Author: dsetrakyan
Date: Thu Mar  5 06:08:31 2015
New Revision: 1664233

URL: http://svn.apache.org/r1664233
Log:
fixing features

Modified:
    incubator/ignite/site/trunk/features.html

Modified: incubator/ignite/site/trunk/features.html
URL: 
http://svn.apache.org/viewvc/incubator/ignite/site/trunk/features.html?rev=1664233&r1=1664232&r2=1664233&view=diff
==============================================================================
--- incubator/ignite/site/trunk/features.html (original)
+++ incubator/ignite/site/trunk/features.html Thu Mar  5 06:08:31 2015
@@ -413,72 +413,10 @@ under the License.
             </div>
         </section>
 
-        <section id="hadoop" class="feature-section">
-            <h2>Hadoop Acceleration</h2>
-            <p>
-                Hadoop Accelerator enhances existing Hadoop technology to 
enable fast data processing using the tools and technology your organization is 
already using today.<br/><br/>
-                Ignite’s in-memory accelerator for Hadoop is based on the 
dual-mode,
-                high-performance in-memory file system that is 100% compatible 
with Hadoop HDFS, and an in-memory optimized MapReduce implementation. 
In-memory HDFS and in-memory MapReduce provide easy to use extensions to 
disk-based HDFS and traditional MapReduce, delivering up to 100x faster 
performance.
-            </p>
-            <div class="feature-box">
-                <div class="feature-left">
-                    <div class="features-heading">Features:</div>
-                    <ul class="features-list">
-                        <li>100x Faster Performance</li>
-                        <li>In-Memory MapReduce</li>
-                        <li>Highly Optimized In-Memory Processing</li>
-                        <li>Standalone File System</li>
-                        <li>Optional Caching Layer for HDFS</li>
-                        <li>Read-Through and Write-Through with HDFS</li>
-                    </ul>
-                </div>
-                <div class="feature-right">
-                    <img src="images/hadoop_sequence.png" width="400px"/>
-                </div>
-            </div>
-
-            <div class="code-examples">&nbsp;</div>
-            
-            <div class="feature-links">
-                <!--<a target=wiki href="#">Learn More <i class="fa 
fa-angle-double-right"></i></a>-->
-                <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
-            </div>
-        </section>
-
-        <section id="filesystem" class="feature-section">
-            <h2>Distributed File System</h2>
-            <p>
-                One of the unique capabilities of Ignite is a file system 
interface to its in-memory data called
-                Ignite File System (IGFS). IGFS delivers similar functionality 
to Hadoop HDFS, including the ability to
-                create a fully functional file system in memory. In fact, IFS 
is at the core of
-                Ignite’s In-Memory Hadoop Accelerator. <br/><br/>
-                The data from each file is split on separate data blocks and 
stored in cache.
-                Developers can access each file’s data with a standard Java 
streaming API. Moreover, for each part
-                of the file a developer can calculate an affinity and process 
the file’s content on corresponding
-                nodes to avoid unnecessary networking.
-            </p>
-            <div class="features-heading">Features:</div>
-            <ul class="features-list">
-                <li>Provides Typical File System “View” on In-Memory 
Caches</li>
-                <li>List Directories or Get Information for a Single Path</li>
-                <li>Create/Move/Delete Files or Directories</li>
-                <li>Write/Read Data Streams into/from Files</li>
-            </ul>
-            <div class="feature-links">
-                <a target=wiki 
href="http://doc.gridgain.org/latest/GGFS";>Learn More <i class="fa 
fa-angle-double-right"></i></a>
-                <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
-            </div>
-        </section>
-
         <section id="clustering" class="feature-section">
             <h2>Advanced Clustering</h2>
             <p>
-                Ignite In-Memory Data Fabric provides one of the most 
sophisticated clustering technologies on
-                Java Virtual Machine (JVM). Ignite nodes can automatically 
discover each other.
-                This helps to scale the cluster when needed, without having to 
restart the whole cluster. Developers
-                can also leverage from Ignite’s hybrid cloud support that 
allows establishing connection
-                between private cloud and public clouds such as Amazon Web 
Services, providing them
-                with best of both worlds. <br/><br/>
+                Ignite In-Memory Data Fabric provides one of the most 
sophisticated clustering technologies on Java Virtual Machine (JVM). Ignite 
nodes can automatically discover each other. This helps to scale the cluster 
when needed, without having to restart the whole cluster.Developers can also 
leverage from Ignite’s hybrid cloud support that allows establishing 
connection between private cloud and public clouds such as Amazon Web Services, 
providing them with best of both worlds. <br/><br/>
             </p>
             <div class="feature-box">
                 <div class="feature-left">
@@ -565,7 +503,7 @@ under the License.
             </div>
 
