http://git-wip-us.apache.org/repos/asf/mahout/blob/99a5358f/math/src/main/java/org/apache/mahout/math/SingularValueDecomposition.java
----------------------------------------------------------------------
diff --git 
a/math/src/main/java/org/apache/mahout/math/SingularValueDecomposition.java 
b/math/src/main/java/org/apache/mahout/math/SingularValueDecomposition.java
deleted file mode 100644
index 2abff10..0000000
--- a/math/src/main/java/org/apache/mahout/math/SingularValueDecomposition.java
+++ /dev/null
@@ -1,669 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * Copyright 1999 CERN - European Organization for Nuclear Research.
- * Permission to use, copy, modify, distribute and sell this software and its 
documentation for any purpose
- * is hereby granted without fee, provided that the above copyright notice 
appear in all copies and
- * that both that copyright notice and this permission notice appear in 
supporting documentation.
- * CERN makes no representations about the suitability of this software for 
any purpose.
- * It is provided "as is" without expressed or implied warranty.
- */
-package org.apache.mahout.math;
-
-public class SingularValueDecomposition implements java.io.Serializable {
-  
-  /** Arrays for internal storage of U and V. */
-  private final double[][] u;
-  private final double[][] v;
-  
-  /** Array for internal storage of singular values. */
-  private final double[] s;
-  
-  /** Row and column dimensions. */
-  private final int m;
-  private final int n;
-  
-  /**To handle the case where numRows() < numCols() and to use the fact that 
SVD(A')=VSU'=> SVD(A')'=SVD(A)**/
-  private boolean transpositionNeeded;
-  
-  /**
-   * Constructs and returns a new singular value decomposition object; The
-   * decomposed matrices can be retrieved via instance methods of the returned
-   * decomposition object.
-   * 
-   * @param arg
-   *            A rectangular matrix.
-   */
-  public SingularValueDecomposition(Matrix arg) {
-    if (arg.numRows() < arg.numCols()) {
-      transpositionNeeded = true;
-    }
-    
-    // Derived from LINPACK code.
-    // Initialize.
-    double[][] a;
-    if (transpositionNeeded) {
-      //use the transpose Matrix
-      m = arg.numCols();
-      n = arg.numRows();
-      a = new double[m][n];
-      for (int i = 0; i < m; i++) {
-        for (int j = 0; j < n; j++) {
-          a[i][j] = arg.get(j, i);
-        }
-      }
-    } else {
-      m = arg.numRows();
-      n = arg.numCols();
-      a = new double[m][n];
-      for (int i = 0; i < m; i++) {
-        for (int j = 0; j < n; j++) {
-          a[i][j] = arg.get(i, j);
-        }
-      }
-    }
-    
-    
-    int nu = Math.min(m, n);
-    s = new double[Math.min(m + 1, n)];
-    u = new double[m][nu];
-    v = new double[n][n];
-    double[] e = new double[n];
-    double[] work = new double[m];
-    boolean wantu = true;
-    boolean wantv = true;
-    
-    // Reduce A to bidiagonal form, storing the diagonal elements
-    // in s and the super-diagonal elements in e.
-    
-    int nct = Math.min(m - 1, n);
-    int nrt = Math.max(0, Math.min(n - 2, m));
-    for (int k = 0; k < Math.max(nct, nrt); k++) {
-      if (k < nct) {
-        
-        // Compute the transformation for the k-th column and
-        // place the k-th diagonal in s[k].
-        // Compute 2-norm of k-th column without under/overflow.
-        s[k] = 0;
-        for (int i = k; i < m; i++) {
-          s[k] = Algebra.hypot(s[k], a[i][k]);
-        }
-        if (s[k] != 0.0) {
-          if (a[k][k] < 0.0) {
-            s[k] = -s[k];
-          }
-          for (int i = k; i < m; i++) {
-            a[i][k] /= s[k];
-          }
-          a[k][k] += 1.0;
-        }
-        s[k] = -s[k];
-      }
-      for (int j = k + 1; j < n; j++) {
-        if (k < nct && s[k] != 0.0) {
-          
-          // Apply the transformation.
