http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/sparsetable.h ---------------------------------------------------------------------- diff --git a/be/src/gutil/sparsetable.h b/be/src/gutil/sparsetable.h deleted file mode 100644 index 007f76b..0000000 --- a/be/src/gutil/sparsetable.h +++ /dev/null @@ -1,1838 +0,0 @@ -// Copyright (c) 2005, Google Inc. -// All rights reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following disclaimer -// in the documentation and/or other materials provided with the -// distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived from -// this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -// --- -// -// -// A sparsetable is a random container that implements a sparse array, -// that is, an array that uses very little memory to store unassigned -// indices (in this case, between 1-2 bits per unassigned index). For -// instance, if you allocate an array of size 5 and assign a[2] = <big -// struct>, then a[2] will take up a lot of memory but a[0], a[1], -// a[3], and a[4] will not. Array elements that have a value are -// called "assigned". Array elements that have no value yet, or have -// had their value cleared using erase() or clear(), are called -// "unassigned". -// -// Unassigned values seem to have the default value of T (see below). -// Nevertheless, there is a difference between an unassigned index and -// one explicitly assigned the value of T(). The latter is considered -// assigned. -// -// Access to an array element is constant time, as is insertion and -// deletion. Insertion and deletion may be fairly slow, however: -// because of this container's memory economy, each insert and delete -// causes a memory reallocation. -// -// NOTE: You should not test(), get(), or set() any index that is -// greater than sparsetable.size(). If you need to do that, call -// resize() first. -// -// --- Template parameters -// PARAMETER DESCRIPTION DEFAULT -// T The value of the array: the type of -- -// object that is stored in the array. -// -// GROUP_SIZE How large each "group" in the table 48 -// is (see below). Larger values use -// a little less memory but cause most -// operations to be a little slower -// -// Alloc: Allocator to use to allocate memory. libc_allocator_with_realloc -// -// --- Model of -// Random Access Container -// -// --- Type requirements -// T must be Copy Constructible. It need not be Assignable. -// -// --- Public base classes -// None. -// -// --- Members -// Type members -// -// MEMBER WHERE DEFINED DESCRIPTION -// value_type container The type of object, T, stored in the array -// allocator_type container Allocator to use -// pointer container Pointer to p -// const_pointer container Const pointer to p -// reference container Reference to t -// const_reference container Const reference to t -// size_type container An unsigned integral type -// difference_type container A signed integral type -// iterator [*] container Iterator used to iterate over a sparsetable -// const_iterator container Const iterator used to iterate over a table -// reverse_iterator reversible Iterator used to iterate backwards over -// container a sparsetable -// const_reverse_iterator reversible container Guess -// nonempty_iterator [+] sparsetable Iterates over assigned -// array elements only -// const_nonempty_iterator sparsetable Iterates over assigned -// array elements only -// reverse_nonempty_iterator sparsetable Iterates backwards over -// assigned array elements only -// const_reverse_nonempty_iterator sparsetable Iterates backwards over -// assigned array elements only -// -// [*] All iterators are const in a sparsetable (though nonempty_iterators -// may not be). Use get() and set() to assign values, not iterators. -// -// [+] iterators are random-access iterators. nonempty_iterators are -// bidirectional iterators. - -// Iterator members -// MEMBER WHERE DEFINED DESCRIPTION -// -// iterator begin() container An iterator to the beginning of the table -// iterator end() container An iterator to the end of the table -// const_iterator container A const_iterator pointing to the -// begin() const beginning of a sparsetable -// const_iterator container A const_iterator pointing to the -// end() const end of a sparsetable -// -// reverse_iterator reversable Points to beginning of a reversed -// rbegin() container sparsetable -// reverse_iterator reversable Points to end of a reversed table -// rend() container -// const_reverse_iterator reversable Points to beginning of a -// rbegin() const container reversed sparsetable -// const_reverse_iterator reversable Points to end of a reversed table -// rend() const container -// -// nonempty_iterator sparsetable Points to first assigned element -// begin() of a sparsetable -// nonempty_iterator sparsetable Points past last assigned element -// end() of a sparsetable -// const_nonempty_iterator sparsetable Points to first assigned element -// begin() const of a sparsetable -// const_nonempty_iterator sparsetable Points past last assigned element -// end() const of a sparsetable -// -// reverse_nonempty_iterator sparsetable Points to first assigned element -// begin() of a reversed sparsetable -// reverse_nonempty_iterator sparsetable Points past last assigned element -// end() of a reversed sparsetable -// const_reverse_nonempty_iterator sparsetable Points to first assigned -// begin() const elt of a reversed sparsetable -// const_reverse_nonempty_iterator sparsetable Points past last assigned -// end() const elt of a reversed sparsetable -// -// -// Other members -// MEMBER WHERE DEFINED DESCRIPTION -// sparsetable() sparsetable A table of size 0; must resize() -// before using. -// sparsetable(size_type size) sparsetable A table of size size. All -// indices are unassigned. -// sparsetable( -// const sparsetable &tbl) sparsetable Copy constructor -// ~sparsetable() sparsetable The destructor -// sparsetable &operator=( sparsetable The assignment operator -// const sparsetable &tbl) -// -// void resize(size_type size) sparsetable Grow or shrink a table to -// have size indices [*] -// -// void swap(sparsetable &x) sparsetable Swap two sparsetables -// void swap(sparsetable &x, sparsetable Swap two sparsetables -// sparsetable &y) (global, not member, function) -// -// size_type size() const sparsetable Number of "buckets" in the table -// size_type max_size() const sparsetable Max allowed size of a sparsetable -// bool empty() const sparsetable true if size() == 0 -// size_type num_nonempty() const sparsetable Number of assigned "buckets" -// -// const_reference get( sparsetable Value at index i, or default -// size_type i) const value if i is unassigned -// const_reference operator[]( sparsetable Identical to get(i) [+] -// difference_type i) const -// reference set(size_type i, sparsetable Set element at index i to -// const_reference val) be a copy of val -// bool test(size_type i) sparsetable True if element at index i -// const has been assigned to -// bool test(iterator pos) sparsetable True if element pointed to -// const by pos has been assigned to -// void erase(iterator pos) sparsetable Set element pointed to by -// pos to be unassigned [!] -// void erase(size_type i) sparsetable Set element i to be unassigned -// void erase(iterator start, sparsetable Erases all elements between -// iterator end) start and end -// void clear() sparsetable Erases all elements in the table -// -// I/O versions exist for both FILE* and for File* (Google2-style files): -// bool write_metadata(FILE *fp) sparsetable Writes a sparsetable to the -// bool write_metadata(File *fp) given file. true if write -// completes successfully -// bool read_metadata(FILE *fp) sparsetable Replaces sparsetable with -// bool read_metadata(File *fp) version read from fp. true -// if read completes sucessfully -// bool write_nopointer_data(FILE *fp) Read/write the data stored in -// bool read_nopointer_data(FILE*fp) the table, if it's simple -// -// bool operator==( forward Tests two tables for equality. -// const sparsetable &t1, container This is a global function, -// const sparsetable &t2) not a member function. -// bool operator<( forward Lexicographical comparison. -// const sparsetable &t1, container This is a global function, -// const sparsetable &t2) not a member function. -// -// [*] If you shrink a sparsetable using resize(), assigned elements -// past the end of the table are removed using erase(). If you grow -// a sparsetable, new unassigned indices are created. -// -// [+] Note that operator[] returns a const reference. You must use -// set() to change the value of a table element. -// -// [!] Unassignment also calls the destructor. -// -// Iterators are invalidated whenever an item is inserted or -// deleted (ie set() or erase() is used) or when the size of -// the table changes (ie resize() or clear() is used). -// -// See doc/sparsetable.html for more information about how to use this class. - -// Note: this uses STL style for naming, rather than Google naming. -// That's because this is an STL-y container - -#ifndef UTIL_GTL_SPARSETABLE_H_ -#define UTIL_GTL_SPARSETABLE_H_ - -#include <assert.h> // for bounds checking -#include <stdio.h> // to read/write tables -#include <stdlib.h> // for malloc/free -#include <string.h> // for memcpy -#include <sys/types.h> // to get u_int16_t (ISO naming madness) -#include <algorithm> -using std::copy; -using std::max; -using std::min; -using std::reverse; -using std::sort; -using std::swap; // equal, lexicographical_compare, swap,... -#include <iterator> -using std::back_insert_iterator; -using std::iterator_traits; // to define reverse_iterator for me -#include <memory> // uninitialized_copy, uninitialized_fill -#include <vector> -using std::vector; // a sparsetable is a vector of groups - -#include "gutil/type_traits.h" -#include "gutil/libc_allocator_with_realloc.h" - -// A lot of work to get a type that's guaranteed to be 16 bits... -#ifndef HAVE_U_INT16_T -# if defined HAVE_UINT16_T - typedef uint16_t u_int16_t; // true on solaris, possibly other C99 libc's -# elif defined HAVE___UINT16 - typedef __int16 int16_t; // true on vc++7 - typedef unsigned __int16 u_int16_t; -# else - // Cannot find a 16-bit integer type. Hoping for the best with "short"... - typedef short int int16_t; - typedef unsigned short int u_int16_t; -# endif -#endif - -namespace base { - -namespace base { // just to make google->opensource transition easier -using base::true_type; -using base::false_type; -using base::integral_constant; -using base::has_trivial_copy; -using base::has_trivial_destructor; -using base::is_same; -} - - -// The smaller this is, the faster lookup is (because the group bitmap is -// smaller) and the faster insert is, because there's less to move. -// On the other hand, there are more groups. Since group::size_type is -// a short, this number should be of the form 32*x + 16 to avoid waste. -static const u_int16_t DEFAULT_SPARSEGROUP_SIZE = 48; // fits in 1.5 words - - -// Our iterator as simple as iterators can be: basically it's just -// the index into our table. Dereference, the only complicated -// thing, we punt to the table class. This just goes to show how -// much machinery STL requires to do even the most trivial tasks. -// -// A NOTE ON ASSIGNING: -// A sparse table does not actually allocate memory for entries -// that are not filled. Because of this, it becomes complicated -// to have a non-const iterator: we don't know, if the iterator points -// to a not-filled bucket, whether you plan to fill it with something -// or whether you plan to read its value (in which case you'll get -// the default bucket value). Therefore, while we can define const -// operations in a pretty 'normal' way, for non-const operations, we -// define something that returns a helper object with operator= and -// operator& that allocate a bucket lazily. We use this for table[] -// and also for regular table iterators. - -template <class tabletype> -class table_element_adaptor { - public: - typedef typename tabletype::value_type value_type; - typedef typename tabletype::size_type size_type; - typedef typename tabletype::reference reference; - typedef typename tabletype::pointer pointer; - - table_element_adaptor(tabletype *tbl, size_type p) - : table(tbl), pos(p) { } - table_element_adaptor& operator= (const value_type &val) { - table->set(pos, val); - return *this; - } - operator value_type() { return table->get(pos); } // we look like a value - pointer operator& () { return &table->mutating_get(pos); } - - private: - tabletype* table; - size_type pos; -}; - -// Our iterator as simple as iterators can be: basically it's just -// the index into our table. Dereference, the only complicated -// thing, we punt to the table class. This just goes to show how -// much machinery STL requires to do even the most trivial tasks. -// -// By templatizing over tabletype, we have one iterator type which -// we can use for both sparsetables and sparsebins. In fact it -// works on any class that allows size() and operator[] (eg vector), -// as long as it does the standard STL typedefs too (eg value_type). - -template <class tabletype> -class table_iterator { - public: - typedef table_iterator iterator; - - typedef std::random_access_iterator_tag iterator_category; - typedef typename tabletype::value_type value_type; - typedef typename tabletype::difference_type difference_type; - typedef typename tabletype::size_type size_type; - typedef table_element_adaptor<tabletype> reference; - typedef table_element_adaptor<tabletype>* pointer; - - // The "real" constructor - table_iterator(tabletype *tbl, size_type p) - : table(tbl), pos(p) { } - // The default constructor, used when I define vars of type table::iterator - table_iterator() : table(NULL), pos(0) { } - // The copy constructor, for when I say table::iterator foo = tbl.begin() - // The default destructor is fine; we don't define one - // The default operator= is fine; we don't define one - - // The main thing our iterator does is dereference. If the table entry - // we point to is empty, we return the default value type. - // This is the big different function from the const iterator. - reference operator*() { - return table_element_adaptor<tabletype>(table, pos); - } - pointer operator->() { return &(operator*()); } - - // Helper function to assert things are ok; eg pos is still in range - void check() const { - assert(table); - assert(pos <= table->size()); - } - - // Arithmetic: we just do arithmetic on pos. We don't even need to - // do bounds checking, since STL doesn't consider that its job. :-) - iterator& operator+=(size_type t) { pos += t; check(); return *this; } - iterator& operator-=(size_type t) { pos -= t; check(); return *this; } - iterator& operator++() { ++pos; check(); return *this; } - iterator& operator--() { --pos; check(); return *this; } - iterator operator++(int) { iterator tmp(*this); // for x++ - ++pos; check(); return tmp; } - iterator operator--(int) { iterator tmp(*this); // for x-- - --pos; check(); return tmp; } - iterator operator+(difference_type i) const { iterator tmp(*this); - tmp += i; return tmp; } - iterator operator-(difference_type i) const { iterator tmp(*this); - tmp -= i; return tmp; } - difference_type operator-(iterator it) const { // for "x = it2 - it" - assert(table == it.table); - return pos - it.pos; - } - reference operator[](difference_type n) const { - return *(*this + n); // simple though not totally efficient - } - - // Comparisons. - bool operator==(const iterator& it) const { - return table == it.table && pos == it.pos; - } - bool operator<(const iterator& it) const { - assert(table == it.table); // life is bad bad bad otherwise - return pos < it.pos; - } - bool operator!=(const iterator& it) const { return !(*this == it); } - bool operator<=(const iterator& it) const { return !(it < *this); } - bool operator>(const iterator& it) const { return it < *this; } - bool operator>=(const iterator& it) const { return !(*this < it); } - - // Here's the info we actually need to be an iterator - tabletype *table; // so we can dereference and bounds-check - size_type pos; // index into the table -}; - -// support for "3 + iterator" has to be defined outside the class, alas -template<class T> -table_iterator<T> operator+(typename table_iterator<T>::difference_type i, - table_iterator<T> it) { - return it + i; // so people can say it2 = 3 + it -} - -template <class tabletype> -class const_table_iterator { - public: - typedef table_iterator<tabletype> iterator; - typedef const_table_iterator const_iterator; - - typedef std::random_access_iterator_tag iterator_category; - typedef typename tabletype::value_type value_type; - typedef typename tabletype::difference_type difference_type; - typedef typename tabletype::size_type size_type; - typedef typename tabletype::const_reference reference; // we're const-only - typedef typename tabletype::const_pointer pointer; - - // The "real" constructor - const_table_iterator(const tabletype *tbl, size_type p) - : table(tbl), pos(p) { } - // The default constructor, used when I define vars of type table::iterator - const_table_iterator() : table(NULL), pos(0) { } - // The copy constructor, for when I say table::iterator foo = tbl.begin() - // Also converts normal iterators to const iterators - const_table_iterator(const iterator &from) - : table(from.table), pos(from.pos) { } - // The default destructor is fine; we don't define one - // The default operator= is fine; we don't define one - - // The main thing our iterator does is dereference. If the table entry - // we point to is empty, we return the default value type. - reference operator*() const { return (*table)[pos]; } - pointer operator->() const { return &(operator*()); } - - // Helper function to assert things are ok; eg pos is still in range - void check() const { - assert(table); - assert(pos <= table->size()); - } - - // Arithmetic: we just do arithmetic on pos. We don't even need to - // do bounds checking, since STL doesn't consider that its job. :-) - const_iterator& operator+=(size_type t) { pos += t; check(); return *this; } - const_iterator& operator-=(size_type t) { pos -= t; check(); return *this; } - const_iterator& operator++() { ++pos; check(); return *this; } - const_iterator& operator--() { --pos; check(); return *this; } - const_iterator operator++(int) { const_iterator tmp(*this); // for x++ - ++pos; check(); return tmp; } - const_iterator operator--(int) { const_iterator tmp(*this); // for x-- - --pos; check(); return tmp; } - const_iterator operator+(difference_type i) const { const_iterator tmp(*this); - tmp += i; return tmp; } - const_iterator operator-(difference_type i) const { const_iterator tmp(*this); - tmp -= i; return tmp; } - difference_type operator-(const_iterator it) const { // for "x = it2 - it" - assert(table == it.table); - return pos - it.pos; - } - reference operator[](difference_type n) const { - return *(*this + n); // simple though not totally efficient - } - - // Comparisons. - bool operator==(const const_iterator& it) const { - return table == it.table && pos == it.pos; - } - bool operator<(const const_iterator& it) const { - assert(table == it.table); // life is bad bad bad otherwise - return pos < it.pos; - } - bool operator!