank = false;
-            }
-
-            r.set(i, i, alpha);
-
-            for (int j = i + 1; j < cols; j++) {
-                Vector qj = qTmp.viewColumn(j);
-
-                double norm = qj.kNorm(2);
-
-                if (Math.abs(norm) > Double.MIN_VALUE) {
-                    double beta = qi.dot(qj);
-
-                    r.set(i, j, beta);
-
-                    if (j < min)
-                        qj.map(qi, Functions.plusMult(-beta));
-                }
-                else
-                    checkDouble(norm);
-            }
-        }
-
-        if (cols > min)
-            q = qTmp.viewPart(0, rows, 0, min).copy();
-        else
-            q = qTmp;
-
-        this.fullRank = fullRank;
-    }
-
-    /** {@inheritDoc} */
-    @Override public void destroy() {
-        q.destroy();
-        r.destroy();
-        mType.destroy();
-    }
-
-    /**
-     * Gets orthogonal factor {@code Q}.
-     */
-    public Matrix getQ() {
-        return q;
-    }
-
-    /**
-     * Gets triangular factor {@code R}.
-     */
-    public Matrix getR() {
-        return r;
-    }
-
-    /**
-     * Returns whether the matrix {@code A} has full rank.
-     *
-     * @return true if {@code R}, and hence {@code A} , has full rank.
-     */
-    public boolean hasFullRank() {
-        return fullRank;
-    }
-
-    /**
-     * Least squares solution of {@code A*X = B}; {@code returns X}.
-     *
-     * @param mtx A matrix with as many rows as {@code A} and any number of 
cols.
-     * @return {@code X<} that minimizes the two norm of {@code Q*R*X - B}.
-     * @throws IllegalArgumentException if {@code B.rows() != A.rows()}.
-     */
-    public Matrix solve(Matrix mtx) {
-        if (mtx.rowSize() != rows)
-            throw new IllegalArgumentException("Matrix row dimensions must 
agree.");
-
-        int cols = mtx.columnSize();
-
-        Matrix x = like(mType, this.cols, cols);
-
-        Matrix qt = getQ().transpose();
-        Matrix y = qt.times(mtx);
-
-        Matrix r = getR();
-
-        for (int k = Math.min(this.cols, rows) - 1; k > 0; k--) {
-            // X[k,] = Y[k,] / R[k,k], note that X[k,] starts with 0 so += is 
same as =
-            x.viewRow(k).map(y.viewRow(k), Functions.plusMult(1 / r.get(k, 
k)));
-
-            // Y[0:(k-1),] -= R[0:(k-1),k] * X[k,]
-            Vector rCol = r.viewColumn(k).viewPart(0, k);
-
-            for (int c = 0; c < cols; c++)
-                y.viewColumn(c).viewPart(0, k).map(rCol, 
Functions.plusMult(-x.get(k, c)));
-        }
-
-        return x;
-    }
-
-    /**
-     * Returns a rough string rendition of a QR.
-     */
-    @Override public String toString() {
-        return String.format("QR(%d x %d, fullRank=%s)", rows, cols, 
hasFullRank());
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/SingularValueDecomposition.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/SingularValueDecomposition.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/decompositions/SingularValueDecomposition.java
deleted file mode 100644
index 75eb206..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/SingularValueDecomposition.java
+++ /dev/null
@@ -1,620 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.decompositions;
-
-import org.apache.ignite.math.Algebra;
-import org.apache.ignite.math.Matrix;
-
-/**
- * Compute a singular value decomposition (SVD) of {@code (l x k)} matrix 
{@code m}.
- * <p>This decomposition can be thought
- * as an extension of {@link EigenDecomposition} to rectangular matrices. The 
factorization we get is following:</p>
- * <p>{@code m = u * s * v^{*}}, where</p>
- * <ul><li>{@code u} is a real or complex unitary matrix.</li>
- * <li>{@code s} is a rectangular diagonal matrix with non-negative real 
numbers on diagonal
- * (these numbers are singular values of {@code m}).</li>
- * <li>{@code v} is a real or complex unitary matrix.</li></ul>
- * <p>If {@code m} is real then {@code u} and {@code v} are also real.</p>
- * <p>See also: <a 
href="https://en.wikipedia.org/wiki/Singular_value_decomposition";>Wikipedia 
article on SVD</a>.</p>
- * <p>Note: complex case is currently not supported.</p>
- */
-public class SingularValueDecomposition extends DecompositionSupport {
-    // U and V.