             <div class="feature-links">
-                <a target=wiki 
href="http://doc.gridgain.org/latest/Basic+Concepts";>Learn More <i class="fa 
fa-angle-double-right"></i></a>
+                <a target=wiki 
href="http://apacheignite.readme.io/v1.0/docs/cluster";>Learn More <i class="fa 
fa-angle-double-right"></i></a>
                 <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
             </div>
         </section>
@@ -573,17 +511,20 @@ under the License.
         <section id="messaging" class="feature-section">
             <h2>Distributed Messaging</h2>
             <p>
-                Apache Ignite provides high-performance cluster-wide messaging 
functionality to exchange data
-                via publish-subscribe and direct point-to-point communication 
models.
+                Apache Ignite provides high-performance cluster-wide messaging 
functionality to exchange data via publish-subscribe and direct point-to-point 
communication models.
             </p>
-            <div class="features-heading">Features:</div>
-            <ul class="features-list">
-                <li>Support for Topic-Based Publish-Subscribe Model</li>
-                <li>Support for Direct Point-to-Point Communication</li>
-                <li>Pluggable Communication Transport Layer</li>
-                <li>Support for Message Ordering</li>
-                <li>Cluster-Aware Message Listener Auto-Deployment </li>
-            </ul>
+            <div class="feature-box">
+                <div class="feature-left">
+                    <div class="features-heading">Features:</div>
+                    <ul class="features-list">
+                        <li>Support for Topic-Based Publish-Subscribe 
Model</li>
+                        <li>Support for Direct Point-to-Point 
Communication</li>
+                        <li>Pluggable Communication Transport Layer</li>
+                        <li>Support for Message Ordering</li>
+                        <li>Cluster-Aware Message Listener Auto-Deployment 
</li>
+                    </ul>
+                </div>
+            </div>
 
             <div class="code-examples">
                 <div class="examples-heading">Examples:</div>
@@ -596,43 +537,16 @@ under the License.
                 <!-- Tab panes -->
                 <div class="tab-content">
                     <div class="tab-pane active" 
id="messaging-example-ordered">
-                        <br/>
-                        <p>
-                            Send and receive ordered messages
-                        </p>
                         <pre class="brush:java">
-                            Ignite ignite = Ignition.ignite();
-
-                            // Add listener for ordered messages on all nodes.
-                            ignite.message().remoteListen("MyOrderedTopic", 
new IgniteBiPredicate&lt;UUID, String&gt;() {
-                                @Override public boolean apply(UUID nodeId, 
String msg) {
-                                    System.out.println("Received ordered 
message [msg=" + msg + ", from=" + nodeId + ']');
-
-                                    return true; // Return true to continue 
listening.
-                                }
-                            });
-
-                            // Send ordered messages to remote nodes nodes.
-                            for (int i = 0; i < 10; i++)
-                                ignite.message(ignite.cluster().forRemotes()).
-                                    sendOrdered("MyOrderedTopic", 
Integer.toString(i), 0);
-                        </pre>
+                            
                     </div>
                     <div class="tab-pane" id="messaging-example-unordered">
-                        <br/>
-                        <p>
-                            Send and receive unordered messages
-                        </p>
                         <pre class="brush:java">
-                            Ignite ignite = Ignition.ignite();
-
-                            // Add listener for unordered messages on all 
nodes.
-                            ignite.message().remoteListen("MyUnOrderedTopic", 
new IgniteBiPredicate&lt;UUID, String&gt;() {
-                                @Override public boolean apply(UUID nodeId, 
String msg) {
-                                    System.out.println("Received unordered 
message [msg=" + msg + ", from=" + nodeId + ']');
+                            // Add listener for unordered messages on all 
remote nodes.
+                            ignite.message().remoteListen("MyUnOrderedTopic", 
(nodeId, msg) -> {
+                                System.out.println("Received unordered message 
[msg=" + msg + ", from=" + nodeId + ']');
 
