http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/classifier/naivebayes/NBTestBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/classifier/naivebayes/NBTestBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/classifier/naivebayes/NBTestBase.scala
deleted file mode 100644
index c8f8a90..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/classifier/naivebayes/NBTestBase.scala
+++ /dev/null
@@ -1,291 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.classifier.naivebayes
-
-import org.apache.mahout.math._
-import org.apache.mahout.math.scalabindings._
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.apache.mahout.test.MahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-import collection._
-import JavaConversions._
-import collection.JavaConversions
-
-trait NBTestBase extends DistributedMahoutSuite with Matchers { this:FunSuite 
=>
-
-  val epsilon = 1E-6
-
-  test("Simple Standard NB Model") {
-
-    // test from simulated sparse TF-IDF data
-    val inCoreTFIDF = sparse(
-      (0, 0.7) ::(1, 0.1) ::(2, 0.1) ::(3, 0.3) :: Nil,
-      (0, 0.4) ::(1, 0.4) ::(2, 0.1) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.0) ::(2, 0.8) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.1) ::(2, 0.1) ::(3, 0.7) :: Nil
-    )
-
-    val TFIDFDrm = drm.drmParallelize(m = inCoreTFIDF, numPartitions = 2)
-
-    val labelIndex = new java.util.HashMap[String,Integer]()
-    labelIndex.put("Cat1", 3)
-    labelIndex.put("Cat2", 2)
-    labelIndex.put("Cat3", 1)
-    labelIndex.put("Cat4", 0)
-
-    // train a Standard NB Model
-    val model = NaiveBayes.train(TFIDFDrm, labelIndex, false)
-
-    // validate the model- will throw an exception if model is invalid
-    model.validate()
-
-    // check the labelWeights
-    model.labelWeight(0) - 1.2 should be < epsilon
-    model.labelWeight(1) - 1.0 should be < epsilon
-    model.labelWeight(2) - 1.0 should be < epsilon
-    model.labelWeight(3) - 1.0 should be < epsilon
-
-    // check the Feature weights
-    model.featureWeight(0) - 1.3 should be < epsilon
-    model.featureWeight(1) - 0.6 should be < epsilon
-    model.featureWeight(2) - 1.1 should be < epsilon
-    model.featureWeight(3) - 1.2 should be < epsilon
-  }
-
-  test("NB Aggregator") {
-
-    val rowBindings = new java.util.HashMap[String,Integer]()
-    rowBindings.put("/Cat1/doc_a/", 0)
-    rowBindings.put("/Cat2/doc_b/", 1)
-    rowBindings.put("/Cat1/doc_c/", 2)
-    rowBindings.put("/Cat2/doc_d/", 3)
-    rowBindings.put("/Cat1/doc_e/", 4)
-
-
-    val matrixSetup = sparse(
-      (0, 0.1) ::(1, 0.0) ::(2, 0.1) ::(3, 0.0) :: Nil,
-      (0, 0.0) ::(1, 0.1) ::(2, 0.0) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.0) ::(2, 0.1) ::(3, 0.0) :: Nil,
-      (0, 0.0) ::(1, 0.1) ::(2, 0.0) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.0) ::(2, 0.1) ::(3, 0.0) :: Nil
-    )
-
-
-    matrixSetup.setRowLabelBindings(rowBindings)
-
-    val TFIDFDrm = drm.drmParallelizeWithRowLabels(m = matrixSetup, 
numPartitions = 2)
-
-    val (labelIndex, aggregatedTFIDFDrm) = 
NaiveBayes.extractLabelsAndAggregateObservations(TFIDFDrm)
-
-    labelIndex.size should be (2)
-
-    val cat1=labelIndex("Cat1")
-    val cat2=labelIndex("Cat2")
-
-    cat1 should be (0)
-    cat2 should be (1)
-
-    val aggregatedTFIDFInCore = aggregatedTFIDFDrm.collect
-    aggregatedTFIDFInCore.numCols should be (4)
-    aggregatedTFIDFInCore.numRows should be (2)
-
-    aggregatedTFIDFInCore.get(cat1, 0) - 0.3 should be < epsilon
-    aggregatedTFIDFInCore.get(cat1, 1) - 0.0 should be < epsilon
-    aggregatedTFIDFInCore.get(cat1, 2) - 0.3 should be < epsilon
-    aggregatedTFIDFInCore.get(cat1, 3) - 0.0 should be < epsilon
-    aggregatedTFIDFInCore.get(cat2, 0) - 0.0 should be < epsilon
-    aggregatedTFIDFInCore.get(cat2, 1) - 0.2 should be < epsilon
-    aggregatedTFIDFInCore.get(cat2, 2) - 0.0 should be < epsilon
-    aggregatedTFIDFInCore.get(cat2, 3) - 0.2 should be < epsilon
-
-  }
-
-  test("Model DFS Serialization") {
-
-    // test from simulated sparse TF-IDF data
-    val inCoreTFIDF = sparse(
-      (0, 0.7) ::(1, 0.1) ::(2, 0.1) ::(3, 0.3) :: Nil,
-      (0, 0.4) ::(1, 0.4) ::(2, 0.1) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.0) ::(2, 0.8) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.1) ::(2, 0.1) ::(3, 0.7) :: Nil
-    )
-
-    val labelIndex = new java.util.HashMap[String,Integer]()
-    labelIndex.put("Cat1", 0)
-    labelIndex.put("Cat2", 1)
-    labelIndex.put("Cat3", 2)
-    labelIndex.put("Cat4", 3)
-
-    val TFIDFDrm = drm.drmParallelize(m = inCoreTFIDF, numPartitions = 2)
-
-    // train a Standard NB Model- no label index here
-    val model = NaiveBayes.train(TFIDFDrm, labelIndex, false)
-
-    // validate the model- will throw an exception if model is invalid
-    model.validate()
-
-    // save the model
-    model.dfsWrite(TmpDir)
-
-    // reload a new model which should be equal to the original
-    // this will automatically trigger a validate() call
-    val materializedModel= NBModel.dfsRead(TmpDir)
-
-
-    // check the labelWeights
-    model.labelWeight(0) - materializedModel.labelWeight(0) should be < 
epsilon //1.2
-    model.labelWeight(1) - materializedModel.labelWeight(1) should be < 
epsilon //1.0
-    model.labelWeight(2) - materializedModel.labelWeight(2) should be < 
epsilon //1.0
-    model.labelWeight(3) - materializedModel.labelWeight(3) should be < 
epsilon //1.0
-
-    // check the Feature weights
-    model.featureWeight(0) - materializedModel.featureWeight(0) should be < 
epsilon //1.3
-    model.featureWeight(1) - materializedModel.featureWeight(1) should be < 
epsilon //0.6
-    model.featureWeight(2) - materializedModel.featureWeight(2) should be < 
epsilon //1.1
-    model.featureWeight(3) - materializedModel.featureWeight(3) should be < 
epsilon //1.2
-
-    // check to se if the new model is complementary
-    materializedModel.isComplementary should be (model.isComplementary)
-
-    // check the label indexMaps
-    for(elem <- model.labelIndex){
-      model.labelIndex(elem._1) == materializedModel.labelIndex(elem._1) 
should be (true)
-    }
-  }
-
-  test("train and test a model") {
-
-    // test from simulated sparse TF-IDF data
-    val inCoreTFIDF = sparse(
-      (0, 0.7) ::(1, 0.1) ::(2, 0.1) ::(3, 0.3) :: Nil,
-      (0, 0.4) ::(1, 0.4) ::(2, 0.1) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.0) ::(2, 0.8) ::(3, 0.1) :: Nil,
-      (0, 0.1) ::(1, 0.1) ::(2, 0.1) ::(3, 0.7) :: Nil
-    )
-
-    val labelIndex = new java.util.HashMap[String,Integer]()
-    labelIndex.put("/Cat1/", 0)
-    labelIndex.put("/Cat2/", 1)
-    labelIndex.put("/Cat3/", 2)
-    labelIndex.put("/Cat4/", 3)
-
-    val TFIDFDrm = drm.drmParallelize(m = inCoreTFIDF, numPartitions = 2)
-
-    // train a Standard NB Model- no label index here
-    val model = NaiveBayes.train(TFIDFDrm, labelIndex, false)
-
-    // validate the model- will throw an exception if model is invalid
-    model.validate()
-
-    // save the model
-    model.dfsWrite(TmpDir)
-
-    // reload a new model which should be equal to the original
-    // this will automatically trigger a validate() call
-    val materializedModel= NBModel.dfsRead(TmpDir)
-
-
-    // check to se if the new model is complementary
-    materializedModel.isComplementary should be (model.isComplementary)
-
-    // check the label indexMaps
-    for(elem <- model.labelIndex){
-      model.labelIndex(elem._1) == materializedModel.labelIndex(elem._1) 
should be (true)
-    }
-
-
-    //self test on the original set
-    val inCoreTFIDFWithLabels = inCoreTFIDF.clone()
-    inCoreTFIDFWithLabels.setRowLabelBindings(labelIndex)
-    val TFIDFDrmWithLabels = drm.drmParallelizeWithRowLabels(m = 
inCoreTFIDFWithLabels, numPartitions = 2)
-
-    NaiveBayes.test(materializedModel,TFIDFDrmWithLabels , false)
-
-  }
-
-  test("train and test a model with the confusion matrix") {
-
-    val rowBindings = new java.util.HashMap[String,Integer]()
-    rowBindings.put("/Cat1/doc_a/", 0)
-    rowBindings.put("/Cat2/doc_b/", 1)
-    rowBindings.put("/Cat1/doc_c/", 2)
-    rowBindings.put("/Cat2/doc_d/", 3)
-    rowBindings.put("/Cat1/doc_e/", 4)
-    rowBindings.put("/Cat2/doc_f/", 5)
-    rowBindings.put("/Cat1/doc_g/", 6)
-    rowBindings.put("/Cat2/doc_h/", 7)
-    rowBindings.put("/Cat1/doc_i/", 8)
-    rowBindings.put("/Cat2/doc_j/", 9)