=(const const_iterator& it) const { return !(*this == it); } - bool operator<=(const const_iterator& it) const { return !(it < *this); } - bool operator>(const const_iterator& it) const { return it < *this; } - bool operator>=(const const_iterator& it) const { return !(*this < it); } - - // Here's the info we actually need to be an iterator - const tabletype *table; // so we can dereference and bounds-check - size_type pos; // index into the table -}; - -// support for "3 + iterator" has to be defined outside the class, alas -template<class T> -const_table_iterator<T> operator+(typename - const_table_iterator<T>::difference_type i, - const_table_iterator<T> it) { - return it + i; // so people can say it2 = 3 + it -} - - -// --------------------------------------------------------------------------- - - -/* -// This is a 2-D iterator. You specify a begin and end over a list -// of *containers*. We iterate over each container by iterating over -// it. It's actually simple: -// VECTOR.begin() VECTOR[0].begin() --------> VECTOR[0].end() ---, -// | ________________________________________________/ -// | \_> VECTOR[1].begin() --------> VECTOR[1].end() -, -// | ___________________________________________________/ -// v \_> ...... -// VECTOR.end() -// -// It's impossible to do random access on one of these things in constant -// time, so it's just a bidirectional iterator. -// -// Unfortunately, because we need to use this for a non-empty iterator, -// we use nonempty_begin() and nonempty_end() instead of begin() and end() -// (though only going across, not down). -*/ - -#define TWOD_BEGIN_ nonempty_begin -#define TWOD_END_ nonempty_end -#define TWOD_ITER_ nonempty_iterator -#define TWOD_CONST_ITER_ const_nonempty_iterator - -template <class containertype> -class two_d_iterator { - public: - typedef two_d_iterator iterator; - - typedef std::bidirectional_iterator_tag iterator_category; - // apparently some versions of VC++ have trouble with two ::'s in a typename - typedef typename containertype::value_type _tmp_vt; - typedef typename _tmp_vt::value_type value_type; - typedef typename _tmp_vt::difference_type difference_type; - typedef typename _tmp_vt::reference reference; - typedef typename _tmp_vt::pointer pointer; - - // The "real" constructor. begin and end specify how many rows we have - // (in the diagram above); we always iterate over each row completely. - two_d_iterator(typename containertype::iterator begin, - typename containertype::iterator end, - typename containertype::iterator curr) - : row_begin(begin), row_end(end), row_current(curr), col_current() { - if ( row_current != row_end ) { - col_current = row_current->TWOD_BEGIN_(); - advance_past_end(); // in case cur->begin() == cur->end() - } - } - // If you want to start at an arbitrary place, you can, I guess - two_d_iterator(typename containertype::iterator begin, - typename containertype::iterator end, - typename containertype::iterator curr, - typename containertype::value_type::TWOD_ITER_ col) - : row_begin(begin), row_end(end), row_current(curr), col_current(col) { - advance_past_end(); // in case cur->begin() == cur->end() - } - // The default constructor, used when I define vars of type table::iterator - two_d_iterator() : row_begin(), row_end(), row_current(), col_current() { } - // The default destructor is fine; we don't define one - // The default operator= is fine; we don't define one - - // Happy dereferencer - reference operator*() const { return *col_current; } - pointer operator->() const { return &(operator*()); } - - // Arithmetic: we just do arithmetic on pos. We don't even need to - // do bounds checking, since STL doesn't consider that its job. :-) - // NOTE: this is not amortized constant time! What do we do about it? - void advance_past_end() { // used when col_current points to end() - while ( col_current == row_current->TWOD_END_() ) { // end of current row - ++row_current; // go to beginning of next - if ( row_current != row_end ) // col is irrelevant at end - col_current = row_current->TWOD_BEGIN_(); - else - break; // don't go past row_end - } - } - - iterator& operator++() { - assert(row_current != row_end); // how to ++ from there? - ++col_current; - advance_past_end(); // in case col_current is at end() - return *this; - } - iterator& operator--() { - while ( row_current == row_end || - col_current == row_current->TWOD_BEGIN_() ) { - assert(row_current != row_begin); - --row_current; - col_current = row_current->TWOD_END_(); // this is 1 too far - } - --col_current; - return *this; - } - iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } - iterator operator--(int) { iterator tmp(*this); --*this; return tmp; } - - - // Comparisons. - bool operator==(const iterator& it) const { - return ( row_begin == it.row_begin && - row_end == it.row_end && - row_current == it.row_current && - (row_current == row_end || col_current == it.col_current) ); - } - bool operator!=(const iterator& it) const { return !(*this == it); } - - - // Here's the info we actually need to be an iterator - // These need to be public so we convert from iterator to const_iterator - typename containertype::iterator row_begin, row_end, row_current; - typename containertype::value_type::TWOD_ITER_ col_current; -}; - -// The same thing again, but this time const. :-( -template <class containertype> -class const_two_d_iterator { - public: - typedef const_two_d_iterator iterator; - - typedef std::bidirectional_iterator_tag iterator_category; - // apparently some versions of VC++ have trouble with two ::'s in a typename - typedef typename containertype::value_type _tmp_vt; - typedef typename _tmp_vt::value_type value_type; - typedef typename _tmp_vt::difference_type difference_type; - typedef typename _tmp_vt::const_reference reference; - typedef typename _tmp_vt::const_pointer pointer; - - const_two_d_iterator(typename containertype::const_iterator begin, - typename containertype::const_iterator end, - typename containertype::const_iterator curr) - : row_begin(begin), row_end(end), row_current(curr), col_current() { - if ( curr != end ) { - col_current = curr->TWOD_BEGIN_(); - advance_past_end(); // in case cur->begin() == cur->end() - } - } - const_two_d_iterator(typename containertype::const_iterator begin, - typename containertype::const_iterator end, - typename containertype::const_iterator curr, - typename containertype::value_type::TWOD_CONST_ITER_ col) - : row_begin(begin), row_end(end), row_current(curr), col_current(col) { - advance_past_end(); // in case cur->begin() == cur->end() - } - const_two_d_iterator() - : row_begin(), row_end(), row_current(), col_current() { - } - // Need this explicitly so we can convert normal iterators to const iterators - // TODO(user): explicit? - const_two_d_iterator(const two_d_iterator<containertype>& it) : - row_begin(it.row_begin), row_end(it.row_end), row_current(it.row_current), - col_current(it.col_current) { } - - typename containertype::const_iterator row_begin, row_end, row_current; - typename containertype::value_type::TWOD_CONST_ITER_ col_current; - - - // EVERYTHING FROM HERE DOWN IS THE SAME AS THE NON-CONST ITERATOR - reference operator*() const { return *col_current; } - pointer operator->() const { return &(operator*()); } - - void advance_past_end() { // used when col_current points to end() - while ( col_current == row_current->TWOD_END_() ) { // end of current row - ++row_current; // go to beginning of next - if ( row_current != row_end ) // col is irrelevant at end - col_current = row_current->TWOD_BEGIN_(); - else - break; // don't go past row_end - } - } - iterator& operator++() { - assert(row_current != row_end); // how to ++ from there? - ++col_current; - advance_past_end(); // in case col_current is at end() - return *this; - } - iterator& operator--() { - while ( row_current == row_end || - col_current == row_current->TWOD_BEGIN_() ) { - assert(row_current != row_begin); - --row_current; - col_current = row_current->TWOD_END_(); // this is 1 too far - } - --col_current; - return *this; - } - iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } - iterator operator--(int) { iterator tmp(*this); --*this; return tmp; } - - bool operator==(const iterator& it) const { - return ( row_begin == it.row_begin && - row_end == it.row_end && - row_current == it.row_current && - (row_current == row_end || col_current == it.col_current) ); - } - bool operator!