-                                    return true; // Return true to continue 
listening.
-                                }
+                                return true; // Return true to continue 
listening.
                             });
 
                             // Send unordered messages to remote nodes.
@@ -645,7 +559,7 @@ under the License.
             </div>
 
             <div class="feature-links">
-                <a target=wiki 
href="http://doc.gridgain.org/latest/Distributed+Messaging";>Learn More <i 
class="fa fa-angle-double-right"></i></a>
+                <a target=wiki 
href="http://apacheignite.readme.io/v1.0/docs/messaging";>Learn More <i 
class="fa fa-angle-double-right"></i></a>
                 <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
             </div>
         </section>
@@ -816,6 +730,64 @@ under the License.
                 <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
             </div>
         </section>
+
+        <section id="filesystem" class="feature-section">
+            <h2>Distributed File System</h2>
+            <p>
+                One of the unique capabilities of Ignite is a file system 
interface to its in-memory data called Ignite File System (IGFS). IGFS delivers 
similar functionality to Hadoop HDFS, but only in memory. In fact, IGFS is at 
the core of Ignite’s In-Memory Hadoop Accelerator. <br/><br/>
+                The data from each file is split on separate data blocks and 
stored in cache.
+                Developers can access each file’s data with a standard Java 
streaming API. Moreover, for each part of the file a developer can calculate an 
affinity and process the file’s content on corresponding nodes to avoid 
unnecessary networking.
+            </p>
+            <div class="feature-box">
+                <div class="feature-left">
+                    <div class="features-heading">Features:</div>
+                    <ul class="features-list">
+                        <li>In-Memory File System</li>
+                        <li>List Directories</li>
+                        <li>Get Information for a Single Path</li>
+                        <li>Create/Move/Delete Files or Directories</li>
+                        <li>Write/Read Data Streams into/from Files</li>
+                    </ul>
+                </div>
+            </div>
+
+            <div class="feature-links">
+                <!--<a target=wiki 
href="http://doc.gridgain.org/latest/GGFS";>Learn More <i class="fa 
fa-angle-double-right"></i></a>-->
+                <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
+            </div>
+        </section>
+
+        <section id="hadoop" class="feature-section">
+            <h2>Hadoop Acceleration</h2>
+            <p>
+                Hadoop Accelerator enhances existing Hadoop technology to 
enable fast data processing using the tools and technology your organization is 
already using today.<br/><br/>
+                Ignite’s in-memory accelerator for Hadoop is based on the 
dual-mode,
+                high-performance in-memory file system that is 100% compatible 
with Hadoop HDFS, and an in-memory optimized MapReduce implementation. 
In-memory HDFS and in-memory MapReduce provide easy to use extensions to 
disk-based HDFS and traditional MapReduce, delivering up to 100x faster 
performance.
+            </p>
+            <div class="feature-box">
+                <div class="feature-left">
+                    <div class="features-heading">Features:</div>
+                    <ul class="features-list">
+                        <li>100x Faster Performance</li>
+                        <li>In-Memory MapReduce</li>
+                        <li>Highly Optimized In-Memory Processing</li>
+                        <li>Standalone File System</li>
+                        <li>Optional Caching Layer for HDFS</li>
+                        <li>Read-Through and Write-Through with HDFS</li>
+                    </ul>
+                </div>
+                <div class="feature-right">
+                    <img src="images/hadoop_sequence.png" width="400px"/>
+                </div>
+            </div>
+
+            <div class="code-examples">&nbsp;</div>
+            
+            <div class="feature-links">
+                <!--<a target=wiki href="#">Learn More <i class="fa 
fa-angle-double-right"></i></a>-->
+                <a href="#features">Top <i class="fa 
fa-angle-double-up"></i></a>
+            </div>
+        </section>
     </main>
 
     <!--#include virtual="/includes/footer.html" -->


Reply via email to