-
-    val seed = 1
-
-    val matrixSetup = Matrices.uniformView(10, 50 , seed)
-
-    println("TFIDF matrix")
-    println(matrixSetup)
-
-    matrixSetup.setRowLabelBindings(rowBindings)
-
-    val TFIDFDrm = drm.drmParallelizeWithRowLabels(matrixSetup)
-
-  //  println("Parallelized and Collected")
-  //  println(TFIDFDrm.collect)
-
-    val (labelIndex, aggregatedTFIDFDrm) = 
NaiveBayes.extractLabelsAndAggregateObservations(TFIDFDrm)
-
-    println("Aggregated by key")
-    println(aggregatedTFIDFDrm.collect)
-    println(labelIndex)
-
-
-    // train a Standard NB Model- no label index here
-    val model = NaiveBayes.train(aggregatedTFIDFDrm, labelIndex, false)
-
-    // validate the model- will throw an exception if model is invalid
-    model.validate()
-
-    // save the model
-    model.dfsWrite(TmpDir)
-
-    // reload a new model which should be equal to the original
-    // this will automatically trigger a validate() call
-    val materializedModel= NBModel.dfsRead(TmpDir)
-
-    // check to se if the new model is complementary
-    materializedModel.isComplementary should be (model.isComplementary)
-
-    // check the label indexMaps
-    for(elem <- model.labelIndex){
-      model.labelIndex(elem._1) == materializedModel.labelIndex(elem._1) 
should be (true)
-    }
-
- //   val testTFIDFDrm = drm.drmParallelizeWithRowLabels(m = matrixSetup, 
numPartitions = 2)
-
-    // self test on this model
-    val result = NaiveBayes.test(materializedModel, TFIDFDrm , false)
-
-    println(result)
-
-    result.getConfusionMatrix.getMatrix.getQuick(0, 0) should be(5)
-    result.getConfusionMatrix.getMatrix.getQuick(0, 1) should be(0)
-    result.getConfusionMatrix.getMatrix.getQuick(1, 0) should be(0)
-    result.getConfusionMatrix.getMatrix.getQuick(1, 1) should be(5)
-
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/classifier/stats/ClassifierStatsTestBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/classifier/stats/ClassifierStatsTestBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/classifier/stats/ClassifierStatsTestBase.scala
deleted file mode 100644
index eafde11..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/classifier/stats/ClassifierStatsTestBase.scala
+++ /dev/null
@@ -1,257 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.classifier.stats
-
-import java.lang.Double
-import java.util.Random
-import java.util.Arrays
-
-import org.apache.mahout.common.RandomUtils
-import org.apache.mahout.math.Matrix
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-
-
-
-trait ClassifierStatsTestBase extends DistributedMahoutSuite with Matchers { 
this: FunSuite =>
-
-  val epsilon = 1E-6
-
-  val smallEpsilon = 1.0
-
-  // FullRunningAverageAndStdDev tests
-  test("testFullRunningAverageAndStdDev") {
-    val average: RunningAverageAndStdDev = new FullRunningAverageAndStdDev
-    assert(0 == average.getCount)
-    assert(true == Double.isNaN(average.getAverage))
-    assert(true == Double.isNaN(average.getStandardDeviation))
-    average.addDatum(6.0)
-    assert(1 == average.getCount)
-    assert((6.0 - average.getAverage).abs < epsilon)
-    assert(true == Double.isNaN(average.getStandardDeviation))
-    average.addDatum(6.0)
-    assert(2 == average.getCount)
-    assert((6.0 - average.getAverage).abs < epsilon)
-    assert((0.0 - average.getStandardDeviation).abs < epsilon)
-    average.removeDatum(6.0)
-    assert(1 == average.getCount)
-    assert((6.0 - average.getAverage).abs < epsilon)
-    assert(true == Double.isNaN(average.getStandardDeviation))
-    average.addDatum(-4.0)
-    assert(2 == average.getCount)
-    assert((1.0 - average.getAverage).abs < epsilon)
-    assert(((5.0 * 1.4142135623730951) - average.getStandardDeviation).abs < 
epsilon)
-    average.removeDatum(4.0)
-    assert(1 == average.getCount)
-    assert((2.0 + average.getAverage).abs < epsilon)
-    assert(true == Double.isNaN(average.getStandardDeviation))
-  }
-
-  test("testBigFullRunningAverageAndStdDev") {
-    val average: RunningAverageAndStdDev = new FullRunningAverageAndStdDev
-    RandomUtils.useTestSeed()
-    val r: Random = RandomUtils.getRandom
-
-    for (i <- 0 until 100000) {
-      average.addDatum(r.nextDouble() * 1000.0)
-    }
-
-    assert((500.0 - average.getAverage).abs < smallEpsilon)
-    assert(((1000.0 / Math.sqrt(12.0)) - average.getStandardDeviation).abs < 
smallEpsilon)
-  }
-
-  test("testStddevFullRunningAverageAndStdDev") {
-    val runningAverage: RunningAverageAndStdDev = new 
FullRunningAverageAndStdDev
-    assert(0 == runningAverage.getCount)
-    assert(true == Double.isNaN(runningAverage.getAverage))
-    runningAverage.addDatum(1.0)
-    assert(1 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    assert(true == Double.isNaN(runningAverage.getStandardDeviation))
-    runningAverage.addDatum(1.0)
-    assert(2 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    assert((0.0 -runningAverage.getStandardDeviation).abs < epsilon)
-    runningAverage.addDatum(7.0)
-    assert(3 == runningAverage.getCount)
-    assert((3.0 - runningAverage.getAverage).abs < epsilon)
-    assert((3.464101552963257 - runningAverage.getStandardDeviation).abs < 
epsilon)
-    runningAverage.addDatum(5.0)
-    assert(4 == runningAverage.getCount)
-    assert((3.5 - runningAverage.getAverage) < epsilon)
-    assert((3.0- runningAverage.getStandardDeviation).abs < epsilon)
-  }
-
-
-
-  // FullRunningAverage tests
-  test("testFullRunningAverage"){
-    val runningAverage: RunningAverage = new FullRunningAverage
-    assert(0 == runningAverage.getCount)
-    assert(true == Double.isNaN(runningAverage.getAverage))
-    runningAverage.addDatum(1.0)
-    assert(1 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.addDatum(1.0)
-    assert(2 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.addDatum(4.0)
-    assert(3 == runningAverage.getCount)
-    assert((2.0 - runningAverage.getAverage) < epsilon)
-    runningAverage.addDatum(-4.0)
-    assert(4 == runningAverage.getCount)
-    assert((0.5 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.removeDatum(-4.0)
-    assert(3 == runningAverage.getCount)
-    assert((2.0 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.removeDatum(4.0)
-    assert(2 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.changeDatum(0.0)
-    assert(2 == runningAverage.getCount)
-    assert((1.0 - runningAverage.getAverage).abs < epsilon)
-    runningAverage.changeDatum(2.0)
-    assert(2 == runningAverage.getCount)
-    assert((2.0 - runningAverage.getAverage).abs < epsilon)
-  }
-
-
-  test("testFullRunningAveragCopyConstructor") {
-    val runningAverage: RunningAverage = new FullRunningAverage
-    runningAverage.addDatum(1.0)
-    runningAverage.addDatum(1.0)
-    assert(2 == runningAverage.getCount)
-    assert(1.0 - runningAverage.getAverage < epsilon)
-    val copy: RunningAverage = new FullRunningAverage(runningAverage.getCount, 
runningAverage.getAverage)
-    assert(2 == copy.getCount)
-    assert(1.0 - copy.getAverage < epsilon)
-  }
-
-
-
-  // Inverted Running Average tests
-  test("testInvertedRunningAverage") {
-    val avg: RunningAverage = new FullRunningAverage
-    val inverted: RunningAverage = new InvertedRunningAverage(avg)
-    assert(0 == inverted.getCount)
-    avg.addDatum(1.0)
-    assert(1 == inverted.getCount)
-    assert((1.0 + inverted.getAverage).abs < epsilon) // inverted.getAverage 
== -1.0
-    avg.addDatum(2.0)
-    assert(2 == inverted.getCount)
-    assert((1.5 + inverted.getAverage).abs < epsilon) // inverted.getAverage 
== -1.5
-  }
-
-  test ("testInvertedRunningAverageAndStdDev") {
-    val avg: RunningAverageAndStdDev = new FullRunningAverageAndStdDev
-    val inverted: RunningAverageAndStdDev = new 
InvertedRunningAverageAndStdDev(avg)
-    assert(0 == inverted.getCount)
-    avg.addDatum(1.0)
-    assert(1 == inverted.getCount)
-    assert(((1.0 + inverted.getAverage).abs < epsilon)) // inverted.getAverage 
== -1.0
-    avg.addDatum(2.0)
-    assert(2 == inverted.getCount)
-    assert((1.5 + inverted.getAverage).abs < epsilon) // inverted.getAverage 
== -1.5
-    assert(((Math.sqrt(2.0) / 2.0) - inverted.getStandardDeviation).abs < 
epsilon)
-  }
-
-
-  // confusion Matrix tests
-  val VALUES: Array[Array[Int]] = Array(Array(2, 3), Array(10, 20))
-  val LABELS: Array[String] = Array("Label1", "Label2")