-          
-          double t = 0;
-          for (int i = k; i < m; i++) {
-            t += a[i][k] * a[i][j];
-          }
-          t = -t / a[k][k];
-          for (int i = k; i < m; i++) {
-            a[i][j] += t * a[i][k];
-          }
-        }
-        
-        // Place the k-th row of A into e for the
-        // subsequent calculation of the row transformation.
-        
-        e[j] = a[k][j];
-      }
-      if (wantu && k < nct) {
-        
-        // Place the transformation in U for subsequent back
-        // multiplication.
-        
-        for (int i = k; i < m; i++) {
-          u[i][k] = a[i][k];
-        }
-      }
-      if (k < nrt) {
-        
-        // Compute the k-th row transformation and place the
-        // k-th super-diagonal in e[k].
-        // Compute 2-norm without under/overflow.
-        e[k] = 0;
-        for (int i = k + 1; i < n; i++) {
-          e[k] = Algebra.hypot(e[k], e[i]);
-        }
-        if (e[k] != 0.0) {
-          if (e[k + 1] < 0.0) {
-            e[k] = -e[k];
-          }
-          for (int i = k + 1; i < n; i++) {
-            e[i] /= e[k];
-          }
-          e[k + 1] += 1.0;
-        }
-        e[k] = -e[k];
-        if (k + 1 < m && e[k] != 0.0) {
-          
-          // Apply the transformation.
-          
-          for (int i = k + 1; i < m; i++) {
-            work[i] = 0.0;
-          }
-          for (int j = k + 1; j < n; j++) {
-            for (int i = k + 1; i < m; i++) {
-              work[i] += e[j] * a[i][j];
-            }
-          }
-          for (int j = k + 1; j < n; j++) {
-            double t = -e[j] / e[k + 1];
-            for (int i = k + 1; i < m; i++) {
-              a[i][j] += t * work[i];
-            }
-          }
-        }
-        if (wantv) {
-          
-          // Place the transformation in V for subsequent
-          // back multiplication.
-          
-          for (int i = k + 1; i < n; i++) {
-            v[i][k] = e[i];
-          }
-        }
-      }
-    }
-    
-    // Set up the final bidiagonal matrix or order p.
-    
-    int p = Math.min(n, m + 1);
-    if (nct < n) {
-      s[nct] = a[nct][nct];
-    }
-    if (m < p) {
-      s[p - 1] = 0.0;
-    }
-    if (nrt + 1 < p) {
-      e[nrt] = a[nrt][p - 1];
-    }
-    e[p - 1] = 0.0;
-    
-    // If required, generate U.
-    
-    if (wantu) {
-      for (int j = nct; j < nu; j++) {
-        for (int i = 0; i < m; i++) {
-          u[i][j] = 0.0;
-        }
-        u[j][j] = 1.0;
-      }
-      for (int k = nct - 1; k >= 0; k--) {
-        if (s[k] != 0.0) {
-          for (int j = k + 1; j < nu; j++) {
-            double t = 0;
-            for (int i = k; i < m; i++) {
-              t += u[i][k] * u[i][j];
-            }
-            t = -t / u[k][k];
-            for (int i = k; i < m; i++) {
-              u[i][j] += t * u[i][k];
-            }
-          }
-          for (int i = k; i < m; i++) {
-            u[i][k] = -u[i][k];
-          }
-          u[k][k] = 1.0 + u[k][k];
-          for (int i = 0; i < k - 1; i++) {
-            u[i][k] = 0.0;
-          }
-        } else {
-          for (int i = 0; i < m; i++) {
-            u[i][k] = 0.0;
-          }
-          u[k][k] = 1.0;
-        }
-      }
-    }
-    
-    // If required, generate V.
-    
-    if (wantv) {
-      for (int k = n - 1; k >= 0; k--) {
-        if (k < nrt && e[k] != 0.0) {
-          for (int j = k + 1; j < nu; j++) {
-            double t = 0;
-            for (int i = k + 1; i < n; i++) {
-              t += v[i][k] * v[i][j];
-            }
-            t = -t / v[k + 1][k];
-            for (int i = k + 1; i < n; i++) {
-              v[i][j] += t * v[i][k];
-            }
-          }
-        }
-        for (int i = 0; i < n; i++) {
-          v[i][k] = 0.0;
-        }
-        v[k][k] = 1.0;
-      }
-    }
-    
-    // Main iteration loop for the singular values.