-    /** */
-    private final double[][] u;
-    /** */
-    private final double[][] v;
-
-    /** Singular values. */
-    private final double[] s;
-
-    /** Row dimension. */
-    private final int m;
-    /** Column dimension. */
-    private final int n;
-
-    /** */
-    private Matrix arg;
-
-    /** */
-    private boolean transpositionNeeded;
-
-    /**
-     * Singular value decomposition object.
-     *
-     * @param arg A rectangular matrix.
-     */
-    public SingularValueDecomposition(Matrix arg) {
-        assert arg != null;
-
-        this.arg = arg;
-
-        if (arg.rowSize() < arg.columnSize())
-            transpositionNeeded = true;
-
-        double[][] a;
-
-        if (transpositionNeeded) {
-            // Use the transpose matrix.
-            m = arg.columnSize();
-            n = arg.rowSize();
-
-            a = new double[m][n];
-
-            for (int i = 0; i < m; i++)
-                for (int j = 0; j < n; j++)
-                    a[i][j] = arg.get(j, i);
-        }
-        else {
-            m = arg.rowSize();
-            n = arg.columnSize();
-
-            a = new double[m][n];
-
-            for (int i = 0; i < m; i++)
-                for (int j = 0; j < n; j++)
-                    a[i][j] = arg.get(i, j);
-        }
-
-        int nu = Math.min(m, n);
-
-        s = new double[Math.min(m + 1, n)];
-        u = new double[m][nu];
-        v = new double[n][n];
-
-        double[] e = new double[n];
-        double[] work = new double[m];
-
-        int nct = Math.min(m - 1, n);
-        int nrt = Math.max(0, Math.min(n - 2, m));
-
-        for (int k = 0; k < Math.max(nct, nrt); k++) {
-            if (k < nct) {
-                // Compute the transformation for the k-th column and
-                // place the k-th diagonal in s[k]. Compute 2-norm of k-th
-                // column without under/overflow.
-                s[k] = 0;
-
-                for (int i = k; i < m; i++)
-                    s[k] = Algebra.hypot(s[k], a[i][k]);
-
-                if (s[k] != 0.0) {
-                    if (a[k][k] < 0.0)
-                        s[k] = -s[k];
-
-                    for (int i = k; i < m; i++)
-                        a[i][k] /= s[k];
-
-                    a[k][k] += 1.0;
-                }
-
-                s[k] = -s[k];
-            }
-
-            for (int j = k + 1; j < n; j++) {
-                if (k < nct && s[k] != 0.0) {
-                    // Apply the transformation.
-                    double t = 0;
-
-                    for (int i = k; i < m; i++)
-                        t += a[i][k] * a[i][j];
-
-                    t = -t / a[k][k];
-
-                    for (int i = k; i < m; i++)
-                        a[i][j] += t * a[i][k];
-                }
-
-                // Place the k-th row of A into e for the
-                // subsequent calculation of the row transformation.
-                e[j] = a[k][j];
-            }
-
-            if (k < nct)
-                // Place the transformation in U for subsequent back
-                // multiplication.
-                for (int i = k; i < m; i++)
-                    u[i][k] = a[i][k];
-
-            if (k < nrt) {
-                // Compute the k-th row transformation and place the
-                // k-th super-diagonal in e[k].
-                // Compute 2-norm without under/overflow.
-                e[k] = 0;
-
-                for (int i = k + 1; i < n; i++)
-                    e[k] = Algebra.hypot(e[k], e[i]);
-
-                if (e[k] != 0.0) {
-                    if (e[k + 1] < 0.0)
-                        e[k] = -e[k];
-
-                    for (int i = k + 1; i < n; i++)
-                        e[i] /= e[k];
-
-                    e[k + 1] += 1.0;
-                }
-
-                e[k] = -e[k];
-
-                if (k + 1 < m && e[k] != 0.0) {
-                    // Apply the transformation.
-                    for (int i = k + 1; i < m; i++)
-                        work[i] = 0.0;
-
-                    for (int j = k + 1; j < n; j++)
-                        for (int i = k + 1; i < m; i++)
-                            work[i] += e[j] * a[i][j];
-
-                    for (int j = k + 1; j < n; j++) {
-                        double t = -e[j] / e[k + 1];
-
-                        for (int i = k + 1; i < m; i++)
-                            a[i][j] += t * work[i];
-                    }
-                }
-
-                // Place the transformation in V for subsequent
-                // back multiplication.
-                for (int i = k + 1; i < n; i++)
-                    v[i][k] = e[i];
-            }
-        }
-
-        // Set up the final bi-diagonal matrix or order p.