-  val OTHER: Array[Int] = Array(3, 6)
-  val DEFAULT_LABEL: String = "other"
-
-  def fillConfusionMatrix(values: Array[Array[Int]], labels: Array[String], 
defaultLabel: String): ConfusionMatrix = {
-    val labelList = Arrays.asList(labels(0),labels(1))
-    val confusionMatrix: ConfusionMatrix = new ConfusionMatrix(labelList, 
defaultLabel)
-    confusionMatrix.putCount("Label1", "Label1", values(0)(0))
-    confusionMatrix.putCount("Label1", "Label2", values(0)(1))
-    confusionMatrix.putCount("Label2", "Label1", values(1)(0))
-    confusionMatrix.putCount("Label2", "Label2", values(1)(1))
-    confusionMatrix.putCount("Label1", DEFAULT_LABEL, OTHER(0))
-    confusionMatrix.putCount("Label2", DEFAULT_LABEL, OTHER(1))
-
-    confusionMatrix
-  }
-
-  private def checkAccuracy(cm: ConfusionMatrix) {
-    val labelstrs = cm.getLabels
-    assert(3 == labelstrs.size)
-    assert((25.0 - cm.getAccuracy("Label1")).abs < epsilon)
-    assert((55.5555555 - cm.getAccuracy("Label2")).abs < epsilon)
-    assert(true == Double.isNaN(cm.getAccuracy("other")))
-  }
-
-  private def checkValues(cm: ConfusionMatrix) {
-    val counts: Array[Array[Int]] = cm.getConfusionMatrix
-    cm.toString
-    assert(counts.length == counts(0).length)
-    assert(3 == counts.length)
-    assert(VALUES(0)(0) == counts(0)(0))
-    assert(VALUES(0)(1) == counts(0)(1))
-    assert(VALUES(1)(0) == counts(1)(0))
-    assert(VALUES(1)(1) == counts(1)(1))
-    assert(true == Arrays.equals(new Array[Int](3), counts(2)))
-    assert(OTHER(0) == counts(0)(2))
-    assert(OTHER(1) == counts(1)(2))
-    assert(3 == cm.getLabels.size)
-    assert(true == cm.getLabels.contains(LABELS(0)))
-    assert(true == cm.getLabels.contains(LABELS(1)))
-    assert(true == cm.getLabels.contains(DEFAULT_LABEL))
-  }
-
-  test("testBuild"){
-    val confusionMatrix: ConfusionMatrix = fillConfusionMatrix(VALUES, LABELS, 
DEFAULT_LABEL)
-    checkValues(confusionMatrix)
-    checkAccuracy(confusionMatrix)
-  }
-
-  test("GetMatrix") {
-    val confusionMatrix: ConfusionMatrix = fillConfusionMatrix(VALUES, LABELS, 
DEFAULT_LABEL)
-    val m: Matrix = confusionMatrix.getMatrix
-    val rowLabels = m.getRowLabelBindings
-    assert(confusionMatrix.getLabels.size == m.numCols)
-    assert(true == rowLabels.keySet.contains(LABELS(0)))
-    assert(true == rowLabels.keySet.contains(LABELS(1)))
-    assert(true == rowLabels.keySet.contains(DEFAULT_LABEL))
-    assert(2 == confusionMatrix.getCorrect(LABELS(0)))
-    assert(20 == confusionMatrix.getCorrect(LABELS(1)))
-    assert(0 == confusionMatrix.getCorrect(DEFAULT_LABEL))
-  }
-
-  /**
-   * Example taken from
-   * 
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
-   */
-  test("testPrecisionRecallAndF1ScoreAsScikitLearn") {
-    val labelList = Arrays.asList("0", "1", "2")
-    val confusionMatrix: ConfusionMatrix = new ConfusionMatrix(labelList, 
"DEFAULT")
-    confusionMatrix.putCount("0", "0", 2)
-    confusionMatrix.putCount("1", "0", 1)
-    confusionMatrix.putCount("1", "2", 1)
-    confusionMatrix.putCount("2", "1", 2)
-    val delta: Double = 0.001
-    assert((0.222 - confusionMatrix.getWeightedPrecision).abs < delta)
-    assert((0.333 - confusionMatrix.getWeightedRecall).abs < delta)
-    assert((0.266 - confusionMatrix.getWeightedF1score).abs < delta)
-  }
-
-
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/algorithms/ClusteringSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/ClusteringSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/algorithms/ClusteringSuiteBase.scala
deleted file mode 100644
index 70fb10f..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/ClusteringSuiteBase.scala
+++ /dev/null
@@ -1,48 +0,0 @@
-/**
-  * Licensed to the Apache Software Foundation (ASF) under one
-  * or more contributor license agreements. See the NOTICE file
-  * distributed with this work for additional information
-  * regarding copyright ownership. The ASF licenses this file
-  * to you under the Apache License, Version 2.0 (the
-  * "License"); you may not use this file except in compliance
-  * with the License. You may obtain a copy of the License at
-  *
-  * http://www.apache.org/licenses/LICENSE-2.0
-  *
-  * Unless required by applicable law or agreed to in writing,
-  * software distributed under the License is distributed on an
-  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-  * KIND, either express or implied. See the License for the
-  * specific language governing permissions and limitations
-  * under the License.
-  */
-
-package org.apache.mahout.math.algorithms
-
-import org.apache.mahout.math.algorithms.preprocessing._
-import org.apache.mahout.math.drm.drmParallelize
-import org.apache.mahout.math.scalabindings.{dense, sparse, svec}
-import org.apache.mahout.math.scalabindings.RLikeOps._
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-
-import org.apache.mahout.test.DistributedMahoutSuite
-
-trait ClusteringSuiteBase extends DistributedMahoutSuite with Matchers {
-
-  this: FunSuite =>
-
-  test("canopy test") {
-    val drmA = drmParallelize(dense((1.0, 1.2, 1.3, 1.4), (1.1, 1.5, 2.5, 
1.0), (6.0, 5.2, -5.2, 5.3), (7.0,6.0, 5.0, 5.0), (10.0, 1.0, 20.0, -10.0)))
-
-    import org.apache.mahout.math.algorithms.clustering.CanopyClustering
-
-    val model = new CanopyClustering().fit(drmA, 't1 -> 6.5, 't2 -> 5.5, 
'distanceMeasure -> 'Chebyshev)
-    val myAnswer = model.cluster(drmA).collect
-
-    val correctAnswer = dense((0.0), (0.0), (1.0), (0.0), (2.0))
-
-    val epsilon = 1E-6
-    (myAnswer.norm - correctAnswer.norm) should be <= epsilon
-  }
-}
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/algorithms/PreprocessorSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/PreprocessorSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/algorithms/PreprocessorSuiteBase.scala
deleted file mode 100644
index ffe1d1b..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/PreprocessorSuiteBase.scala
+++ /dev/null
@@ -1,118 +0,0 @@
-/**
-  * Licensed to the Apache Software Foundation (ASF) under one
-  * or more contributor license agreements. See the NOTICE file
-  * distributed with this work for additional information
-  * regarding copyright ownership. The ASF licenses this file
-  * to you under the Apache License, Version 2.0 (the
-  * "License"); you may not use this file except in compliance
-  * with the License. You may obtain a copy of the License at
-  *
-  * http://www.apache.org/licenses/LICENSE-2.0
-  *
-  * Unless required by applicable law or agreed to in writing,
-  * software distributed under the License is distributed on an
-  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-  * KIND, either express or implied. See the License for the
-  * specific language governing permissions and limitations
-  * under the License.
-  */
-
-package org.apache.mahout.math.algorithms
-
-import org.apache.mahout.math.algorithms.preprocessing._
-import org.apache.mahout.math.drm.drmParallelize
-import org.apache.mahout.math.scalabindings.{dense, sparse, svec}
-import org.apache.mahout.math.scalabindings.RLikeOps._
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-
-trait PreprocessorSuiteBase extends DistributedMahoutSuite with Matchers {
-
-  this: FunSuite =>
-
-  test("asfactor test") {
-    val A = drmParallelize(dense(
-      (3, 2, 1, 2),
-      (0, 0, 0, 0),
-      (1, 1, 1, 1)), numPartitions = 2)
-
-    // 0 -> 2, 3 -> 5, 6 -> 9
-    val factorizer: AsFactorModel = new AsFactor().fit(A)
-
-    val factoredA = factorizer.transform(A)
-
-    println(factoredA)
-    println(factorizer.factorMap)
-    val correctAnswer = sparse(
-      svec((3 → 1.0) :: (6 → 1.0) :: (8 → 1.0) :: (11 → 1.0) :: Nil, 
cardinality = 12),
-      svec((0 → 1.0) :: (4 → 1.0) :: (7 → 1.0) :: ( 9 → 1.0) :: Nil, 
cardinality = 12),
-      svec((1 → 1.0) :: (5 → 1.0) :: (8 → 1.0) :: (10 → 1.0) :: Nil, 
cardinality = 12)
-    )
-
-    val myAnswer = factoredA.collect
-
-    val epsilon = 1E-6
-    (myAnswer.norm - correctAnswer.norm) should be <= epsilon
-    (myAnswer.norm - correctAnswer.norm) should be <= epsilon
-
-  }
-
-  test("standard scaler test") {
-    /**
-      * R Prototype
-      * x <- matrix( c(1,2,3,1,5,9,5,-15,-2), nrow=3)
-      * scale(x, scale= apply(x, 2, sd) * sqrt(2/3))
-      * # ^^ note: R uses degress of freedom = 1 for standard deviation 
calculations.