-    
-    int pp = p - 1;
-    int iter = 0;
-    double eps = Math.pow(2.0, -52.0);
-    double tiny = Math.pow(2.0,-966.0);
-    while (p > 0) {
-      int k;
-      
-      // Here is where a test for too many iterations would go.
-      
-      // This section of the program inspects for
-      // negligible elements in the s and e arrays.  On
-      // completion the variables kase and k are set as follows.
-      
-      // kase = 1     if s(p) and e[k-1] are negligible and k<p
-      // kase = 2     if s(k) is negligible and k<p
-      // kase = 3     if e[k-1] is negligible, k<p, and
-      //              s(k), ..., s(p) are not negligible (qr step).
-      // kase = 4     if e(p-1) is negligible (convergence).
-      
-      for (k = p - 2; k >= -1; k--) {
-        if (k == -1) {
-          break;
-        }
-        if (Math.abs(e[k]) <= tiny +eps * (Math.abs(s[k]) + Math.abs(s[k + 
1]))) {
-          e[k] = 0.0;
-          break;
-        }
-      }
-      int kase;
-      if (k == p - 2) {
-        kase = 4;
-      } else {
-        int ks;
-        for (ks = p - 1; ks >= k; ks--) {
-          if (ks == k) {
-            break;
-          }
-          double t =
-            (ks != p ?  Math.abs(e[ks]) : 0.) +
-            (ks != k + 1 ?  Math.abs(e[ks-1]) : 0.);
-          if (Math.abs(s[ks]) <= tiny + eps * t) {
-            s[ks] = 0.0;
-            break;
-          }
-        }
-        if (ks == k) {
-          kase = 3;
-        } else if (ks == p - 1) {
-          kase = 1;
-        } else {
-          kase = 2;
-          k = ks;
-        }
-      }
-      k++;
-      
-      // Perform the task indicated by kase.
-      
-      switch (kase) {
-        
-        // Deflate negligible s(p).
-        
-        case 1: {
-          double f = e[p - 2];
-          e[p - 2] = 0.0;
-          for (int j = p - 2; j >= k; j--) {
-            double t = Algebra.hypot(s[j], f);
-            double cs = s[j] / t;
-            double sn = f / t;
-            s[j] = t;
-            if (j != k) {
-              f = -sn * e[j - 1];
-              e[j - 1] = cs * e[j - 1];
-            }
-            if (wantv) {
-              for (int i = 0; i < n; i++) {
-                t = cs * v[i][j] + sn * v[i][p - 1];
-                v[i][p - 1] = -sn * v[i][j] + cs * v[i][p - 1];
-                v[i][j] = t;
-              }
-            }
-          }
-        }
-          break;
-        
-        // Split at negligible s(k).
-        
-        case 2: {
-          double f = e[k - 1];
-          e[k - 1] = 0.0;
-          for (int j = k; j < p; j++) {
-            double t = Algebra.hypot(s[j], f);
-            double cs = s[j] / t;
-            double sn = f / t;
-            s[j] = t;
-            f = -sn * e[j];
-            e[j] = cs * e[j];
-            if (wantu) {
-              for (int i = 0; i < m; i++) {
-                t = cs * u[i][j] + sn * u[i][k - 1];
-                u[i][k - 1] = -sn * u[i][j] + cs * u[i][k - 1];
-                u[i][j] = t;
-              }
-            }
-          }
-        }
-          break;
-        
-        // Perform one qr step.
-        
-        case 3: {
-          
-          // Calculate the shift.