-        int p = Math.min(n, m + 1);
-
-        if (nct < n)
-            s[nct] = a[nct][nct];
-
-        if (m < p)
-            s[p - 1] = 0.0;
-
-        if (nrt + 1 < p)
-            e[nrt] = a[nrt][p - 1];
-
-        e[p - 1] = 0.0;
-
-        // Generate U.
-        for (int j = nct; j < nu; j++) {
-            for (int i = 0; i < m; i++)
-                u[i][j] = 0.0;
-
-            u[j][j] = 1.0;
-        }
-
-        for (int k = nct - 1; k >= 0; k--) {
-            if (s[k] != 0.0) {
-                for (int j = k + 1; j < nu; j++) {
-                    double t = 0;
-
-                    for (int i = k; i < m; i++)
-                        t += u[i][k] * u[i][j];
-
-                    t = -t / u[k][k];
-
-                    for (int i = k; i < m; i++)
-                        u[i][j] += t * u[i][k];
-                }
-
-                for (int i = k; i < m; i++)
-                    u[i][k] = -u[i][k];
-
-                u[k][k] = 1.0 + u[k][k];
-
-                for (int i = 0; i < k - 1; i++)
-                    u[i][k] = 0.0;
-            }
-            else {
-                for (int i = 0; i < m; i++)
-                    u[i][k] = 0.0;
-
-                u[k][k] = 1.0;
-            }
-        }
-
-        // Generate V.
-        for (int k = n - 1; k >= 0; k--) {
-            if (k < nrt && e[k] != 0.0) {
-                for (int j = k + 1; j < nu; j++) {
-                    double t = 0;
-
-                    for (int i = k + 1; i < n; i++)
-                        t += v[i][k] * v[i][j];
-
-                    t = -t / v[k + 1][k];
-
-                    for (int i = k + 1; i < n; i++)
-                        v[i][j] += t * v[i][k];
-                }
-            }
-
-            for (int i = 0; i < n; i++)
-                v[i][k] = 0.0;
-
-            v[k][k] = 1.0;
-        }
-
-        // Main iteration loop for the singular values.
-        int pp = p - 1;
-        int iter = 0;
-
-        double eps = Math.pow(2.0, -52.0);
-        double tiny = Math.pow(2.0, -966.0);
-
-        while (p > 0) {
-            int k;
-
-            for (k = p - 2; k >= -1; k--) {
-                if (k == -1)
-                    break;
-
-                if (Math.abs(e[k]) <= tiny + eps * (Math.abs(s[k]) + 
Math.abs(s[k + 1]))) {
-                    e[k] = 0.0;
-
-                    break;
-                }
-            }
-
-            int kase;
-
-            if (k == p - 2)
-                kase = 4;
-            else {
-                int ks;
-
-                for (ks = p - 1; ks >= k; ks--) {
-                    if (ks == k)
-                        break;
-
-                    double t =
-                        (ks != p ? Math.abs(e[ks]) : 0.) +
-                            (ks != k + 1 ? Math.abs(e[ks - 1]) : 0.);
-
-                    if (Math.abs(s[ks]) <= tiny + eps * t) {
-                        s[ks] = 0.0;
-
-                        break;
-                    }
-                }
-
-                if (ks == k)
-                    kase = 3;
-                else if (ks == p - 1)
-                    kase = 1;
-                else {
-                    kase = 2;
-
-                    k = ks;
-                }
-            }
-
-            k++;
-
-            // Perform the task indicated by kase.
-            switch (kase) {
-                // Deflate negligible s(p).
-                case 1: {
-                    double f = e[p - 2];
-
-                    e[p - 2] = 0.0;
-
-                    for (int j = p - 2; j >= k; j--) {
-                        double t = Algebra.hypot(s[j], f);
-                        double cs = s[j] / t;
-                        double sn = f / t;
-
-                        s[j] = t;
-
-                        if (j != k) {
-                            f = -sn * e[j - 1];
-                            e[j - 1] = cs * e[j - 1];
-                        }
-
-                        for (int i = 0; i < n; i++) {
-                            t = cs * v[i][j] + sn * v[i][p - 1];
-
-                            v[i][p - 1] = -sn * v[i][j] + cs * v[i][p - 1];
-                            v[i][j] = t;
-                        }
-                    }
-                }
-
-                break;
-
-                // Split at negligible s(k).