-      * # we don't (and neither does sklearn)
-      * # the *sqrt(N-1/N) 'undoes' the degrees of freedom = 1
-      */
-
-    val A = drmParallelize(dense(
-      (1, 1, 5),
-      (2, 5, -15),
-      (3, 9, -2)), numPartitions = 2)
-
-    val scaler: StandardScalerModel = new StandardScaler().fit(A)
-
-    val correctAnswer = dense(
-      (-1.224745, -1.224745, -1.224745),
-      (0.000000,  0.000000,  1.224745),
-      (1.224745,  1.224745,  0.000000))
-
-    val myAnswer = scaler.transform(A).collect
-    println(scaler.meanVec)
-    println(scaler.stdev)
-
-    val epsilon = 1E-6
-    (myAnswer.norm - correctAnswer.norm) should be <= epsilon
-
-  }
-
-  test("mean center test") {
-    /**
-      * R Prototype
-      *
-      * x <- matrix( c(1.0,2.0,3.0,1.0,5.0,9.0,-2.0,2.0,0), nrow=3)
-      * centered.x <- scale(x, scale= FALSE)
-      * print(centered.x)
-      */
-
-
-    val A = drmParallelize(dense(
-      (1, 1, -2),
-      (2, 5, 2),
-      (3, 9, 0)), numPartitions = 2)
-
-    val scaler: MeanCenterModel = new MeanCenter().fit(A)
-
-    val myAnswer = scaler.transform(A).collect
-
-    val correctAnswer = dense(
-      (-1, -4, -2),
-      (0,  0,  2),
-      (1,  4,  0))
-
-    val epsilon = 1E-6
-    (myAnswer.norm - correctAnswer.norm) should be <= epsilon
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionSuiteBase.scala
deleted file mode 100644
index 8910ae9..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionSuiteBase.scala
+++ /dev/null
@@ -1,180 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.algorithms
-
-import org.apache.mahout.math.algorithms.regression._
-import org.apache.mahout.math.drm._
-import org.apache.mahout.math.drm.RLikeDrmOps._
-import org.apache.mahout.math.scalabindings._
-import org.apache.mahout.math.scalabindings.RLikeOps._
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-
-trait RegressionSuiteBase extends DistributedMahoutSuite with Matchers {
-  this: FunSuite =>
-
-  val epsilon = 1E-6
-
-  test("ordinary least squares") {
-    /*
-    R Prototype:
-    dataM <- matrix( c(2, 2, 10.5, 10, 29.509541,
-      1, 2, 12,   12, 18.042851,
-      1, 1, 12,   13, 22.736446,
-      2, 1, 11,   13, 32.207582,
-      1, 2, 12,   11, 21.871292,
-      2, 1, 16,   8,  36.187559,
-      6, 2, 17,   1,  50.764999,
-      3, 2, 13,   7,  40.400208,
-      3, 3, 13,   4,  45.811716), nrow=9, ncol=5, byrow=TRUE)
-
-
-    X = dataM[, c(1,2,3,4)]
-    y = dataM[, c(5)]
-
-    model <- lm(y ~ X )
-    summary(model)
-
-     */
-
-    val drmData = drmParallelize(dense(
-      (2, 2, 10.5, 10, 29.509541),  // Apple Cinnamon Cheerios
-      (1, 2, 12,   12, 18.042851),  // Cap'n'Crunch
-      (1, 1, 12,   13, 22.736446),  // Cocoa Puffs
-      (2, 1, 11,   13, 32.207582),  // Froot Loops
-      (1, 2, 12,   11, 21.871292),  // Honey Graham Ohs
-      (2, 1, 16,   8,  36.187559),  // Wheaties Honey Gold
-      (6, 2, 17,   1,  50.764999),  // Cheerios
-      (3, 2, 13,   7,  40.400208),  // Clusters
-      (3, 3, 13,   4,  45.811716)), numPartitions = 2)
-
-
-    val drmX = drmData(::, 0 until 4)
-    val drmY = drmData(::, 4 until 5)
-
-    val model = new OrdinaryLeastSquares[Int]().fit(drmX, drmY, 
'calcCommonStatistics → false)
-
-    val estimate = model.beta
-    val Ranswers = dvec(-1.336265, -13.157702, -4.152654, -5.679908, 
163.179329)
-
-    val epsilon = 1E-6
-    (estimate - Ranswers).sum should be < epsilon
-
-    // TODO add test for S.E / pvalue
-  }
-
-  test("cochrane-orcutt"){
-    /* R Prototype:
-    library(orcutt)
-
-    df = data.frame(t(data.frame(
-        c(20.96,  127.3),
-        c(21.40,  130.0),
-        c(21.96,  132.7),
-        c(21.52,  129.4),
-        c(22.39,  135.0),
-        c(22.76,  137.1),
-        c(23.48,  141.2),
-        c(23.66,  142.8),
-        c(24.10,  145.5),
-        c(24.01,  145.3),
-        c(24.54,  148.3),
-        c(24.30,  146.4),
-        c(25.00,  150.2),
-        c(25.64,  153.1),
-        c(26.36,  157.3),
-        c(26.98,  160.7),
-        c(27.52,  164.2),
-        c(27.78,  165.6),
-        c(28.24,  168.7),
-        c(28.78,  171.7))))
-
-    rownames(df) <- NULL
-    colnames(df) <- c("y", "x")
-    my_lm = lm(y ~ x, data=df)
-    coch = cochrane.orcutt(my_lm)
-
-    ///////////////////////////////////////
-    The R-implementation is kind of...silly.
-
-    The above works- converges at 318 iterations- the transformed DW is   
1.72, yet the rho is
-     .95882.   After 318 iteartions, this will also report a rho of .95882 
(which sugguests SEVERE
-     autocorrelation- nothing close to 1.72.
-
-     At anyrate, the real prototype for this is the example from Applied 
Linear Statistcal Models
-     5th Edition by Kunter, Nachstheim, Neter, and Li.  They also provide some 
interesting notes on p 494:
-     1) "Cochrane-Orcutt does not always work properly.  A major reason is 
that when the error terms
-     are positively autocorrelated, the estimate r in (12.22) tends to 
underestimate the autocorrelation
-     parameter rho.  When this bias is serious, it can significantly reduce 
the effectiveness of the
-     Cochrane-Orcutt approach.
-     2. There exists an approximate relation between the Durbin Watson test 
statistic D in (12.14)
-     and the estimated autocorrelation paramater r in (12.22):
-     D ~= 2(1-r)"
-
-     They also note on p492:
-     "... If the process does not terminate after one or two iterations, a 
different procedure
-     should be employed."
-     This differs from the logic found elsewhere, and the method presented in 
R where, in the simple
-      example in the prototype, the procedure runs for 318 iterations. This is 
why the default
-     maximum iteratoins are 3, and should be left as such.
-
-     Also, the prototype and 'correct answers' are based on the example 
presented in Kunter et. al on
-     p492-4 (including dataset).
-
-     */
-
-    val alsmBlaisdellCo = drmParallelize( dense(
-      (20.96,  127.3),
-      (21.40,  130.0),
-      (21.96,  132.7),
-      (21.52,  129.4),
-      (22.39,  135.0),
-      (22.76,  137.1),
-      (23.48,  141.2),
-      (23.66,  142.8),
-      (24.10,  145.5),
-      (24.01,  145.3),
-      (24.54,  148.3),
-      (24.30,  146.4),
-      (25.00,  150.2),
-      (25.64,  153.1),
-      (26.36,  157.3),
-      (26.98,  160.7),
-      (27.52,  164.2),
-      (27.78,  165.6),
-      (28.24,  168.7),
-      (28.78,  171.7) ))
-
-    val drmY = alsmBlaisdellCo(::, 0 until 1)
-    val drmX = alsmBlaisdellCo(::, 1 until 2)
-
-    var coModel = new CochraneOrcutt[Int]().fit(drmX, drmY , ('iterations -> 
2))
-    val coResiduals = drmY - coModel.predict(drmX)
-
-    val correctRho = 0.631166
-    (coModel.rhos(1) - correctRho) should be < epsilon
-
-    val shortEpsilon = 1E-4 // book rounded off pretty short
-    val correctBeta = dvec(0.17376, -1.0685)
-    (coModel.betas(1) - correctBeta).sum.abs < shortEpsilon
-
-    val correctSe = dvec(0.002957, 0.45332)
-    (coModel.se - correctSe).sum.abs < shortEpsilon
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionTestsSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionTestsSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionTestsSuiteBase.scala
deleted file mode 100644
index 57dffef..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/algorithms/RegressionTestsSuiteBase.scala
+++ /dev/null
@@ -1,126 +0,0 @@
-/**
-  * Licensed to the Apache Software Foundation (ASF) under one
-  * or more contributor license agreements. See the NOTICE file
-  * distributed with this work for additional information
-  * regarding copyright ownership. The ASF licenses this file
-  * to you under the Apache License, Version 2.0 (the
-  * "License"); you may not use this file except in compliance
-  * with the License. You may obtain a copy of the License at
-  *
-  * http://www.apache.org/licenses/LICENSE-2.0
-  *
-  * Unless required by applicable law or agreed to in writing,
-  * software distributed under the License is distributed on an
-  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-  * KIND, either express or implied. See the License for the
-  * specific language governing permissions and limitations
-  * under the License.
-  */
-
-package org.apache.mahout.math.algorithms
-
-import org.apache.mahout.math.algorithms.regression.OrdinaryLeastSquares
-import org.apache.mahout.math.algorithms.regression.tests._
-import org.apache.mahout.math.drm.{CheckpointedDrm, drmParallelize}
-import org.apache.mahout.math.drm.RLikeDrmOps._
-import org.apache.mahout.math.scalabindings.{`::`, dense}
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-
-
-trait RegressionTestsSuiteBase extends DistributedMahoutSuite with Matchers {
-  this: FunSuite =>
-
-  val epsilon = 1E-4
-
-  test("fittness tests") {
-    /*
-    R Prototype:
-    dataM <- matrix( c(2, 2, 10.5, 10, 29.509541,
-      1, 2, 12,   12, 18.042851,
-      1, 1, 12,   13, 22.736446,
-      2, 1, 11,   13, 32.207582,
-      1, 2, 12,   11, 21.871292,
-      2, 1, 16,   8,  36.187559,
-      6, 2, 17,   1,  50.764999,
-      3, 2, 13,   7,  40.400208,
-      3, 3, 13,   4,  45.811716), nrow=9, ncol=5, byrow=TRUE)
-
-
-    X = dataM[, c(1,2,3,4)]
-    y = dataM[, c(5)]
-
-    model <- lm(y ~ X)
-    summary(model)
-
-     */
-
-    val drmData = drmParallelize(dense(
-      (2, 2, 10.5, 10, 29.509541),  // Apple Cinnamon Cheerios
-      (1, 2, 12,   12, 18.042851),  // Cap'n'Crunch
-      (1, 1, 12,   13, 22.736446),  // Cocoa Puffs
-      (2, 1, 11,   13, 32.207582),  // Froot Loops
-      (1, 2, 12,   11, 21.871292),  // Honey Graham Ohs
-      (2, 1, 16,   8,  36.187559),  // Wheaties Honey Gold
-      (6, 2, 17,   1,  50.764999),  // Cheerios
-      (3, 2, 13,   7,  40.400208),  // Clusters
-      (3, 3, 13,   4,  45.811716)), numPartitions = 2)
-
-    val drmX = drmData(::, 0 until 4)
-    val drmY = drmData(::, 4 until 5)
-
-    val model = new OrdinaryLeastSquares[Int]().fit(drmX, drmY)
-
-    println(model.summary)
-    // Answers from running similar algorithm in R
-    val rR2 = 0.9425
-    val rMSE = 6.457157
-
-    val r2: Double = model.r2
-    val mse: Double = model.mse
-    (rR2 - r2) should be < epsilon
-    (rMSE - mse) should be < epsilon
-
-    Math.abs(model.beta.get(4) - 163.17933  ) should be < epsilon
-    Math.abs(model.beta.get(0) - (-1.33627) ) should be < epsilon
-    Math.abs(model.beta.get(1) - (-13.15770)) should be < epsilon
-    Math.abs(model.beta.get(2) - (-4.15265) ) should be < epsilon
-    Math.abs(model.beta.get(3) - (-5.679908)) should be < epsilon
-
-    Math.abs(model.tScore.get(0) - (-0.49715717)) should be < epsilon
-    Math.abs(model.tScore.get(1) - (-2.43932888)) should be < epsilon
-    Math.abs(model.tScore.get(2) - (-2.32654000)) should be < epsilon
-    Math.abs(model.tScore.get(3) - (-3.01022444)) should be < epsilon
-    Math.abs(model.tScore.get(4) -  3.143183937 ) should be < epsilon
-
-    model.degreesOfFreedom should equal(5)
-    model.trainingExamples should equal(9)
-
-    Math.abs((model.fScore - 16.38542361))  should be < 0.0000001
-
-  }
-
-  test("durbinWatsonTest test") {
-    /**
-      * R Prototype
-      *
-      * library(car)
-      * residuals <- seq(0, 4.9, 0.1)
-      * ## perform Durbin-Watson test
-      * durbinWatsonTest(residuals)
-      */
-
-    val correctAnswer = 0.001212121
-    val err1 =  drmParallelize( dense((0.0 until 5.0 by 0.1).toArray) ).t
-    val drmX = drmParallelize( dense((0 until 50).toArray.map( t => 
Math.pow(-1.0, t)) ) ).t
-    val drmY = drmX + err1 + 1
-    var model = new OrdinaryLeastSquares[Int]().fit(drmX, drmY)
-    val syntheticResiduals = err1
-    model = AutocorrelationTests.DurbinWatson(model, syntheticResiduals)
-    val myAnswer: Double = 
model.testResults.getOrElse('durbinWatsonTestStatistic, 
-1.0).asInstanceOf[Double]
-    (myAnswer - correctAnswer) should be < epsilon
-  }
-
-
-}
-

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/backend/BackendSuite.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/backend/BackendSuite.scala 
b/math-scala/src/test/scala/org/apache/mahout/math/backend/BackendSuite.scala
deleted file mode 100644
index ba6e145..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/backend/BackendSuite.scala
+++ /dev/null
@@ -1,59 +0,0 @@
-package org.apache.mahout.math.backend
-
-import org.apache.mahout.math.backend.jvm.JvmBackend
-import org.scalatest.{FunSuite, Matchers}
-
-import scala.collection.mutable
-import scala.reflect.{ClassTag, classTag}
-
-class BackendSuite extends FunSuite with Matchers {
-
-  test("GenericBackend") {
-
-    trait MySolverTrait1 { def myMethod1 = Unit }
-
-
-    trait MySolverTrait2
-
-    class MySolverImpl1 extends MySolverTrait1 {
-    }
-
-    class MySolverImpl2 extends MySolverTrait2
-
-    // My dummy backend supporting to trait solvers filled with 2 dummy 
implementations of these
-    // traits should be able to serve based on their solver traits.