-          
-          double scale = Math.max(Math.max(Math.max(Math.max(
-              Math.abs(s[p - 1]), Math.abs(s[p - 2])), Math.abs(e[p - 2])),
-              Math.abs(s[k])), Math.abs(e[k]));
-          double sp = s[p - 1] / scale;
-          double spm1 = s[p - 2] / scale;
-          double epm1 = e[p - 2] / scale;
-          double sk = s[k] / scale;
-          double ek = e[k] / scale;
-          double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
-          double c = sp * epm1 * sp * epm1;
-          double shift = 0.0;
-          if (b != 0.0 || c != 0.0) {
-            shift = Math.sqrt(b * b + c);
-            if (b < 0.0) {
-              shift = -shift;
-            }
-            shift = c / (b + shift);
-          }
-          double f = (sk + sp) * (sk - sp) + shift;
-          double g = sk * ek;
-          
-          // Chase zeros.
-          
-          for (int j = k; j < p - 1; j++) {
-            double t = Algebra.hypot(f, g);
-            double cs = f / t;
-            double sn = g / t;
-            if (j != k) {
-              e[j - 1] = t;
-            }
-            f = cs * s[j] + sn * e[j];
-            e[j] = cs * e[j] - sn * s[j];
-            g = sn * s[j + 1];
-            s[j + 1] = cs * s[j + 1];
-            if (wantv) {
-              for (int i = 0; i < n; i++) {
-                t = cs * v[i][j] + sn * v[i][j + 1];
-                v[i][j + 1] = -sn * v[i][j] + cs * v[i][j + 1];
-                v[i][j] = t;
-              }
-            }
-            t = Algebra.hypot(f, g);
-            cs = f / t;
-            sn = g / t;
-            s[j] = t;
-            f = cs * e[j] + sn * s[j + 1];
-            s[j + 1] = -sn * e[j] + cs * s[j + 1];
-            g = sn * e[j + 1];
-            e[j + 1] = cs * e[j + 1];
-            if (wantu && j < m - 1) {
-              for (int i = 0; i < m; i++) {
-                t = cs * u[i][j] + sn * u[i][j + 1];
-                u[i][j + 1] = -sn * u[i][j] + cs * u[i][j + 1];
-                u[i][j] = t;
-              }
-            }
-          }
-          e[p - 2] = f;
-          iter = iter + 1;
-        }
-          break;
-        
-        // Convergence.
-        
-        case 4: {
-          
-          // Make the singular values positive.
-          
-          if (s[k] <= 0.0) {
-            s[k] = s[k] < 0.0 ? -s[k] : 0.0;
-            if (wantv) {
-              for (int i = 0; i <= pp; i++) {
-                v[i][k] = -v[i][k];
-              }
-            }
-          }
-          
-          // Order the singular values.
-          
-          while (k < pp) {
-            if (s[k] >= s[k + 1]) {
-              break;
-            }
-            double t = s[k];
-            s[k] = s[k + 1];
-            s[k + 1] = t;
-            if (wantv && k < n - 1) {
-              for (int i = 0; i < n; i++) {
-                t = v[i][k + 1];
-                v[i][k + 1] = v[i][k];
-                v[i][k] = t;
-              }
-            }
-            if (wantu && k < m - 1) {
-              for (int i = 0; i < m; i++) {
-                t = u[i][k + 1];
-                u[i][k + 1] = u[i][k];
-                u[i][k] = t;
-              }
-            }
-            k++;
-          }
-          iter = 0;
-          p--;
-        }
-          break;
-        default:
-          throw new IllegalStateException();
-      }
-    }
-  }
-  
-  /**
-   * Returns the two norm condition number, which is <tt>max(S) / min(S)</tt>.
-   */
-  public double cond() {
-    return s[0] / s[Math.min(m, n) - 1];
-  }
-  
-  /**
-   * @return the diagonal matrix of singular values.
-   */
-  public Matrix getS() {
-    double[][] s = new double[n][n];
-    for (int i = 0; i < n; i++) {
-      for (int j = 0; j < n; j++) {
-        s[i][j] = 0.0;
-      }
-      s[i][i] = this.s[i];
-    }
-    
-    return new DenseMatrix(s);
-  }
-  
-  /**
-   * Returns the diagonal of <tt>S</tt>, which is a one-dimensional array of
-   * singular values
-   * 
-   * @return diagonal of <tt>S</tt>.