=(const iterator& it) const { return !(*this == it); } -}; - -// We provide yet another version, to be as frugal with memory as -// possible. This one frees each block of memory as it finishes -// iterating over it. By the end, the entire table is freed. -// For understandable reasons, you can only iterate over it once, -// which is why it's an input iterator -template <class containertype> -class destructive_two_d_iterator { - public: - typedef destructive_two_d_iterator iterator; - - typedef std::input_iterator_tag iterator_category; - // apparently some versions of VC++ have trouble with two ::'s in a typename - typedef typename containertype::value_type _tmp_vt; - typedef typename _tmp_vt::value_type value_type; - typedef typename _tmp_vt::difference_type difference_type; - typedef typename _tmp_vt::reference reference; - typedef typename _tmp_vt::pointer pointer; - - destructive_two_d_iterator(typename containertype::iterator begin, - typename containertype::iterator end, - typename containertype::iterator curr) - : row_begin(begin), row_end(end), row_current(curr), col_current() { - if ( curr != end ) { - col_current = curr->TWOD_BEGIN_(); - advance_past_end(); // in case cur->begin() == cur->end() - } - } - destructive_two_d_iterator(typename containertype::iterator begin, - typename containertype::iterator end, - typename containertype::iterator curr, - typename containertype::value_type::TWOD_ITER_ col) - : row_begin(begin), row_end(end), row_current(curr), col_current(col) { - advance_past_end(); // in case cur->begin() == cur->end() - } - destructive_two_d_iterator() - : row_begin(), row_end(), row_current(), col_current() { - } - - typename containertype::iterator row_begin, row_end, row_current; - typename containertype::value_type::TWOD_ITER_ col_current; - - // This is the part that destroys - void advance_past_end() { // used when col_current points to end() - while ( col_current == row_current->TWOD_END_() ) { // end of current row - row_current->clear(); // the destructive part - // It would be nice if we could decrement sparsetable->num_buckets here - ++row_current; // go to beginning of next - if ( row_current != row_end ) // col is irrelevant at end - col_current = row_current->TWOD_BEGIN_(); - else - break; // don't go past row_end - } - } - - // EVERYTHING FROM HERE DOWN IS THE SAME AS THE REGULAR ITERATOR - reference operator*() const { return *col_current; } - pointer operator->() const { return &(operator*()); } - - iterator& operator++() { - assert(row_current != row_end); // how to ++ from there? - ++col_current; - advance_past_end(); // in case col_current is at end() - return *this; - } - iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } - - bool operator==(const iterator& it) const { - return ( row_begin == it.row_begin && - row_end == it.row_end && - row_current == it.row_current && - (row_current == row_end || col_current == it.col_current) ); - } - bool operator!=(const iterator& it) const { return !(*this == it); } -}; - -#undef TWOD_BEGIN_ -#undef TWOD_END_ -#undef TWOD_ITER_ -#undef TWOD_CONST_ITER_ - - - - -// SPARSE-TABLE -// ------------ -// The idea is that a table with (logically) t buckets is divided -// into t/M *groups* of M buckets each. (M is a constant set in -// GROUP_SIZE for efficiency.) Each group is stored sparsely. -// Thus, inserting into the table causes some array to grow, which is -// slow but still constant time. Lookup involves doing a -// logical-position-to-sparse-position lookup, which is also slow but -// constant time. The larger M is, the slower these operations are -// but the less overhead (slightly). -// -// To store the sparse array, we store a bitmap B, where B[i] = 1 iff -// bucket i is non-empty. Then to look up bucket i we really look up -// array[# of 1s before i in B]. This is constant time for fixed M. -// -// Terminology: the position of an item in the overall table (from -// 1 .. t) is called its "location." The logical position in a group -// (from 1 .. M ) is called its "position." The actual location in -// the array (from 1 .. # of non-empty buckets in the group) is -// called its "offset." - -// The weird mod in the offset is entirely to quiet compiler warnings -// as is the cast to int after doing the "x mod 256" -#define PUT_(take_from, offset) do { \ - if (putc(static_cast<int>(((take_from) >> ((offset) % (sizeof(take_from)*8)))\ - % 256), fp) \ - == EOF) \ - return false; \ -} while (0) - -#define GET_(add_to, offset) do { \ - if ((x=getc(fp)) == EOF) \ - return false; \ - else \ - add_to |= (static_cast<size_type>(x) << ((offset) % (sizeof(add_to)*8))); \ -} while (0) - -template <class T, u_int16_t GROUP_SIZE, class Alloc> -class sparsegroup { - private: - typedef typename Alloc::template rebind<T>::other value_alloc_type; - - public: - // Basic types - typedef T value_type; - typedef Alloc allocator_type; - typedef typename value_alloc_type::reference reference; - typedef typename value_alloc_type::const_reference const_reference; - typedef typename value_alloc_type::pointer pointer; - typedef typename value_alloc_type::const_pointer const_pointer; - - typedef table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> > iterator; - typedef const_table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> > - const_iterator; - typedef table_element_adaptor<sparsegroup<T, GROUP_SIZE, Alloc> > - element_adaptor; - typedef u_int16_t size_type; // max # of buckets - typedef int16_t difference_type; - typedef std::reverse_iterator<const_iterator> const_reverse_iterator; - typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h - - // These are our special iterators, that go over non-empty buckets in a - // group. These aren't const-only because you can change non-empty bcks. - typedef pointer nonempty_iterator; - typedef const_pointer const_nonempty_iterator; - typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator; - typedef std::reverse_iterator<const_nonempty_iterator> - const_reverse_nonempty_iterator; - - // Iterator functions - iterator begin() { return iterator(this, 0); } - const_iterator begin() const { return const_iterator(this, 0); } - iterator end() { return iterator(this, size()); } - const_iterator end() const { return const_iterator(this, size()); } - reverse_iterator rbegin() { return reverse_iterator(end()); } - const_reverse_iterator rbegin() const { - return const_reverse_iterator(end()); - } - reverse_iterator rend() { return reverse_iterator(begin()); } - const_reverse_iterator rend() const { - return const_reverse_iterator(begin()); - } - - // We'll have versions for our special non-empty iterator too - nonempty_iterator nonempty_begin() { return group; } - const_nonempty_iterator nonempty_begin() const { return group; } - nonempty_iterator nonempty_end() { - return group + settings.num_buckets; - } - const_nonempty_iterator nonempty_end() const { - return group + settings.num_buckets; - } - reverse_nonempty_iterator nonempty_rbegin() { - return reverse_nonempty_iterator(nonempty_end()); - } - const_reverse_nonempty_iterator nonempty_rbegin() const { - return const_reverse_nonempty_iterator(nonempty_end()); - } - reverse_nonempty_iterator nonempty_rend() { - return reverse_nonempty_iterator(nonempty_begin()); - } - const_reverse_nonempty_iterator nonempty_rend() const { - return const_reverse_nonempty_iterator(nonempty_begin()); - } - - - // This gives us the "default" value to return for an empty bucket. - // We just use the default constructor on T, the template type - const_reference default_value() const { - static value_type defaultval = value_type(); - return defaultval; - } - - - private: - // We need to do all this bit manipulation, of course. ick - static size_type charbit(size_type i) { return i >> 3; } - static size_type modbit(size_type i) { return 1 << (i&7); } - int bmtest(size_type i) const { return bitmap[charbit(i)] & modbit(i); } - void bmset(size_type i) { bitmap[charbit(i)] |= modbit(i); } - void bmclear(size_type i) { bitmap[charbit(i)] &= ~modbit(i); } - - pointer allocate_group(size_type n) { - pointer retval = settings.allocate(n); - if (retval == NULL) { - // We really should use PRIuS here, but I don't want to have to add - // a whole new configure option, with concomitant macro namespace - // pollution, just to print this (unlikely) error message. So I cast. - fprintf(stderr, "sparsehash FATAL ERROR: failed to allocate %lu groups\n", - static_cast<unsigned long>(n)); - exit(1); - } - return retval; - } - - void free_group() { - if (!group) return; - pointer end_it = group + settings.num_buckets; - for (pointer p = group; p != end_it; ++p) - p->~value_type(); - settings.deallocate(group, settings.num_buckets); - group = NULL; - } - - static size_type bits_in_char(unsigned char c) { - // We could make these ints. The tradeoff is size (eg does it overwhelm - // the cache?) vs efficiency in referencing sub-word-sized array elements. - static const char bits_in[256] = { - 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, - }; - return bits_in[c]; - } - - public: // get_iter() in sparsetable needs it - // We need a small function that tells us how many set bits there are - // in positions 0..i-1 of the