-    val myBackend = new Backend {
-
-      override def isAvailable: Boolean = true
-
-      override val solverMap = new mutable.HashMap[ClassTag[_], Any]()
-
-      solverMap ++= Map(
-        classTag[MySolverTrait1] → new MySolverImpl1,
-        classTag[MySolverTrait2] → new MySolverImpl2
-      )
-
-      validateMap()
-    }
-
-    myBackend.getSolver shouldBe None
-
-    val mySolver1 = myBackend.getSolver[MySolverTrait1]
-
-    // This is indeed solver1 trait type:
-    mySolver1.get.myMethod1
-    mySolver1.get.isInstanceOf[MySolverImpl1] shouldBe true
-
-    // Validator should not allow non-subclasses in implementation.
-    an [IllegalArgumentException] mustBe thrownBy {
-      myBackend.solverMap(classTag[MySolverTrait2]) = 0
-      myBackend.validateMap()
-    }
-  }
-
-  test("JvmBackend") {
-    // Just create JVM backend and validate.
-    JvmBackend.validateMap()
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DecompositionsSuite.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DecompositionsSuite.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DecompositionsSuite.scala
deleted file mode 100644
index 8f5ec99..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DecompositionsSuite.scala
+++ /dev/null
@@ -1,113 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.decompositions
-
-import org.scalatest.FunSuite
-import org.apache.mahout.test.MahoutSuite
-import org.apache.mahout.common.RandomUtils
-import org.apache.mahout.math._
-import scalabindings._
-import RLikeOps._
-
-/**
- * This suite tests only in-core decomposititions.
- * <P>
- *
- * We moved distributed tests into mahout-spark module since they require a 
concrete distributed
- * engine dependencies to run.
- * <P>
- */
-class DecompositionsSuite extends FunSuite with MahoutSuite {
-
-  test("ssvd") {
-
-    // Very naive, a full-rank only here.
-    val a = dense(
-      (1, 2, 3),
-      (3, 4, 5),
-      (-2, 6, 7),
-      (-3, 8, 9)
-    )
-
-    val rank = 2
-    val (u, v, s) = ssvd(a, k = rank, q = 1)
-
-    val (uControl, vControl, sControl) = svd(a)
-
-    printf("U:\n%s\n", u)
-    printf("U-control:\n%s\n", uControl)
-    printf("V:\n%s\n", v)
-    printf("V-control:\n%s\n", vControl)
-    printf("Sigma:\n%s\n", s)
-    printf("Sigma-control:\n%s\n", sControl)
-
-    (s - sControl(0 until rank)).norm(2) should be < 1E-7
-
-    // Singular vectors may be equivalent down to a sign only.
-    (u.norm - uControl(::, 0 until rank).norm).abs should be < 1E-7
-    (v.norm - vControl(::, 0 until rank).norm).abs should be < 1E-7
-  }
-
-  test("spca") {
-
-    import math._
-
-    val rnd = RandomUtils.getRandom
-
-    // Number of points
-    val m = 500
-    // Length of actual spectrum
-    val spectrumLen = 40
-
-    val spectrum = dvec((0 until spectrumLen).map(x => 300.0 * exp(-x) max 
1e-3))
-    printf("spectrum:%s\n", spectrum)
-
-    val (u, _) = qr(new SparseRowMatrix(m, spectrumLen) :=
-        ((r, c, v) => if (rnd.nextDouble() < 0.2) 0 else rnd.nextDouble() + 
5.0))
-
-    // PCA Rotation matrix -- should also be orthonormal.
-    val (tr, _) = qr(Matrices.symmetricUniformView(spectrumLen, spectrumLen, 
rnd.nextInt) - 10.0)
-
-    val input = (u %*%: diagv(spectrum)) %*% tr.t
-
-    // Calculate just first 10 principal factors and reduce dimensionality.
-    // Since we assert just validity of the s-pca, not stochastic error, we 
bump p parameter to
-    // ensure to zero stochastic error and assert only functional correctness 
of the method's pca-
-    // specific additions.
-    val k = 10
-    var (pca, _, s) = spca(a = input, k = k, p = spectrumLen, q = 1)
-    printf("Svs:%s\n", s)
-    // Un-normalized pca data:
-    pca = pca %*%: diagv(s)
-
-    // Of course, once we calculated the pca, the spectrum is going to be 
different since our originally
-    // generated input was not centered. So here, we'd just brute-solve pca to 
verify
-    val xi = input.colMeans()
-    for (r <- 0 until input.nrow) input(r, ::) -= xi
-    var (pcaControl, _, sControl) = svd(m = input)
-
-    printf("Svs-control:%s\n", sControl)
-    pcaControl = (pcaControl %*%: diagv(sControl))(::, 0 until k)
-
-    printf("pca:\n%s\n", pca(0 until 10, 0 until 10))
-    printf("pcaControl:\n%s\n", pcaControl(0 until 10, 0 until 10))
-
-    (pca(0 until 10, 0 until 10).norm - pcaControl(0 until 10, 0 until 
10).norm).abs should be < 1E-5
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DistributedDecompositionsSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DistributedDecompositionsSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DistributedDecompositionsSuiteBase.scala
deleted file mode 100644
index de8228e..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/decompositions/DistributedDecompositionsSuiteBase.scala
+++ /dev/null
@@ -1,219 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.decompositions
-
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.apache.mahout.math._
-import scalabindings._
-import RLikeOps._
-import drm._
-import RLikeDrmOps._
-import org.scalatest.{FunSuite, Matchers}
-import org.apache.mahout.common.RandomUtils
-import math._
-
-/**
- * ==Common distributed code to run against each distributed engine support.==
- *
- * Each distributed engine's decompositions package should have a suite that 
includes this feature
- * as part of its distributed test suite.
- *
- */
-trait DistributedDecompositionsSuiteBase extends DistributedMahoutSuite with 
Matchers { this:FunSuite =>
-
-
-  test("thin distributed qr") {
-
-    val inCoreA = dense(
-      (1, 2, 3, 4),
-      (2, 3, 4, 5),
-      (3, -4, 5, 6),
-      (4, 5, 6, 7),
-      (8, 6, 7, 8)
-    )
-
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-    val (drmQ, inCoreR) = dqrThin(drmA, checkRankDeficiency = false)
-
-    // Assert optimizer still knows Q and A are identically partitioned
-    drmQ.partitioningTag should equal(drmA.partitioningTag)
-
-//    drmQ.rdd.partitions.size should be(A.rdd.partitions.size)
-//
-//    // Should also be zippable
-//    drmQ.rdd.zip(other = A.rdd)
-
-    val inCoreQ = drmQ.collect
-
-    printf("A=\n%s\n", inCoreA)
-    printf("Q=\n%s\n", inCoreQ)
-    printf("R=\n%s\n", inCoreR)
-
-    val (qControl, rControl) = qr(inCoreA)
-    printf("qControl=\n%s\n", qControl)
-    printf("rControl=\n%s\n", rControl)
-
-    // Validate with Cholesky
-    val ch = chol(inCoreA.t %*% inCoreA)
-    printf("A'A=\n%s\n", inCoreA.t %*% inCoreA)
-    printf("L:\n%s\n", ch.getL)
-
-    val rControl2 = (ch.getL cloned).t
-    val qControl2 = ch.solveRight(inCoreA)
-    printf("qControl2=\n%s\n", qControl2)
-    printf("rControl2=\n%s\n", rControl2)
-
-    // Householder approach seems to be a little bit more stable
-    (rControl - inCoreR).norm should be < 1E-5
-    (qControl - inCoreQ).norm should be < 1E-5
-
-    // Assert identicity with in-core Cholesky-based -- this should be tighter.