-                case 2: {
-                    double f = e[k - 1];
-                    e[k - 1] = 0.0;
-
-                    for (int j = k; j < p; j++) {
-                        double t = Algebra.hypot(s[j], f);
-                        double cs = s[j] / t;
-                        double sn = f / t;
-
-                        s[j] = t;
-                        f = -sn * e[j];
-                        e[j] = cs * e[j];
-
-                        for (int i = 0; i < m; i++) {
-                            t = cs * u[i][j] + sn * u[i][k - 1];
-
-                            u[i][k - 1] = -sn * u[i][j] + cs * u[i][k - 1];
-                            u[i][j] = t;
-                        }
-                    }
-                }
-
-                break;
-
-                // Perform one qr step.
-                case 3: {
-                    // Calculate the shift.
-                    double scale = Math.max(Math.max(Math.max(Math.max(
-                        Math.abs(s[p - 1]), Math.abs(s[p - 2])), Math.abs(e[p 
- 2])),
-                        Math.abs(s[k])), Math.abs(e[k]));
-
-                    double sp = s[p - 1] / scale;
-                    double spm1 = s[p - 2] / scale;
-                    double epm1 = e[p - 2] / scale;
-                    double sk = s[k] / scale;
-                    double ek = e[k] / scale;
-                    double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
-                    double c = sp * epm1 * sp * epm1;
-                    double shift = 0.0;
-
-                    if (b != 0.0 || c != 0.0) {
-                        shift = Math.sqrt(b * b + c);
-
-                        if (b < 0.0)
-                            shift = -shift;
-
-                        shift = c / (b + shift);
-                    }
-
-                    double f = (sk + sp) * (sk - sp) + shift;
-                    double g = sk * ek;
-
-                    // Chase zeros.
-                    for (int j = k; j < p - 1; j++) {
-                        double t = Algebra.hypot(f, g);
-                        double cs = f / t;
-                        double sn = g / t;
-
-                        if (j != k)
-                            e[j - 1] = t;
-
-                        f = cs * s[j] + sn * e[j];
-                        e[j] = cs * e[j] - sn * s[j];
-                        g = sn * s[j + 1];
-                        s[j + 1] = cs * s[j + 1];
-
-                        for (int i = 0; i < n; i++) {
-                            t = cs * v[i][j] + sn * v[i][j + 1];
-
-                            v[i][j + 1] = -sn * v[i][j] + cs * v[i][j + 1];
-                            v[i][j] = t;
-                        }
-
-                        t = Algebra.hypot(f, g);
-                        cs = f / t;
-                        sn = g / t;
-                        s[j] = t;
-                        f = cs * e[j] + sn * s[j + 1];
-                        s[j + 1] = -sn * e[j] + cs * s[j + 1];
-                        g = sn * e[j + 1];
-                        e[j + 1] = cs * e[j + 1];
-
-                        if (j < m - 1)
-                            for (int i = 0; i < m; i++) {
-                                t = cs * u[i][j] + sn * u[i][j + 1];
-
-                                u[i][j + 1] = -sn * u[i][j] + cs * u[i][j + 1];
-                                u[i][j] = t;
-                            }
-                    }
-
-                    e[p - 2] = f;
-                    iter = iter + 1;
-                }
-
-                break;
-
-                // Convergence.
-                case 4: {
-                    // Make the singular values positive.
-                    if (s[k] <= 0.0) {
-                        s[k] = s[k] < 0.0 ? -s[k] : 0.0;
-
-                        for (int i = 0; i <= pp; i++)
-                            v[i][k] = -v[i][k];
-                    }
-
-                    // Order the singular values.
-                    while (k < pp) {
-                        if (s[k] >= s[k + 1])
-                            break;
-
-                        double t = s[k];
-
-                        s[k] = s[k + 1];
-                        s[k + 1] = t;
-
-                        if (k < n - 1)
-                            for (int i = 0; i < n; i++) {
-                                t = v[i][k + 1];
-
-                                v[i][k + 1] = v[i][k];
-                                v[i][k] = t;
-                            }
-
-                        if (k < m - 1)
-                            for (int i = 0; i < m; i++) {
-                                t = u[i][k + 1];
-
-                                u[i][k + 1] = u[i][k];
-                                u[i][k] = t;
-                            }
-
-                        k++;
-                    }
-
-                    iter = 0;
-                    p--;
-                }
-
-                break;
-
-                default:
-                    throw new IllegalStateException();
-            }
-        }
-    }
-
-    /**
-     * Gets the two norm condition number, which is {@code max(S) / min(S)} .