bitmap. It uses a big table. - // We make it static so templates don't allocate lots of these tables. - // There are lots of ways to do this calculation (called 'popcount'). - // The 8-bit table lookup is one of the fastest, though this - // implementation suffers from not doing any loop unrolling. See, eg, - // http://www.dalkescientific.com/writings/diary/archive/2008/07/03/hakmem_and_other_popcounts.html - // http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/ - static size_type pos_to_offset(const unsigned char *bm, size_type pos) { - size_type retval = 0; - - // [Note: condition pos > 8 is an optimization; convince yourself we - // give exactly the same result as if we had pos >= 8 here instead.] - for ( ; pos > 8; pos -= 8 ) // bm[0..pos/8-1] - retval += bits_in_char(*bm++); // chars we want *all* bits in - return retval + bits_in_char(*bm & ((1 << pos)-1)); // char including pos - } - - size_type pos_to_offset(size_type pos) const { // not static but still const - return pos_to_offset(bitmap, pos); - } - - // Returns the (logical) position in the bm[] array, i, such that - // bm[i] is the offset-th set bit in the array. It is the inverse - // of pos_to_offset. get_pos() uses this function to find the index - // of an nonempty_iterator in the table. Bit-twiddling from - // http://hackersdelight.org/basics.pdf - static size_type offset_to_pos(const unsigned char *bm, size_type offset) { - size_type retval = 0; - // This is sizeof(this->bitmap). - const size_type group_size = (GROUP_SIZE-1) / 8 + 1; - for (size_type i = 0; i < group_size; i++) { // forward scan - unsigned char pop_count = bits_in_char(*bm); - if (pop_count > offset) { - unsigned char last_bm = *bm; - for (; offset > 0; offset--) { - last_bm &= (last_bm-1); // remove right-most set bit - } - // Clear all bits to the left of the rightmost bit (the &), - // and then clear the rightmost bit but set all bits to the - // right of it (the -1). - last_bm = (last_bm & -last_bm) - 1; - retval += bits_in_char(last_bm); - return retval; - } - offset -= pop_count; - retval += 8; - bm++; - } - return retval; - } - - size_type offset_to_pos(size_type offset) const { - return offset_to_pos(bitmap, offset); - } - - - public: - // Constructors -- default and copy -- and destructor - explicit sparsegroup(allocator_type& a) : - group(0), settings(alloc_impl<value_alloc_type>(a)) { - memset(bitmap, 0, sizeof(bitmap)); - } - sparsegroup(const sparsegroup& x) : group(0), settings(x.settings) { - if ( settings.num_buckets ) { - group = allocate_group(x.settings.num_buckets); - std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, group); - } - memcpy(bitmap, x.bitmap, sizeof(bitmap)); - } - ~sparsegroup() { free_group(); } - - // Operator= is just like the copy constructor, I guess - // TODO(user): Make this exception safe. Handle exceptions in value_type's - // copy constructor. - sparsegroup &operator=(const sparsegroup& x) { - if ( &x == this ) return *this; // x = x - if ( x.settings.num_buckets == 0 ) { - free_group(); - } else { - pointer p = allocate_group(x.settings.num_buckets); - std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, p); - free_group(); - group = p; - } - memcpy(bitmap, x.bitmap, sizeof(bitmap)); - settings.num_buckets = x.settings.num_buckets; - return *this; - } - - // Many STL algorithms use swap instead of copy constructors - void swap(sparsegroup& x) { - std::swap(group, x.group); // defined in <algorithm> - for ( int i = 0; i < sizeof(bitmap) / sizeof(*bitmap); ++i ) - std::swap(bitmap[i], x.bitmap[i]); // swap not defined on arrays - std::swap(settings.num_buckets, x.settings.num_buckets); - // we purposefully don't swap the allocator, which may not be swap-able - } - - // It's always nice to be able to clear a table without deallocating it - void clear() { - free_group(); - memset(bitmap, 0, sizeof(bitmap)); - settings.num_buckets = 0; - } - - // Functions that tell you about size. Alas, these aren't so useful - // because our table is always fixed size. - size_type size() const { return GROUP_SIZE; } - size_type max_size() const { return GROUP_SIZE; } - bool empty() const { return false; } - // We also may want to know how many *used* buckets there are - size_type num_nonempty() const { return settings.num_buckets; } - - - // get()/set() are explicitly const/non-const. You can use [] if - // you want something that can be either (potentially more expensive). - const_reference get(size_type i) const { - if ( bmtest(i) ) // bucket i is occupied - return group[pos_to_offset(bitmap, i)]; - else - return default_value(); // return the default reference - } - - // TODO(user): make protected + friend - // This is used by sparse_hashtable to get an element from the table - // when we know it exists. - const_reference unsafe_get(size_type i) const { - assert(bmtest(i)); - return group[pos_to_offset(bitmap, i)]; - } - - // TODO(user): make protected + friend - reference mutating_get(size_type i) { // fills bucket i before getting - if ( !bmtest(i) ) - set(i, default_value()); - return group[pos_to_offset(bitmap, i)]; - } - - // Syntactic sugar. It's easy to return a const reference. To - // return a non-const reference, we need to use the assigner adaptor. - const_reference operator[](size_type i) const { - return get(i); - } - - element_adaptor operator[](size_type i) { - return element_adaptor(this, i); - } - - private: - // Create space at group[offset], assuming value_type has trivial - // copy constructor and destructor, and the allocator_type is - // the default libc_allocator_with_alloc. (Really, we want it to have - // "trivial move", because that's what realloc and memmove both do. - // But there's no way to capture that using type_traits, so we - // pretend that move(x, y) is equivalent to "x.~T(); new(x) T(y);" - // which is pretty much correct, if a bit conservative.) - void set_aux(size_type offset, base::true_type) { - group = settings.realloc_or_die(group, settings.num_buckets+1); - // This is equivalent to memmove(), but faster on my Intel P4, - // at least with gcc4.1 -O2 / glibc 2.3.6. - for (size_type i = settings.num_buckets; i > offset; --i) - memcpy(group + i, group + i-1, sizeof(*group)); - } - - // Create space at group[offset], without special assumptions about value_type - // and allocator_type. - void set_aux(size_type offset, base::false_type) { - // This is valid because 0 <= offset <= num_buckets - pointer p = allocate_group(settings.num_buckets + 1); - std::uninitialized_copy(group, group + offset, p); - std::uninitialized_copy(group + offset, group + settings.num_buckets, - p + offset + 1); - free_group(); - group = p; - } - - public: - // This returns a reference to the inserted item (which is a copy of val). - // TODO(user): Make this exception safe: handle exceptions from - // value_type's copy constructor. - reference set(size_type i, const_reference val) { - size_type offset = - pos_to_offset(bitmap, i); // where we'll find (or insert) - if ( bmtest(i) ) { - // Delete the old value, which we're replacing with the new one - group[offset].~value_type(); - } else { - typedef base::integral_constant<bool, - (base::has_trivial_copy<value_type>::value && - base::has_trivial_destructor<value_type>::value && - base::is_same< - allocator_type, - libc_allocator_with_realloc<value_type> >::value)> - realloc_and_memmove_ok; // we pretend mv(x,y) == "x.~T(); new(x) T(y)" - set_aux(offset, realloc_and_memmove_ok()); - ++settings.num_buckets; - bmset(i); - } - // This does the actual inserting. Since we made the array using - // malloc, we use "placement new" to just call the constructor. - new(&group[offset]) value_type(val); - return group[offset]; - } - - // We let you see if a bucket is non-empty without retrieving it - bool test(size_type i) const { - return bmtest(i) != 0; - } - bool test(iterator pos) const { - return bmtest(pos.pos) != 0; - } - - private: - // Shrink the array, assuming value_type has trivial copy - // constructor and destructor, and the allocator_type is the default - // libc_allocator_with_alloc. (Really, we want it to have "trivial - // move", because that's what realloc and memmove both do. But - // there's no way to capture that using type_traits, so we pretend - // that move(x, y) is equivalent to ""x.~T(); new(x) T(y);" - // which is pretty much correct, if a bit conservative.) - void erase_aux(size_type offset, base::true_type) { - // This isn't technically necessary, since we know we have a - // trivial destructor, but is a cheap way to get a bit more safety. - group[offset].