-    (rControl2 - inCoreR).norm should be < 1E-10
-    (qControl2 - inCoreQ).norm should be < 1E-10
-
-    // Assert orthogonality:
-    // (a) Q[,j] dot Q[,j] == 1.0 for all j
-    // (b) Q[,i] dot Q[,j] == 0.0 for all i != j
-    for (col <- 0 until inCoreQ.ncol)
-      ((inCoreQ(::, col) dot inCoreQ(::, col)) - 1.0).abs should be < 1e-10
-    for (col1 <- 0 until inCoreQ.ncol - 1; col2 <- col1 + 1 until inCoreQ.ncol)
-      (inCoreQ(::, col1) dot inCoreQ(::, col2)).abs should be < 1e-10
-
-
-  }
-
-  test("dssvd - the naive-est - q=0") {
-    dssvdNaive(q = 0)
-  }
-
-  test("ddsvd - naive - q=1") {
-    dssvdNaive(q = 1)
-  }
-
-  test("ddsvd - naive - q=2") {
-    dssvdNaive(q = 2)
-  }
-
-
-  def dssvdNaive(q: Int) {
-    val inCoreA = dense(
-      (1, 2, 3, 4),
-      (2, 3, 4, 5),
-      (3, -4, 5, 6),
-      (4, 5, 6, 7),
-      (8, 6, 7, 8)
-    )
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    val (drmU, drmV, s) = dssvd(drmA, k = 4, q = q)
-    val (inCoreU, inCoreV) = (drmU.collect, drmV.collect)
-
-    printf("U:\n%s\n", inCoreU)
-    printf("V:\n%s\n", inCoreV)
-    printf("Sigma:\n%s\n", s)
-
-    (inCoreA - (inCoreU %*%: diagv(s)) %*% inCoreV.t).norm should be < 1E-5
-  }
-
-  test("dspca") {
-
-    val rnd = RandomUtils.getRandom
-
-    // Number of points
-    val m = 500
-    // Length of actual spectrum
-    val spectrumLen = 40
-
-    val spectrum = dvec((0 until spectrumLen).map(x => 300.0 * exp(-x) max 
1e-3))
-    printf("spectrum:%s\n", spectrum)
-
-    val (u, _) = qr(new SparseRowMatrix(m, spectrumLen) :=
-        ((r, c, v) => if (rnd.nextDouble() < 0.2) 0 else rnd.nextDouble() + 
5.0))
-
-    // PCA Rotation matrix -- should also be orthonormal.
-    val (tr, _) = qr(Matrices.symmetricUniformView(spectrumLen, spectrumLen, 
rnd.nextInt) - 10.0)
-
-    val input = (u %*%: diagv(spectrum)) %*% tr.t
-    val drmInput = drmParallelize(m = input, numPartitions = 2)
-
-    // Calculate just first 10 principal factors and reduce dimensionality.
-    // Since we assert just validity of the s-pca, not stochastic error, we 
bump p parameter to
-    // ensure to zero stochastic error and assert only functional correctness 
of the method's pca-
-    // specific additions.
-    val k = 10
-
-    // Calculate just first 10 principal factors and reduce dimensionality.
-    var (drmPCA, _, s) = dspca(drmA = drmInput, k = 10, p = spectrumLen, q = 1)
-    // Un-normalized pca data:
-    drmPCA = drmPCA %*% diagv(s)
-
-    val pca = drmPCA.checkpoint(CacheHint.NONE).collect
-
-    // Of course, once we calculated the pca, the spectrum is going to be 
different since our originally
-    // generated input was not centered. So here, we'd just brute-solve pca to 
verify
-    val xi = input.colMeans()
-    for (r <- 0 until input.nrow) input(r, ::) -= xi
-    var (pcaControl, _, sControl) = svd(m = input)
-    pcaControl = (pcaControl %*%: diagv(sControl))(::, 0 until k)
-
-    printf("pca:\n%s\n", pca(0 until 10, 0 until 10))
-    printf("pcaControl:\n%s\n", pcaControl(0 until 10, 0 until 10))
-
-    (pca(0 until 10, 0 until 10).norm - pcaControl(0 until 10, 0 until 
10).norm).abs should be < 1E-5
-
-  }
-
-  test("dals") {
-
-    val rnd = RandomUtils.getRandom
-
-    // Number of points
-    val m = 500
-    val n = 500
-
-    // Length of actual spectrum
-    val spectrumLen = 40
-
-    // Create singluar values with decay
-    val spectrum = dvec((0 until spectrumLen).map(x => 300.0 * exp(-x) max 
1e-3))
-    printf("spectrum:%s\n", spectrum)
-
-    // Create A as an ideal input
-    val inCoreA = (qr(Matrices.symmetricUniformView(m, spectrumLen, 1234))._1 
%*%: diagv(spectrum)) %*%
-        qr(Matrices.symmetricUniformView(n, spectrumLen, 2345))._1.t
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    // Decompose using ALS
-    val (drmU, drmV, rmse) = dals(drmA = drmA, k = 20).toTuple
-    val inCoreU = drmU.collect
-    val inCoreV = drmV.collect
-
-    val predict = inCoreU %*% inCoreV.t
-
-    printf("Control block:\n%s\n", inCoreA(0 until 3, 0 until 3))
-    printf("ALS factorized approximation block:\n%s\n", predict(0 until 3, 0 
until 3))
-
-    val err = (inCoreA - predict).norm
-    printf("norm of residuals %f\n", err)
-    printf("train iteration rmses: %s\n", rmse)
-
-    err should be < 15e-2
-
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeOpsSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeOpsSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeOpsSuiteBase.scala
deleted file mode 100644
index 525da11..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeOpsSuiteBase.scala
+++ /dev/null
@@ -1,153 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.drm
-
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-import org.apache.mahout.math._
-import scalabindings._
-import RLikeOps._
-import RLikeDrmOps._
-
-import scala.reflect.{ClassTag,classTag}
-
-/** Common tests for DrmLike operators to be executed by all distributed 
engines. */
-trait DrmLikeOpsSuiteBase extends DistributedMahoutSuite with Matchers {
-  this: FunSuite ⇒
-
-  test("mapBlock") {
-
-    val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-    val B = A.mapBlock(/* Inherit width */) {
-      case (keys, block) ⇒ keys → (block += 1.0)
-    }
-
-    val inCoreB = B.collect
-    val inCoreBControl = inCoreA + 1.0
-
-    println(inCoreB)
-
-    // Assert they are the same
-    (inCoreB - inCoreBControl).norm should be < 1E-10
-    B.keyClassTag shouldBe ClassTag.Int
-
-  }
-
-  test ("mapBlock implicit keying") {
-
-    val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-    val B = A.mapBlock(/* Inherit width */) {
-      case (keys, block) ⇒ keys.map { k ⇒ k.toString } → block
-    }
-
-    B.keyClassTag shouldBe classTag[String]
-
-  }
-
-
-  test("allReduceBlock") {
-
-    val mxA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val drmA = drmParallelize(mxA, numPartitions = 2)
-
-    try {
-      val mxB = drmA.allreduceBlock { case (keys, block) ⇒
-        block(::, 0 until 2).t %*% block(::, 2 until 3)
-      }
-
-      val mxControl = mxA(::, 0 until 2).t %*% mxA(::, 2 until 3)
-
-      (mxB - mxControl).norm should be < 1e-10
-
-    } catch {
-      case e: UnsupportedOperationException ⇒ // Some engines may not 
support this, so ignore.
-    }
-
-  }
-
-  test("col range") {
-    val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-    val B = A(::, 1 to 2)
-    val inCoreB = B.collect
-    val inCoreBControl = inCoreA(::, 1 to 2)
-
-    println(inCoreB)
-
-    // Assert they are the same
-    (inCoreB - inCoreBControl).norm should be < 1E-10
-
-  }
-
-  test("row range") {
-
-    val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-    val B = A(1 to 2, ::)
-    val inCoreB = B.collect
-    val inCoreBControl = inCoreA(1 to 2, ::)
-
-    println(inCoreB)
-
-    // Assert they are the same
-    (inCoreB - inCoreBControl).norm should be < 1E-10
-
-  }
-
-  test("col, row range") {
-
-    val inCoreA = dense((1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-    val B = A(1 to 2, 1 to 2)
-    val inCoreB = B.collect
-    val inCoreBControl = inCoreA(1 to 2, 1 to 2)
-
-    println(inCoreB)
-
-    // Assert they are the same
-    (inCoreB - inCoreBControl).norm should be < 1E-10
-
-  }
-
-  test("dsqDist(X,Y)") {
-    val m = 100
-    val n = 300
-    val d = 7
-    val mxX = Matrices.symmetricUniformView(m, d, 12345).cloned -= 5
-    val mxY = Matrices.symmetricUniformView(n, d, 1234).cloned += 10
-    val (drmX, drmY) = (drmParallelize(mxX, 3), drmParallelize(mxY, 4))
-
-    val mxDsq = dsqDist(drmX, drmY).collect
-    val mxDsqControl = new DenseMatrix(m, n) := { (r, c, _) ⇒ (mxX(r, ::) - 
mxY(c, ::)) ^= 2 sum }
-    (mxDsq - mxDsqControl).norm should be < 1e-7
-  }
-
-  test("dsqDist(X)") {
-    val m = 100
-    val d = 7
-    val mxX = Matrices.symmetricUniformView(m, d, 12345).cloned -= 5
-    val drmX = drmParallelize(mxX, 3)
-
-    val mxDsq = dsqDist(drmX).collect
-    val mxDsqControl = sqDist(drmX)
-    (mxDsq - mxDsqControl).norm should be < 1e-7
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeSuiteBase.scala 
b/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeSuiteBase.scala
deleted file mode 100644
index 41814d8..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/DrmLikeSuiteBase.scala
+++ /dev/null
@@ -1,74 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.drm
-
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-import org.apache.mahout.math._
-import scalabindings._
-import RLikeOps._
-import scala.reflect.ClassTag
-
-/** Common DRM tests to be run by all distributed engines. */
-trait DrmLikeSuiteBase extends DistributedMahoutSuite with Matchers {
-  this: FunSuite =>
-
-  test("DRM DFS i/o (local)") {
-
-    val uploadPath = TmpDir + "UploadedDRM"
-
-    val inCoreA = dense((1, 2, 3), (3, 4, 5))
-    val drmA = drmParallelize(inCoreA)
-
-    drmA.dfsWrite(path = uploadPath)
-
-    println(inCoreA)
-
-    // Load back from hdfs
-    val drmB = drmDfsRead(path = uploadPath)
-
-    // Make sure keys are correctly identified as ints
-    drmB.checkpoint(CacheHint.NONE).keyClassTag shouldBe ClassTag.Int
-
-    // Collect back into in-core
-    val inCoreB = drmB.collect
-
-    // Print out to see what it is we collected:
-    println(inCoreB)
-
-    (inCoreA - inCoreB).norm should be < 1e-7
-  }
-
-  test("DRM parallelizeEmpty") {
-
-    val drmEmpty = drmParallelizeEmpty(100, 50)
-
-    // collect back into in-core
-    val inCoreEmpty = drmEmpty.collect
-
-    inCoreEmpty.sum.abs should be < 1e-7
-    drmEmpty.nrow shouldBe 100
-    drmEmpty.ncol shouldBe 50
-    inCoreEmpty.nrow shouldBe 100
-    inCoreEmpty.ncol shouldBe 50
-
-  }
-
-
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/drm/RLikeDrmOpsSuiteBase.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/RLikeDrmOpsSuiteBase.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/drm/RLikeDrmOpsSuiteBase.scala
deleted file mode 100644
index 5d6d142..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/drm/RLikeDrmOpsSuiteBase.scala
+++ /dev/null
@@ -1,655 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.drm
-
-import org.apache.mahout.test.DistributedMahoutSuite
-import org.scalatest.{FunSuite, Matchers}
-import org.apache.mahout.math._
-import scalabindings._
-import RLikeOps._
-import RLikeDrmOps._
-import decompositions._
-import org.apache.mahout.math.drm.logical._
-import org.apache.mahout.math.drm.logical.OpAtx
-import org.apache.mahout.math.drm.logical.OpAtB
-import org.apache.mahout.math.drm.logical.OpAtA
-import org.apache.mahout.math.drm.logical.OpAewUnaryFuncFusion
-
-import scala.util.Random
-
-/** Common engine tests for distributed R-like DRM operations */
-trait RLikeDrmOpsSuiteBase extends DistributedMahoutSuite with Matchers {
-  this: FunSuite =>
-
-  val epsilon = 1E-5
-
-  test("A.t") {
-
-    val inCoreA = dense((1, 2, 3), (3, 4, 5))
-
-    val A = drmParallelize(inCoreA)
-
-    val inCoreAt = A.t.collect
-
-    // Assert first norm of difference is less than error margin.