-     */
-    public double cond() {
-        return s[0] / s[Math.min(m, n) - 1];
-    }
-
-    /**
-     * @return the diagonal matrix of singular values.
-     */
-    public Matrix getS() {
-        double[][] s = new double[n][n];
-
-        for (int i = 0; i < n; i++) {
-            for (int j = 0; j < n; j++)
-                s[i][j] = 0.0;
-
-            s[i][i] = this.s[i];
-        }
-
-        return like(arg, n, n).assign(s);
-    }
-
-    /**
-     * Gets the diagonal of {@code S}, which is a one-dimensional array of
-     * singular values.
-     *
-     * @return diagonal of {@code S}.
-     */
-    public double[] getSingularValues() {
-        return s;
-    }
-
-    /**
-     * Gets the left singular vectors {@code U}.
-     *
-     * @return {@code U}
-     */
-    public Matrix getU() {
-        if (transpositionNeeded)
-            return like(arg, v.length, v.length).assign(v);
-        else {
-            int numCols = Math.min(m + 1, n);
-
-            Matrix r = like(arg, m, numCols);
-
-            for (int i = 0; i < m; i++)
-                for (int j = 0; j < numCols; j++)
-                    r.set(i, j, u[i][j]);
-
-            return r;
-        }
-    }
-
-    /**
-     * Gets the right singular vectors {@code V}.
-     *
-     * @return {@code V}
-     */
-    public Matrix getV() {
-        if (transpositionNeeded) {
-            int numCols = Math.min(m + 1, n);
-
-            Matrix r = like(arg, m, numCols);
-
-            for (int i = 0; i < m; i++)
-                for (int j = 0; j < numCols; j++)
-                    r.set(i, j, u[i][j]);
-
-            return r;
-        }
-        else
-            return like(arg, v.length, v.length).assign(v);
-    }
-
-    /**
-     * Gets the two norm, which is {@code max(S)}.
-     */
-    public double norm2() {
-        return s[0];
-    }
-
-    /**
-     * Gets effective numerical matrix rank.
-     */
-    public int rank() {
-        double eps = Math.pow(2.0, -52.0);
-        double tol = Math.max(m, n) * s[0] * eps;
-        int r = 0;
-
-        for (double value : s)
-            if (value > tol)
-                r++;
-
-        return r;
-    }
-
-    /**
-     * Gets [n × n] covariance matrix.
-     *
-     * @param minSingularVal Value below which singular values are ignored.
-     */
-    Matrix getCovariance(double minSingularVal) {
-        Matrix j = like(arg, s.length, s.length);
-        Matrix vMat = like(arg, v.length, v.length).assign(v);
-
-        for (int i = 0; i < s.length; i++)
-            j.set(i, i, s[i] >= minSingularVal ? 1 / (s[i] * s[i]) : 0.0);
-
-        return vMat.times(j).times(vMat.transpose());
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/package-info.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/package-info.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/decompositions/package-info.java
deleted file mode 100644
index dcfa0f8..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/decompositions/package-info.java
+++ /dev/null
@@ -1,22 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/**
- * <!-- Package description. -->
- * Contains matrix decompositions for distributed code algebra.
- */
-package org.apache.ignite.math.decompositions;

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/CardinalityException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/CardinalityException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/CardinalityException.java
deleted file mode 100644
index fc87a27..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/CardinalityException.java
+++ /dev/null
@@ -1,38 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * Indicates a cardinality mismatch in matrix or vector operations.
- */
-public class CardinalityException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * Creates new cardinality violation exception.
-     *
-     * @param exp Expected cardinality.
-     * @param act Actual cardinality.
-     */
-    public CardinalityException(int exp, int act) {
-        super("Cardinality violation [expected=" + exp + ", actual=" + act + 
"]");
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/ColumnIndexException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/ColumnIndexException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/ColumnIndexException.java
deleted file mode 100644
index 7670caf..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/ColumnIndexException.java
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * This exception is used to indicate any error condition accessing matrix 
elements by invalid column index.
- */
-public class ColumnIndexException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * @param idx Index value that caused this exception.
-     */
-    public ColumnIndexException(int idx) {
-        super("Invalid (out of bound) column index: " + idx);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/IndexException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/IndexException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/IndexException.java
deleted file mode 100644
index 9ada706..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/IndexException.java
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * Indicates an invalid, i.e. out of bound, index on matrix or vector 
operations.
- */
-public class IndexException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * @param idx Index value that caused this exception.