~value_type(); - // This is equivalent to memmove(), but faster on my Intel P4, - // at lesat with gcc4.1 -O2 / glibc 2.3.6. - assert(settings.num_buckets > 0); - for (size_type i = offset; i < settings.num_buckets-1; ++i) - memcpy(group + i, group + i+1, sizeof(*group)); // hopefully inlined! - group = settings.realloc_or_die(group, settings.num_buckets-1); - } - - // Shrink the array, without any special assumptions about value_type and - // allocator_type. - void erase_aux(size_type offset, base::false_type) { - // This is valid because 0 <= offset < num_buckets. Note the inequality. - pointer p = allocate_group(settings.num_buckets - 1); - std::uninitialized_copy(group, group + offset, p); - std::uninitialized_copy(group + offset + 1, group + settings.num_buckets, - p + offset); - free_group(); - group = p; - } - - public: - // This takes the specified elements out of the group. This is - // "undefining", rather than "clearing". - // TODO(user): Make this exception safe: handle exceptions from - // value_type's copy constructor. - void erase(size_type i) { - if ( bmtest(i) ) { // trivial to erase empty bucket - size_type offset = - pos_to_offset(bitmap, i); // where we'll find (or insert) - if ( settings.num_buckets == 1 ) { - free_group(); - group = NULL; - } else { - typedef base::integral_constant<bool, - (base::has_trivial_copy<value_type>::value && - base::has_trivial_destructor<value_type>::value && - base::is_same< - allocator_type, - libc_allocator_with_realloc<value_type> >::value)> - realloc_and_memmove_ok; // pretend mv(x,y) == "x.~T(); new(x) T(y)" - erase_aux(offset, realloc_and_memmove_ok()); - } - --settings.num_buckets; - bmclear(i); - } - } - - void erase(iterator pos) { - erase(pos.pos); - } - - void erase(iterator start_it, iterator end_it) { - // This could be more efficient, but to do so we'd need to make - // bmclear() clear a range of indices. Doesn't seem worth it. - for ( ; start_it != end_it; ++start_it ) - erase(start_it); - } - - - // I/O - // We support reading and writing groups to disk. We don't store - // the actual array contents (which we don't know how to store), - // just the bitmap and size. Meant to be used with table I/O. - - // Returns true if all was ok. - bool write_metadata(FILE *fp) const { - // we explicitly set to u_int16_t - assert(sizeof(settings.num_buckets) == 2); - PUT_(settings.num_buckets, 8); - PUT_(settings.num_buckets, 0); - if ( !fwrite(bitmap, sizeof(bitmap), 1, fp) ) - return false; - return true; - } - - // Reading destroys the old group contents! Returns true if all was ok. - bool read_metadata(FILE *fp) { - clear(); - - int x; // the GET_ macro requires an 'int x' to be defined - GET_(settings.num_buckets, 8); - GET_(settings.num_buckets, 0); - - if ( !fread(bitmap, sizeof(bitmap), 1, fp) ) return false; - - // We'll allocate the space, but we won't fill it: it will be - // left as uninitialized raw memory. - group = allocate_group(settings.num_buckets); - return true; - } - - // If your keys and values are simple enough, we can write them - // to disk for you. "simple enough" means POD and no pointers. - // However, we don't try to normalize endianness. - bool write_nopointer_data(FILE *fp) const { - for ( const_nonempty_iterator it = nonempty_begin(); - it != nonempty_end(); ++it ) { - if ( !fwrite(&*it, sizeof(*it), 1, fp) ) return false; - } - return true; - } - - // When reading, we have to override the potential const-ness of *it. - // Again, only meaningful if value_type is a POD. - bool read_nopointer_data(FILE *fp) { - for ( nonempty_iterator it = nonempty_begin(); - it != nonempty_end(); ++it ) { - if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) ) - return false; - } - return true; - } - - - // Comparisons. We only need to define == and < -- we get - // != > <= >= via relops.h (which we happily included above). - // Note the comparisons are pretty arbitrary: we compare - // values of the first index that isn't equal (using default - // value for empty buckets). - bool operator==(const sparsegroup& x) const { - return ( settings.num_buckets == x.settings.num_buckets && - memcmp(bitmap, x.bitmap, sizeof(bitmap)) == 0 && - std::equal(begin(), end(), x.begin()) ); // from <algorithm> - } - - bool operator<(const sparsegroup& x) const { // also from <algorithm> - return std::lexicographical_compare(begin(), end(), x.begin(), x.end()); - } - bool operator!=(const sparsegroup& x) const { return !(*this == x); } - bool operator<=(const sparsegroup& x) const { return !(x < *this); } - bool operator>(const sparsegroup& x) const { return x < *this; } - bool operator>=(const sparsegroup& x) const { return !(*this < x); } - - private: - template <class A> - class alloc_impl : public A { - public: - typedef typename A::pointer pointer; - typedef typename A::size_type size_type; - - // Convert a normal allocator to one that has realloc_or_die() - alloc_impl(const A& a) : A(a) {} // TODO(user): explicit? - - // realloc_or_die should only be used when using the default - // allocator (libc_allocator_with_realloc). - pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) { - fprintf(stderr, "realloc_or_die is only supported for " - "libc_allocator_with_realloc\n"); - exit(1); - return NULL; - } - }; - - // A template specialization of alloc_impl for - // libc_allocator_with_realloc that can handle realloc_or_die. - template <class A> - class alloc_impl<libc_allocator_with_realloc<A> > - : public libc_allocator_with_realloc<A> { - public: - typedef typename libc_allocator_with_realloc<A>::pointer pointer; - typedef typename libc_allocator_with_realloc<A>::size_type size_type; - - alloc_impl(const libc_allocator_with_realloc<A>& a) - : libc_allocator_with_realloc<A>(a) { } - - pointer realloc_or_die(pointer ptr, size_type n) { - pointer retval = this->reallocate(ptr, n); - if (retval == NULL) { - fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate " - "%lu elements for ptr %p", static_cast<unsigned long>(n), ptr); - exit(1); - } - return retval; - } - }; - - // Package allocator with num_buckets to eliminate memory needed for the - // zero-size allocator. - // If new fields are added to this class, we should add them to - // operator= and swap. - class Settings : public alloc_impl<value_alloc_type> { - public: - Settings(const alloc_impl<value_alloc_type>& a, u_int16_t n = 0) - : alloc_impl<value_alloc_type>(a), num_buckets(n) { } - Settings(const Settings& s) - : alloc_impl<value_alloc_type>(s), num_buckets(s.num_buckets) { } - - u_int16_t num_buckets; // limits GROUP_SIZE to 64K - }; - - // The actual data - pointer group; // (small) array of T's - Settings settings; // allocator and num_buckets - unsigned char bitmap[(GROUP_SIZE-1)/8 + 1]; // fancy math is so we round up -}; - -// We need a global swap as well -template <class T, u_int16_t GROUP_SIZE, class Alloc> -inline void swap(sparsegroup<T, GROUP_SIZE, Alloc> &x, - sparsegroup<T, GROUP_SIZE, Alloc> &y) { - x.swap(y); -} - -// --------------------------------------------------------------------------- - - -template <class T, u_int16_t GROUP_SIZE = DEFAULT_SPARSEGROUP_SIZE, - class Alloc = libc_allocator_with_realloc<T> > -class sparsetable { - private: - typedef typename Alloc::template rebind<T>::other value_alloc_type; - typedef typename Alloc::template rebind< - sparsegroup<T, GROUP_SIZE, value_alloc_type> >::other vector_alloc; - - public: - // Basic types - typedef T value_type; // stolen from stl_vector.h - typedef Alloc allocator_type; - typedef typename value_alloc_type::size_type size_type; - typedef typename value_alloc_type::difference_type difference_type; - typedef typename value_alloc_type::reference reference; - typedef typename value_alloc_type::const_reference const_reference; - typedef typename value_alloc_type::pointer pointer; - typedef typename value_alloc_type::const_pointer const_pointer; - typedef table_iterator<sparsetable<T, GROUP_SIZE, Alloc> > iterator; - typedef const_table_iterator<sparsetable<T, GROUP_SIZE, Alloc> > - const_iterator; - typedef table_element_adaptor<sparsetable<T, GROUP_SIZE, Alloc> > - element_adaptor; - typedef std::reverse_iterator<const_iterator> const_reverse_iterator; - typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h - - // These are our special iterators, that go over non-empty buckets in a - // table. These aren't const only because you can change non-empty bcks. - typedef two_d_iterator< - std::vector< sparsegroup<value_type, GROUP_SIZE, value_alloc_type>, - vector_alloc> > - nonempty_iterator; - typedef const_two_d_iterator< - std::vector< sparsegroup<value_type, GROUP_SIZE, value_alloc_type>, - vector_alloc> > - const_nonempty_iterator; - typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator; - typedef std::reverse_iterator<const_nonempty_iterator> - const_reverse_nonempty_iterator; - // Another special iterator: it frees memory as it iterates (used to resize) - typedef destructive_two_d_iterator< - std::vector< sparsegroup<value_type, GROUP_SIZE, value_alloc_type >, - vector_alloc> > - destructive_iterator; - - // Iterator functions - iterator begin() { return iterator(this, 0); } - const_iterator begin() const { return const_iterator(this, 0); } - iterator end() { return iterator(this, size()); } - const_iterator end() const { return const_iterator(this, size()); } - reverse_iterator rbegin() { return reverse_iterator(end()); } - const_reverse_iterator rbegin() const { - return const_reverse_iterator(end()); - } - reverse_iterator rend() { return reverse_iterator(begin()); } - const_reverse_iterator rend() const { - return const_reverse_iterator(begin()); - } - - // Versions for our special non-empty iterator - nonempty_iterator nonempty_begin() { - return nonempty_iterator(groups.begin(), groups.end(), groups.begin()); - } - const_nonempty_iterator nonempty_begin() const { - return - const_nonempty_iterator(groups.begin(), groups.end(), groups.begin()); - } - nonempty_iterator nonempty_end() { - return nonempty_iterator(groups.begin(), groups.end(), groups.end()); - } - const_nonempty_iterator nonempty_end() const { - return const_nonempty_iterator(groups.begin(), groups.end(), groups.end()); - } - reverse_nonempty_iterator nonempty_rbegin() { - return reverse_nonempty_iterator(nonempty_end()); - } - const_reverse_nonempty_iterator nonempty_rbegin() const { - return const_reverse_nonempty_iterator(nonempty_end()); - } - reverse_nonempty_iterator nonempty_rend() { - return reverse_nonempty_iterator(nonempty_begin()); - } - const_reverse_nonempty_iterator nonempty_rend() const { - return const_reverse_nonempty_iterator(nonempty_begin()); - } - destructive_iterator destructive_begin() { - return destructive_iterator(groups.begin(), groups.end(), groups.begin()); - } - destructive_iterator destructive_end() { - return destructive_iterator(groups.begin(), groups.end(), groups.end()); - } - - typedef sparsegroup<value_type, GROUP_SIZE, allocator_type> group_type; - typedef std::vector<group_type, vector_alloc > group_vector_type; - - typedef typename group_vector_type::reference GroupsReference; - typedef typename group_vector_type::const_reference GroupsConstReference; - typedef typename group_vector_type::iterator GroupsIterator; - typedef typename group_vector_type::const_iterator GroupsConstIterator; - - // How to deal with the proper group - static size_type num_groups(size_type num) { // how many to hold num buckets - return num == 0 ? 0 : ((num-1) / GROUP_SIZE) + 1; - } - - u_int16_t pos_in_group(size_type i) const { - return static_cast<u_int16_t>(i % GROUP_SIZE); - } - size_type group_num(size_type i) const { - return i / GROUP_SIZE; - } - GroupsReference which_group(size_type i) { - return groups[group_num(i)]; - } - GroupsConstReference which_group(size_type i) const { - return groups[group_num(i)]; - } - - public: - // Constructors -- default, normal (when you specify size), and copy - explicit sparsetable(size_type sz = 0, Alloc alloc = Alloc()) - : groups(vector_alloc(alloc)), settings(alloc, sz) { - groups.resize(num_groups(sz), group_type(settings)); - } - // We can get away with using the default copy constructor, - // and default destructor, and hence the default operator=. Huzzah! - - // Many STL algorithms use swap instead of copy constructors - void swap(sparsetable& x) { - std::swap(groups, x.groups); // defined in stl_algobase.h - std::swap(settings.table_size, x.settings.table_size); - std::swap(settings.num_buckets, x.settings.num_buckets); - } - - // It's always nice to be able to clear a table without deallocating it - void clear() { - GroupsIterator group; - for ( group = groups.begin(); group != groups.end(); ++group ) { - group->clear(); - } - settings.num_buckets = 0; - } - - // ACCESSOR FUNCTIONS for the things we templatize on, basically - allocator_type get_allocator() const { - return allocator_type(settings); - } - - - // Functions that tell you about size. - // NOTE: empty() is non-intuitive! It does not tell you the number - // of not-empty buckets (use num_nonempty() for that). Instead - // it says whether you've allocated any buckets or not. - size_type size() const { return settings.table_size; } - size_type max_size() const { return settings.max_size(); } - bool empty() const { return settings.table_size == 0; } - // We also may want to know how many *used* buckets there are - size_type num_nonempty() const { return settings.num_buckets; } - - // OK, we'll let you resize one of these puppies - void resize(size_type new_size) { - groups.resize(num_groups(new_size), group_type(settings)); - if ( new_size < settings.table_size ) { - // lower num_buckets, clear last group - if ( pos_in_group(new_size) > 0 ) // need to clear inside last group - groups.back().erase(groups.back().begin() + pos_in_group(new_size), - groups.back().end()); - settings.num_buckets = 0; // refigure # of used buckets - GroupsConstIterator group; - for ( group = groups.begin(); group != groups.end(); ++group ) - settings.num_buckets += group->num_nonempty(); - } - settings.table_size = new_size; - } - - - // We let you see if a bucket is non-empty without retrieving it - bool test(size_type i) const { - assert(i < settings.table_size); - return which_group(i).test(pos_in_group(i)); - } - bool test(iterator pos) const { - return which_group(pos.pos).test(pos_in_group(pos.pos)); - } - bool test(const_iterator pos) const { - return which_group(pos.pos).test(pos_in_group(pos.pos)); - } - - // We only return const_references because it's really hard to - // return something settable for empty buckets. Use set() instead. - const_reference get(size_type i) const { - assert(i < settings.table_size); - return which_group(i).get(pos_in_group(i)); - } - - // TODO(user): make protected + friend - // This is used by sparse_hashtable to get an element from the table - // when we know it exists (because the caller has called test(i)). - const_reference unsafe_get(size_type i) const { - assert(i < settings.table_size); - assert(test(i)); - return which_group(i).unsafe_get(pos_in_group(i)); - } - - // TODO(user): make protected + friend element_adaptor - reference mutating_get(size_type i) { // fills bucket i before getting - assert(i < settings.table_size); - size_type old_numbuckets = which_group(i).num_nonempty(); - reference retval = which_group(i).mutating_get(pos_in_group(i)); - settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; - return retval; - } - - // Syntactic sugar. As in sparsegroup, the non-const version is harder - const_reference operator[](size_type i) const { - return get(i); - } - - element_adaptor operator[](size_type i) { - return element_adaptor(this, i); - } - - // Needed for hashtables, gets as a nonempty_iterator. Crashes for empty bcks - const_nonempty_iterator get_iter(size_type i) const { - assert(test(i)); // how can a nonempty_iterator point to an empty bucket? - return const_nonempty_iterator( - groups.begin(), groups.end(), - groups.begin() + group_num(i), - (groups[group_num(i)].nonempty_begin() + - groups[group_num(i)].pos_to_offset(pos_in_group(i)))); - } - // For nonempty we can return a non-const version - nonempty_iterator get_iter(size_type i) { - assert(test(i)); // how can a nonempty_iterator point to an empty bucket? - return nonempty_iterator( - groups.begin(), groups.end(), - groups.begin() + group_num(i), - (groups[group_num(i)].nonempty_begin() + - groups[group_num(i)].pos_to_offset(pos_in_group(i)))); - } - - // And the reverse transformation. - size_type get_pos(const const_nonempty_iterator it) const { - difference_type current_row = it.row_current - it.row_begin; - difference_type current_col = (it.col_current - - groups[current_row].nonempty_begin()); - return ((current_row * GROUP_SIZE) + - groups[current_row].offset_to_pos(current_col)); - } - - - // This returns a reference to the inserted item (which is a copy of val) - // The trick is to figure out whether we're replacing or inserting anew - reference set(size_type i, const_reference val) { - assert(i < settings.table_size); - size_type old_numbuckets = which_group(i).num_nonempty(); - reference retval = which_group(i).set(pos_in_group(i), val); - settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; - return retval; - } - - // This takes the specified elements out of the table. This is - // "undefining", rather than "clearing". - void erase(size_type i) { - assert(i < settings.table_size); - size_type old_numbuckets = which_group(i).num_nonempty(); - which_group(i).erase(pos_in_group(i)); - settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; - } - - void erase(iterator pos) { - erase(pos.pos); - } - - void erase(iterator start_it, iterator end_it) { - // This could be more efficient, but then we'd need to figure - // out if we spanned groups or not. Doesn't seem worth it. - for ( ; start_it != end_it; ++start_it ) - erase(start_it); - } - - - // We support reading and writing tables to disk. We don't store - // the actual array contents (which we don't know how to store), - // just the groups and sizes. Returns true if all went ok. - - private: - // Every time the disk format changes, this should probably change too - typedef unsigned long MagicNumberType; - static const MagicNumberType MAGIC_NUMBER = 0x24687531; - - // Old versions of this code write all data in 32 bits. We need to - // support these files as well as having support for 64-bit systems. - // So we use the following encoding scheme: for values < 2^32-1, we - // store in 4 bytes in big-endian order. For values > 2^32, we - // store 0xFFFFFFF followed by 8 bytes in big-endian order. This - // causes us to mis-read old-version code that stores exactly - // 0xFFFFFFF, but I don't think that is likely to have happened for - // these particular values. - template <typename IntType> - static bool write_32_or_64(FILE* fp, IntType value) { - if ( value < 0xFFFFFFFFULL ) { // fits in 4 bytes - PUT_(value, 24); - PUT_(value, 16); - PUT_(value, 8); - PUT_(value, 0); - } else if ( value == 0xFFFFFFFFUL ) { // special case in 32bit systems - PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); // marker - PUT_(0, 