-    (inCoreAt - inCoreA.t).norm should be < epsilon
-
-  }
-
-  test("C = A %*% B") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-
-    // Actual
-    val inCoreCControl = inCoreA %*% inCoreB
-
-    // Distributed operation
-    val C = A %*% B
-    val inCoreC = C.collect
-    println(inCoreC)
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-
-    // We also should be able to collect via implicit checkpoint
-    val inCoreC2 = C.collect
-    println(inCoreC2)
-
-    (inCoreC2 - inCoreCControl).norm should be < 1E-10
-
-  }
-
-  test("C = A %*% B mapBlock {}") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-    val B = drmParallelize(inCoreB, numPartitions = 2).checkpoint()
-
-    // Actual
-    val inCoreCControl = inCoreA %*% inCoreB
-
-    A.colSums()
-    B.colSums()
-
-
-    val x = drmBroadcast(dvec(0, 0))
-    val x2 = drmBroadcast(dvec(0, 0))
-    // Distributed operation
-    val C = (B.t %*% A.t).t.mapBlock() {
-      case (keys, block) =>
-        for (row <- 0 until block.nrow) block(row, ::) += x.value + x2
-        keys -> block
-    }
-
-    val inCoreC = C checkpoint CacheHint.NONE collect;
-    println(inCoreC)
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-
-    // We also should be able to collect via implicit checkpoint
-    val inCoreC2 = C.collect
-    println(inCoreC2)
-
-    (inCoreC2 - inCoreCControl).norm should be < 1E-10
-
-    val inCoreQ = dqrThin(C)._1.collect
-
-    printf("Q=\n%s\n", inCoreQ)
-
-    // Assert unit-orthogonality
-    ((inCoreQ(::, 0) dot inCoreQ(::, 0)) - 1.0).abs should be < 1e-10
-    (inCoreQ(::, 0) dot inCoreQ(::, 1)).abs should be < 1e-10
-
-  }
-
-  test("C = A %*% B incompatible B keys") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-        // Re-key B into DrmLike[String] instead of [Int]
-        .mapBlock()({
-      case (keys, block) => keys.map(_.toString) -> block
-    })
-
-    val C = A %*% B
-
-    intercept[IllegalArgumentException] {
-      // This plan must not compile
-      C.checkpoint()
-    }
-  }
-
-  test("Spark-specific C = At %*% B , join") {
-
-    val inCoreA = dense((1, 2), (3, 4), (-3, -5))
-    val inCoreB = dense((3, 5), (4, 6), (0, 1))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-
-    val C = A.t %*% B
-
-    mahoutCtx.optimizerRewrite(C) should equal(OpAtB[Int](A, B))
-
-    val inCoreC = C.collect
-    val inCoreControlC = inCoreA.t %*% inCoreB
-
-    (inCoreC - inCoreControlC).norm should be < 1E-10
-
-  }
-
-
-  test("C = At %*% B , join, String-keyed") {
-
-    val inCoreA = dense((1, 2), (3, 4), (-3, -5))
-    val inCoreB = dense((3, 5), (4, 6), (0, 1))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-        .mapBlock()({
-      case (keys, block) => keys.map(_.toString) -> block
-    })
-
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-        .mapBlock()({
-      case (keys, block) => keys.map(_.toString) -> block
-    })
-
-    val C = A.t %*% B
-
-    mahoutCtx.optimizerRewrite(C) should equal(OpAtB[String](A, B))
-
-    val inCoreC = C.collect
-    val inCoreControlC = inCoreA.t %*% inCoreB
-
-    (inCoreC - inCoreControlC).norm should be < 1E-10
-
-  }
-
-  test("C = At %*% B , zippable, String-keyed") {
-
-    val inCoreA = dense((1, 2), (3, 4), (-3, -5))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-        .mapBlock()({
-      case (keys, block) ⇒ keys.map(_.toString) → block
-    })
-
-    // Dense-A' x sparse-B used to produce error. We sparsify B here to test 
this as well.
-    val B = (A + 1.0).mapBlock() { case (keys, block) ⇒
-      keys → (new SparseRowMatrix(block.nrow, block.ncol) := block)
-    }
-
-    val C = A.t %*% B
-
-    mahoutCtx.optimizerRewrite(C) should equal(OpAtB[String](A, B))
-
-    val inCoreC = C.collect
-    val inCoreControlC = inCoreA.t %*% (inCoreA + 1.0)
-
-    (inCoreC - inCoreControlC).norm should be < 1E-10
-
-  }
-
-  test ("C = A %*% B.t") {
-
-    val inCoreA = dense((1, 2), (3, 4), (-3, -5))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-
-    val B = A + 1.0
-
-    val C = A %*% B.t
-
-    mahoutCtx.optimizerRewrite(C) should equal(OpABt[Int](A, B))
-
-    val inCoreC = C.collect
-    val inCoreControlC = inCoreA %*% (inCoreA + 1.0).t
-
-    (inCoreC - inCoreControlC).norm should be < 1E-10
-
-  }
-
-  test("C = A %*% inCoreB") {
-
-    val inCoreA = dense((1, 2, 3), (3, 4, 5), (4, 5, 6), (5, 6, 7))
-    val inCoreB = dense((3, 5, 7, 10), (4, 6, 9, 10), (5, 6, 7, 7))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val C = A %*% inCoreB
-
-    val inCoreC = C.collect
-    val inCoreCControl = inCoreA %*% inCoreB
-
-    println(inCoreC)
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-
-  }
-
-  test("C = inCoreA %*%: B") {
-
-    val inCoreA = dense((1, 2, 3), (3, 4, 5), (4, 5, 6), (5, 6, 7))
-    val inCoreB = dense((3, 5, 7, 10), (4, 6, 9, 10), (5, 6, 7, 7))
-
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-    val C = inCoreA %*%: B
-
-    val inCoreC = C.collect
-    val inCoreCControl = inCoreA %*% inCoreB
-
-    println(inCoreC)
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-
-  }
-
-  test("C = A.t %*% A") {
-    val inCoreA = dense((1, 2, 3), (3, 4, 5), (4, 5, 6), (5, 6, 7))
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-
-    val AtA = A.t %*% A
-
-    // Assert optimizer detects square
-    mahoutCtx.optimizerRewrite(action = AtA) should equal(OpAtA(A))
-
-    val inCoreAtA = AtA.collect
-    val inCoreAtAControl = inCoreA.t %*% inCoreA
-
-    (inCoreAtA - inCoreAtAControl).norm should be < 1E-10
-  }
-
-  test("C = A.t %*% A fat non-graph") {
-    // Hack the max in-mem size for this test
-    System.setProperty("mahout.math.AtA.maxInMemNCol", "540")
-
-    val inCoreA = Matrices.uniformView(400, 550, 1234)
-    val A = drmParallelize(m = inCoreA, numPartitions = 2)
-
-    val AtA = A.t %*% A
-
-    // Assert optimizer detects square
-    mahoutCtx.optimizerRewrite(action = AtA) should equal(OpAtA(A))
-
-    val inCoreAtA = AtA.collect
-    val inCoreAtAControl = inCoreA.t %*% inCoreA
-
-    (inCoreAtA - inCoreAtAControl).norm should be < 1E-10
-  }
-
-  test("C = A.t %*% A non-int key") {
-    val inCoreA = dense((1, 2, 3), (3, 4, 5), (4, 5, 6), (5, 6, 7))
-    val AintKeyd = drmParallelize(m = inCoreA, numPartitions = 2)
-    val A = AintKeyd.mapBlock() {
-      case (keys, block) => keys.map(_.toString) -> block
-    }
-
-    val AtA = A.t %*% A
-
-    // Assert optimizer detects square
-    mahoutCtx.optimizerRewrite(action = AtA) should equal(OpAtA(A))
-
-    val inCoreAtA = AtA.collect
-    val inCoreAtAControl = inCoreA.t %*% inCoreA
-
-    (inCoreAtA - inCoreAtAControl).norm should be < 1E-10
-  }
-
-  test("C = A + B") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-
-    val C = A + B
-    val inCoreC = C.collect
-
-    // Actual
-    val inCoreCControl = inCoreA + inCoreB
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-  }
-
-  test("C = A + B, identically partitioned") {
-
-    val inCoreA = dense((1, 2, 3), (3, 4, 5), (5, 6, 7))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-
-//    printf("A.nrow=%d.\n", A.rdd.count())
-
-    // Create B which would be identically partitioned to A. mapBlock() by 
default will do the trick.