-     */
-    public IndexException(int idx) {
-        super("Invalid (out of bound) index: " + idx);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonPositiveDefiniteMatrixException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonPositiveDefiniteMatrixException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonPositiveDefiniteMatrixException.java
deleted file mode 100644
index b6017c2..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonPositiveDefiniteMatrixException.java
+++ /dev/null
@@ -1,20 +0,0 @@
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * This exception is used to indicate error condition of matrix elements 
failing the positivity check.
- */
-public class NonPositiveDefiniteMatrixException extends IgniteException {
-    /**
-     * Construct an exception.
-     *
-     * @param wrong Value that fails the positivity check.
-     * @param idx Row (and column) index.
-     * @param threshold Absolute positivity threshold.
-     */
-    public NonPositiveDefiniteMatrixException(double wrong, int idx, double 
threshold) {
-        super("Matrix must be positive, wrong element located on diagonal with 
index "
-            + idx + " and has value " + wrong + " with this threshold " + 
threshold);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonSymmetricMatrixException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonSymmetricMatrixException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonSymmetricMatrixException.java
deleted file mode 100644
index 8b4cbdb..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/NonSymmetricMatrixException.java
+++ /dev/null
@@ -1,18 +0,0 @@
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * This exception is used to indicate error condition of matrix failing the 
symmetry check.
- */
-public class NonSymmetricMatrixException extends IgniteException {
-    /**
-     * @param row Row.
-     * @param col Column.
-     * @param threshold Threshold.
-     */
-    public NonSymmetricMatrixException(int row, int col, double threshold) {
-        super("Symmetric matrix expected, the symmetry is broken on row "
-            + row + " and col " + col + " with this threshold " + threshold);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/RowIndexException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/RowIndexException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/RowIndexException.java
deleted file mode 100644
index f74ae2c..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/RowIndexException.java
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * This exception is used to indicate any error condition accessing matrix 
elements by invalid row index.
- */
-public class RowIndexException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * @param idx Index value that caused this exception.
-     */
-    public RowIndexException(int idx) {
-        super("Invalid (out of bound) row index: " + idx);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/SingularMatrixException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/SingularMatrixException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/SingularMatrixException.java
deleted file mode 100644
index 4ed3410..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/SingularMatrixException.java
+++ /dev/null
@@ -1,30 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * Exception to be thrown when a non-singular matrix is expected.
- */
-public class SingularMatrixException extends IgniteException {
-    /** */
-    public SingularMatrixException() {
-        super("Regular (or non-singular) matrix expected.");
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnknownProviderException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnknownProviderException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnknownProviderException.java
deleted file mode 100644
index 3e6498a..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnknownProviderException.java
+++ /dev/null
@@ -1,35 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * Indicates that no provider has been found for a given vector or matrix 
flavor.
- */
-public class UnknownProviderException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * @param flv Flavor (a.k.a. operation performance hints) that has no 
registered provider for.
-     */
-    public UnknownProviderException(String flv) {
-        super("No provider has been found for the flavor: " + flv);
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnsupportedOperationException.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnsupportedOperationException.java
 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnsupportedOperationException.java
deleted file mode 100644
index be5264c..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/UnsupportedOperationException.java
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.ignite.math.exceptions;
-
-import org.apache.ignite.IgniteException;
-
-/**
- * Indicate that a specific operation is not supported by the underlying 
implementation.
- * In some cases, an operation may be unsupported only in certain cases where, 
for example,
- * it could not be deterministically completed in polynomial time.
- */
-public class UnsupportedOperationException extends IgniteException {
-    /** */
-    private static final long serialVersionUID = 0L;
-
-    /**
-     * @param errMsg Error message.
-     */
-    public UnsupportedOperationException(String errMsg) {
-        super(errMsg);
-    }
-
-    /**
-     *
-     */
-    public UnsupportedOperationException() {
-        this("Unsupported operation.");
-    }
-}

http://git-wip-us.apache.org/repos/asf/ignite/blob/d78e071a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/package-info.java
----------------------------------------------------------------------
diff --git 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/package-info.java 
b/modules/ml/src/main/java/org/apache/ignite/math/exceptions/package-info.java
deleted file mode 100644
index 83f3fa4..0000000
--- 
a/modules/ml/src/main/java/org/apache/ignite/math/exceptions/package-info.java
+++ /dev/null
@@ -1,22 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/**
- * <!-- Package description. -->
- * Contains exceptions for distributed code algebra.
- */
-package org.apache.ignite.math.exceptions;
\ No newline at end of file

Reply via email to