-   */
-  public double[] getSingularValues() {
-    return s;
-  }
-  
-  /**
-   * Returns the left singular vectors <tt>U</tt>.
-   * 
-   * @return <tt>U</tt>
-   */
-  public Matrix getU() {
-    if (transpositionNeeded) { //case numRows() < numCols()
-      return new DenseMatrix(v);
-    } else {
-      int numCols = Math.min(m + 1, n);
-      Matrix r = new DenseMatrix(m, numCols);
-      for (int i = 0; i < m; i++) {
-        for (int j = 0; j < numCols; j++) {
-          r.set(i, j, u[i][j]);
-        }
-      }
-
-      return r;
-    }
-  }
-  
-  /**
-   * Returns the right singular vectors <tt>V</tt>.
-   * 
-   * @return <tt>V</tt>
-   */
-  public Matrix getV() {
-    if (transpositionNeeded) { //case numRows() < numCols()
-      int numCols = Math.min(m + 1, n);
-      Matrix r = new DenseMatrix(m, numCols);
-      for (int i = 0; i < m; i++) {
-        for (int j = 0; j < numCols; j++) {
-          r.set(i, j, u[i][j]);
-        }
-      }
-
-      return r;
-    } else {
-      return new DenseMatrix(v);
-    }
-  }
-  
-  /** Returns the two norm, which is <tt>max(S)</tt>. */
-  public double norm2() {
-    return s[0];
-  }
-  
-  /**
-   * Returns the effective numerical matrix rank, which is the number of
-   * nonnegligible singular values.
-   */
-  public int rank() {
-    double eps = Math.pow(2.0, -52.0);
-    double tol = Math.max(m, n) * s[0] * eps;
-    int r = 0;
-    for (double value : s) {
-      if (value > tol) {
-        r++;
-      }
-    }
-    return r;
-  }
-  
-  /**
-   * @param minSingularValue
-   * minSingularValue - value below which singular values are ignored (a 0 or 
negative
-   * value implies all singular value will be used)
-   * @return Returns the n × n covariance matrix.
-   * The covariance matrix is V × J × Vt where J is the diagonal matrix of 
the inverse
-   *  of the squares of the singular values.
-   */
-  Matrix getCovariance(double minSingularValue) {
-    Matrix j = new DenseMatrix(s.length,s.length);
-    Matrix vMat = new DenseMatrix(this.v);
-    for (int i = 0; i < s.length; i++) {
-      j.set(i, i, s[i] >= minSingularValue ? 1 / (s[i] * s[i]) : 0.0);
-    }
-    return vMat.times(j).times(vMat.transpose());
-  }
-  
-  /**
-   * Returns a String with (propertyName, propertyValue) pairs. Useful for
-   * debugging or to quickly get the rough picture. For example,
-   * 
-   * <pre>
-   * rank          : 3
-   * trace         : 0
-   * </pre>
-   */
-  @Override
-  public String toString() {
-    StringBuilder buf = new StringBuilder();
-    
buf.append("---------------------------------------------------------------------\n");
-    buf.append("SingularValueDecomposition(A) --> cond(A), rank(A), norm2(A), 
U, S, V\n");
-    
buf.append("---------------------------------------------------------------------\n");
-    
-    buf.append("cond = ");
-    String unknown = "Illegal operation or error: ";
-    try {
-      buf.append(String.valueOf(this.cond()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    buf.append("\nrank = ");
-    try {
-      buf.append(String.valueOf(this.rank()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    buf.append("\nnorm2 = ");
-    try {
-      buf.append(String.valueOf(this.norm2()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    buf.append("\n\nU = ");
-    try {
-      buf.append(String.valueOf(this.getU()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    buf.append("\n\nS = ");
-    try {
-      buf.append(String.valueOf(this.getS()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    buf.append("\n\nV = ");
-    try {
-      buf.append(String.valueOf(this.getV()));
-    } catch (IllegalArgumentException exc) {
-      buf.append(unknown).append(exc.getMessage());
-    }
-    
-    return buf.toString();
-  }
-}

Reply via email to