-    val B = A.mapBlock() {
-      case (keys, block) =>
-        val bBlock = block.like() := { (r, c, v) => util.Random.nextDouble()}
-        keys -> bBlock
-    }
-        // Prevent repeated computation non-determinism
-        // removing this checkpoint() will cause the same error in spark Tests
-        // as we're seeing in Flink with this test.  ie  
util.Random.nextDouble()
-        // is being called more than once (note that it is not seeded in the 
closure)
-        .checkpoint()
-
-    val inCoreB = B.collect
-
-    printf("A=\n%s\n", inCoreA)
-    printf("B=\n%s\n", inCoreB)
-
-    val C = A + B
-
-    val inCoreC = C.collect
-
-    printf("C=\n%s\n", inCoreC)
-
-    // Actual
-    val inCoreCControl = inCoreA + inCoreB
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-  }
-
-
-  test("C = A + B side test 1") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2)
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-
-    val C = A + B
-    val inCoreC = C.collect
-
-    val inCoreD = (A + B).collect
-
-    // Actual
-    val inCoreCControl = inCoreA + inCoreB
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-    (inCoreD - inCoreCControl).norm should be < 1E-10
-  }
-
-  test("C = A + B side test 2") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-
-    val C = A + B
-    val inCoreC = C.collect
-
-    val inCoreD = (A + B).collect
-
-    // Actual
-    val inCoreCControl = inCoreA + inCoreB
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-    (inCoreD - inCoreCControl).norm should be < 1E-10
-  }
-
-  test("C = A + B side test 3") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-
-    val B = drmParallelize(inCoreB, numPartitions = 2)
-    //    val A = (drmParallelize(inCoreA, numPartitions = 2) + 
B).checkpoint(CacheHint.MEMORY_ONLY_SER)
-    val A = (drmParallelize(inCoreA, numPartitions = 2) + 
B).checkpoint(CacheHint.MEMORY_ONLY)
-
-    val C = A + B
-    val inCoreC = C.collect
-
-    val inCoreD = (A + B).collect
-
-    // Actual
-    val inCoreCControl = inCoreA + inCoreB * 2.0
-
-    (inCoreC - inCoreCControl).norm should be < 1E-10
-    (inCoreD - inCoreCControl).norm should be < 1E-10
-  }
-
-  test("Ax") {
-    val inCoreA = dense(
-      (1, 2),
-      (3, 4),
-      (20, 30)
-    )
-    val x = dvec(10, 3)
-
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    val ax = (drmA %*% x).collect(::, 0)
-
-    ax should equal(inCoreA %*% x)
-  }
-
-  test("A'x") {
-    val inCoreA = dense(
-      (1, 2),
-      (3, 4),
-      (20, 30)
-    )
-    val x = dvec(10, 3, 4)
-
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    mahoutCtx.optimizerRewrite(drmA.t %*% x) should equal(OpAtx(drmA, x))
-
-    val atx = (drmA.t %*% x).collect(::, 0)
-
-    atx should equal(inCoreA.t %*% x)
-  }
-
-  test("colSums, colMeans") {
-    val inCoreA = dense(
-      (1, 2),
-      (3, 4),
-      (20, 30)
-    )
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    drmA.colSums() should equal(inCoreA.colSums())
-    drmA.colMeans() should equal(inCoreA.colMeans())
-  }
-
-  test("rowSums, rowMeans") {
-    val inCoreA = dense(
-      (1, 2),
-      (3, 4),
-      (20, 30)
-    )
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    drmA.rowSums() should equal(inCoreA.rowSums())
-    drmA.rowMeans() should equal(inCoreA.rowMeans())
-  }
-
-  test("A.diagv") {
-    val inCoreA = dense(
-      (1, 2, 3),
-      (3, 4, 5),
-      (20, 30, 7)
-    )
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    drmA.diagv should equal(inCoreA.diagv)
-  }
-
-  test("numNonZeroElementsPerColumn") {
-    val inCoreA = dense(
-      (0, 2),
-      (3, 0),
-      (0, -30)
-
-    )
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    drmA.numNonZeroElementsPerColumn() should 
equal(inCoreA.numNonZeroElementsPerColumn())
-  }
-
-  test("C = A cbind B, cogroup") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val inCoreB = dense((3, 5), (4, 6))
-    val controlC = dense((1, 2, 3, 5), (3, 4, 4, 6))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-    val B = drmParallelize(inCoreB, numPartitions = 2).checkpoint()
-
-    (A.cbind(B) -: controlC).norm should be < 1e-10
-
-  }
-
-  test("C = A cbind B, zip") {
-
-    val inCoreA = dense((1, 2), (3, 4))
-    val controlC = dense((1, 2, 2, 3), (3, 4, 4, 5))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-
-    (A.cbind(A + 1.0) -: controlC).norm should be < 1e-10
-
-  }
-
-  test("B = 1 cbind A") {
-    val inCoreA = dense((1, 2), (3, 4))
-    val control = dense((1, 1, 2), (1, 3, 4))
-
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    (control - (1 cbind drmA) ).norm should be < 1e-10
-  }
-
-  test("B = A cbind 1") {
-    val inCoreA = dense((1, 2), (3, 4))
-    val control = dense((1, 2, 1), (3, 4, 1))
-
-    val drmA = drmParallelize(inCoreA, numPartitions = 2)
-
-    (control - (drmA cbind 1) ).norm should be < 1e-10
-  }
-
-  test("B = A + 1.0") {
-    val inCoreA = dense((1, 2), (2, 3), (3, 4))
-    val controlB = inCoreA + 1.0
-
-    val drmB = drmParallelize(m = inCoreA, numPartitions = 2) + 1.0
-
-    (drmB -: controlB).norm should be < 1e-10
-  }
-  
-  test("C = A rbind B") {
-
-    val inCoreA = dense((1, 2), (3, 5))
-    val inCoreB = dense((7, 11), (13, 17))
-    val controlC = dense((1, 2), (3, 5), (7, 11), (13, 17))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-    val B = drmParallelize(inCoreB, numPartitions = 2).checkpoint()
-    
-    (A.rbind(B) -: controlC).norm should be < 1e-10
-  }
-
-  test("C = A rbind B, with empty") {
-
-    val inCoreA = dense((1, 2), (3, 5))
-    val emptyB = drmParallelizeEmpty(nrow = 2, ncol = 2, numPartitions = 2)
-    val controlC = dense((1, 2), (3, 5), (0, 0), (0, 0))
-
-    val A = drmParallelize(inCoreA, numPartitions = 2).checkpoint()
-
-    (A.rbind(emptyB) -: controlC).norm should be < 1e-10
-  }
-
-  /** Test dsl overloads over scala operations over matrices */
-  test("scalarOps") {
-    val drmA = drmParallelize(m = dense(
-      (1, 2, 3),
-      (3, 4, 5),
-      (7, 8, 9)
-    ),
-      numPartitions = 2)
-
-    (10 * drmA - (10 *: drmA)).norm shouldBe 0
-
-  }
-
-  test("A * A -> sqr(A) rewrite ") {
-    val mxA = dense(
-      (1, 2, 3),
-      (3, 4, 5),
-      (7, 8, 9)
-    )
-
-    val mxAAControl = mxA * mxA
-
-    val drmA = drmParallelize(mxA, 2)
-    val drmAA = drmA * drmA
-
-    val optimized = drmAA.context.engine.optimizerRewrite(drmAA)
-    println(s"optimized:$optimized")
-    optimized.isInstanceOf[OpAewUnaryFunc[Int]] shouldBe true
-
-    (mxAAControl -= drmAA).norm should be < 1e-10
-  }
-
-  test("B = 1 + 2 * (A * A) ew unary function fusion") {
-    val mxA = dense(
-      (1, 2, 3),
-      (3, 0, 5)
-    )
-    val controlB = mxA.cloned := { (x) => 1 + 2 * x * x}
-
-    val drmA = drmParallelize(mxA, 2)
-
-    // We need to use parenthesis, otherwise optimizer will see it as (2A) * 
(A) and that would not
-    // be rewritten as 2 * sqr(A). It is not that clever (yet) to try 
commutativity optimizations.
-    val drmB = 1 + 2 * (drmA * drmA)
-
-    val optimized = mahoutCtx.engine.optimizerRewrite(drmB)
-    println(s"optimizer rewritten:$optimized")
-    optimized.isInstanceOf[OpAewUnaryFuncFusion[Int]] shouldBe true
-
-    (controlB - drmB).norm should be < 1e-10
-
-  }
-
-  test("functional apply()") {
-    val mxA = sparse (
-      (1 -> 3) :: (7 -> 7) :: Nil,
-      (4 -> 5) :: (5 -> 8) :: Nil
-    )
-
-    val mxAControl = mxA cloned
-    val drmA = drmParallelize(mxA)
-
-    (drmA(x => x + 1).collect - (mxAControl + 1)).norm should be < 1e-7
-    (drmA(x => x * 2).collect - (2 * mxAControl)).norm should be < 1e-7
-
-  }
-
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math-scala/src/test/scala/org/apache/mahout/math/scalabindings/MahoutCollectionsSuite.scala
----------------------------------------------------------------------
diff --git 
a/math-scala/src/test/scala/org/apache/mahout/math/scalabindings/MahoutCollectionsSuite.scala
 
b/math-scala/src/test/scala/org/apache/mahout/math/scalabindings/MahoutCollectionsSuite.scala
deleted file mode 100644
index cf62eea..0000000
--- 
a/math-scala/src/test/scala/org/apache/mahout/math/scalabindings/MahoutCollectionsSuite.scala
+++ /dev/null
@@ -1,42 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.scalabindings
-
-import org.apache.mahout.math.Vector
-import org.apache.mahout.test.MahoutSuite
-import org.scalatest.FunSuite
-import org.apache.mahout.math.scalabindings.MahoutCollections._
-import org.apache.mahout.math._
-import org.apache.mahout.math.scalabindings.RLikeOps._
-
-class MahoutCollectionsSuite extends FunSuite with MahoutSuite {
-  test("toArray") {
-    val a = Array(1.0, 2.0, 3.0)
-    val v: Vector = new org.apache.mahout.math.DenseVector(a)
-
-    v.toArray.deep shouldBe a.deep
-
-  }
-
-  test("toMap") {
-    val m = Map( (1 -> 1.0), (3 -> 3.0))
-    val sv = svec(m)
-
-    sv.toMap shouldBe m
-  }
-}

Reply via email to