0); PUT_(0, 0); PUT_(0, 0); PUT_(0, 0); - PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); - } else { - PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); // marker - PUT_(value, 56); - PUT_(value, 48); - PUT_(value, 40); - PUT_(value, 32); - PUT_(value, 24); - PUT_(value, 16); - PUT_(value, 8); - PUT_(value, 0); - } - return true; - } - - template <typename IntType> - static bool read_32_or_64(FILE* fp, IntType *value) { // reads into value - size_type first4 = 0; - int x; - GET_(first4, 24); - GET_(first4, 16); - GET_(first4, 8); - GET_(first4, 0); - if ( first4 < 0xFFFFFFFFULL ) { - *value = first4; - } else { - GET_(*value, 56); - GET_(*value, 48); - GET_(*value, 40); - GET_(*value, 32); - GET_(*value, 24); - GET_(*value, 16); - GET_(*value, 8); - GET_(*value, 0); - } - return true; - } - - public: - bool write_metadata(FILE *fp) const { - if ( !write_32_or_64(fp, MAGIC_NUMBER) ) return false; - if ( !write_32_or_64(fp, settings.table_size) ) return false; - if ( !write_32_or_64(fp, settings.num_buckets) ) return false; - - GroupsConstIterator group; - for ( group = groups.begin(); group != groups.end(); ++group ) - if ( group->write_metadata(fp) == false ) return false; - return true; - } - - // Reading destroys the old table contents! Returns true if read ok. - bool read_metadata(FILE *fp) { - size_type magic_read = 0; - if ( !read_32_or_64(fp, &magic_read) ) return false; - if ( magic_read != MAGIC_NUMBER ) { - clear(); // just to be consistent - return false; - } - - if ( !read_32_or_64(fp, &settings.table_size) ) return false; - if ( !read_32_or_64(fp, &settings.num_buckets) ) return false; - - resize(settings.table_size); // so the vector's sized ok - GroupsIterator group; - for ( group = groups.begin(); group != groups.end(); ++group ) - if ( group->read_metadata(fp) == false ) return false; - return true; - } - - // This code is identical to that for SparseGroup - // If your keys and values are simple enough, we can write them - // to disk for you. "simple enough" means no pointers. - // However, we don't try to normalize endianness - bool write_nopointer_data(FILE *fp) const { - for ( const_nonempty_iterator it = nonempty_begin(); - it != nonempty_end(); ++it ) { - if ( !fwrite(&*it, sizeof(*it), 1, fp) ) return false; - } - return true; - } - - // When reading, we have to override the potential const-ness of *it - bool read_nopointer_data(FILE *fp) { - for ( nonempty_iterator it = nonempty_begin(); - it != nonempty_end(); ++it ) { - if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) ) - return false; - } - return true; - } - - - // Comparisons. Note the comparisons are pretty arbitrary: we - // compare values of the first index that isn't equal (using default - // value for empty buckets). - bool operator==(const sparsetable& x) const { - return settings.table_size == x.settings.table_size && - settings.num_buckets == x.settings.num_buckets && - groups == x.groups; - } - - bool operator<(const sparsetable& x) const { - return std::lexicographical_compare(begin(), end(), x.begin(), x.end()); - } - bool operator!=(const sparsetable& x) const { return !(*this == x); } - bool operator<=(const sparsetable& x) const { return !(x < *this); } - bool operator>(const sparsetable& x) const { return x < *this; } - bool operator>=(const sparsetable& x) const { return !(*this < x); } - - - private: - // Package allocator with table_size and num_buckets to eliminate memory - // needed for the zero-size allocator. - // If new fields are added to this class, we should add them to - // operator= and swap. - class Settings : public allocator_type { - public: - typedef typename allocator_type::size_type size_type; - - Settings(const allocator_type& a, size_type sz = 0, size_type n = 0) - : allocator_type(a), table_size(sz), num_buckets(n) { } - - Settings(const Settings& s) - : allocator_type(s), - table_size(s.table_size), num_buckets(s.num_buckets) { } - - size_type table_size; // how many buckets they want - size_type num_buckets; // number of non-empty buckets - }; - - // The actual data - group_vector_type groups; // our list of groups - Settings settings; // allocator, table size, buckets -}; - -// We need a global swap as well -template <class T, u_int16_t GROUP_SIZE, class Alloc> -inline void swap(sparsetable<T, GROUP_SIZE, Alloc> &x, - sparsetable<T, GROUP_SIZE, Alloc> &y) { - x.swap(y); -} - -#undef GET_ -#undef PUT_ - -} - -#endif // UTIL_GTL_SPARSETABLE_H_
http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock.cc ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock.cc b/be/src/gutil/spinlock.cc index a5ca7c6..8a02c95 100644 --- a/be/src/gutil/spinlock.cc +++ b/be/src/gutil/spinlock.cc @@ -32,11 +32,11 @@ * Author: Sanjay Ghemawat */ -#include "gutil/spinlock.h" -#include "gutil/synchronization_profiling.h" -#include "gutil/spinlock_internal.h" -#include "gutil/walltime.h" -#include "gutil/sysinfo.h" /* for NumCPUs() */ +#include "kudu/gutil/spinlock.h" +#include "kudu/gutil/synchronization_profiling.h" +#include "kudu/gutil/spinlock_internal.h" +#include "kudu/gutil/walltime.h" +#include "kudu/gutil/sysinfo.h" /* for NumCPUs() */ namespace base { http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock.h ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock.h b/be/src/gutil/spinlock.h index 3cf7d3e..fcd6287 100644 --- a/be/src/gutil/spinlock.h +++ b/be/src/gutil/spinlock.h @@ -39,10 +39,10 @@ #ifndef BASE_SPINLOCK_H_ #define BASE_SPINLOCK_H_ -#include "gutil/atomicops.h" -#include "gutil/basictypes.h" -#include "gutil/dynamic_annotations.h" -#include "gutil/thread_annotations.h" +#include "kudu/gutil/atomicops.h" +#include "kudu/gutil/basictypes.h" +#include "kudu/gutil/dynamic_annotations.h" +#include "kudu/gutil/thread_annotations.h" // This isn't originally in the base:: namespace in tcmalloc, // but tcmalloc inadvertently exports these symbols. So, if we http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock_internal.cc ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock_internal.cc b/be/src/gutil/spinlock_internal.cc index 0850cf1..151b0dd 100644 --- a/be/src/gutil/spinlock_internal.cc +++ b/be/src/gutil/spinlock_internal.cc @@ -41,17 +41,17 @@ // In all cases, it must return in bounded time even if SpinlockWake() is not // called. -#include "gutil/spinlock_internal.h" +#include "kudu/gutil/spinlock_internal.h" // forward declaration for use by spinlock_*-inl.h namespace base { namespace internal { static int SuggestedDelayNS(int loop); }} #if defined(_WIN32) -#include "gutil/spinlock_win32-inl.h" +#include "kudu/gutil/spinlock_win32-inl.h" #elif defined(__linux__) -#include "gutil/spinlock_linux-inl.h" +#include "kudu/gutil/spinlock_linux-inl.h" #else -#include "gutil/spinlock_posix-inl.h" +#include "kudu/gutil/spinlock_posix-inl.h" #endif namespace base { http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock_internal.h ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock_internal.h b/be/src/gutil/spinlock_internal.h index a7f5150..c235893 100644 --- a/be/src/gutil/spinlock_internal.h +++ b/be/src/gutil/spinlock_internal.h @@ -36,8 +36,8 @@ #ifndef BASE_SPINLOCK_INTERNAL_H_ #define BASE_SPINLOCK_INTERNAL_H_ -#include "gutil/basictypes.h" -#include "gutil/atomicops.h" +#include "kudu/gutil/basictypes.h" +#include "kudu/gutil/atomicops.h" namespace base { namespace internal { http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock_linux-inl.h ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock_linux-inl.h b/be/src/gutil/spinlock_linux-inl.h index c9838e4..41ef03a 100644 --- a/be/src/gutil/spinlock_linux-inl.h +++ b/be/src/gutil/spinlock_linux-inl.h @@ -36,7 +36,7 @@ #include <sched.h> #include <time.h> #include <limits.h> -#include "gutil/linux_syscall_support.h" +#include "kudu/gutil/linux_syscall_support.h" #define FUTEX_WAIT 0 #define FUTEX_WAKE 1 http://git-wip-us.apache.org/repos/asf/incubator-impala/blob/02f3e3fc/be/src/gutil/spinlock_win32-inl.h ---------------------------------------------------------------------- diff --git a/be/src/gutil/spinlock_win32-inl.h b/be/src/gutil/spinlock_win32-inl.h index ed636b4..956b965 100644 --- a/be/src/gutil/spinlock_win32-inl.h +++ b/be/src/gutil/spinlock_win32-inl.h @@ -1,37 +1,54 @@ -// Copyright 2009 Google, Inc. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// -// All rights reserved. +// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- +/* Copyright (c) 2009, Google Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following disclaimer + * in the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Google Inc. nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * --- + * This file is a Win32-specific part of spinlock_internal.cc + */ -// This file is a Win32-specific part of spinlock_wait.cc #include <windows.h> namespace base { -namespace subtle { +namespace internal { void SpinLockDelay(volatile Atomic32 *w, int32 value, int loop) { if (loop == 0) { } else if (loop == 1) { Sleep(0); } else { - Sleep(base::subtle::SuggestedDelayNS(loop) / 1000000); + Sleep(base::internal::SuggestedDelayNS(loop) / 1000000); } } void SpinLockWake(volatile Atomic32 *w, bool all) { } -} // namespace subtle +} // namespace internal } // namespace base
