http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/list/package-info.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/list/package-info.java 
b/math/src/main/java/org/apache/mahout/math/list/package-info.java
deleted file mode 100644
index 43b5c4b..0000000
--- a/math/src/main/java/org/apache/mahout/math/list/package-info.java
+++ /dev/null
@@ -1,144 +0,0 @@
-/**
- * <HTML>
- * <BODY>
- * Resizable lists holding objects or primitive data types such as 
<tt>int</tt>,
- * <tt>double</tt>, etc. For non-resizable lists (1-dimensional matrices) see
- * package <code>org.apache.mahout.math.matrix</code>.<p></p>
- * <h1><a name="Overview"></a>Getting Started</h1>
- * <h2>1. Overview</h2>
- * <p>The list package offers flexible object oriented abstractions modelling 
dynamically
- * resizing lists holding objects or primitive data types such as <tt>int</tt>,
- * <tt>double</tt>, etc. It is designed to be scalable in terms of performance
- * and memory requirements.</p>
- * <p>Features include: </p>
- * <p></p>
- * <ul>
- * <li>Lists operating on objects as well as all primitive data types such as 
<tt>int</tt>,
- * <tt>double</tt>, etc.
- * </li>
- * <li>Compact representations</li>
- * <li>A number of general purpose list operations including: adding, 
inserting,
- * removing, iterating, searching, sorting, extracting ranges and copying. All
- * operations are designed to perform well on mass data.
- * </li>
- * <li>Support for quick access to list elements. This is achieved by 
bounds-checking
- * and non-bounds-checking accessor methods as well as zero-copy 
transformations
- * to primitive arrays such as <tt>int[]</tt>, <tt>double[]</tt>, etc.
- * </li>
- * <li>Allows to use high level algorithms on primitive data types without any
- * space and time overhead. Operations on primitive arrays, Colt lists and JAL
- * algorithms can freely be mixed at zero copy overhead.
- * </li>
- * </ul>
- * <p>File-based I/O can be achieved through the standard Java built-in 
serialization
- * mechanism. All classes implement the {@link java.io.Serializable} interface.
- * However, the toolkit is entirely decoupled from advanced I/O. It provides 
data
- * structures and algorithms only.
- * <p> This toolkit borrows concepts and terminology from the Javasoft <a
- * 
href="http://www.javasoft.com/products/jdk/1.2/docs/guide/collections/index.html";>
- * Collections framework</a> written by Josh Bloch and introduced in JDK 1.2.
- * <h2>2. Introduction</h2>
- * <p>Lists are fundamental to virtually any application. Large scale 
resizable lists
- * are, for example, used in scientific computations, simulations database 
management
- * systems, to name just a few.</p>
- * <h2></h2>
- * <p>A list is a container holding elements that can be accessed via 
zero-based
- * indexes. Lists may be implemented in different ways (most commonly with 
arrays).
- * A resizable list automatically grows as elements are added. The lists of 
this
- * package do not automatically shrink. Shrinking needs to be triggered by 
explicitly
- * calling <tt>trimToSize()</tt> methods.</p>
- * <p><i>Growing policy</i>: A list implemented with arrays initially has a 
certain
- * <tt>initialCapacity</tt> - per default 10 elements, but customizable upon 
instance
- * construction. As elements are added, this capacity may nomore be sufficient.
- * When a list is automatically grown, its capacity is expanded to 
<tt>1.5*currentCapacity</tt>.
- * Thus, excessive resizing (involving copying) is avoided.</p>
- * <h4>Copying</h4>
- * <p>
- * <p>Any list can be copied. A copy is <i>equal</i> to the original but 
entirely
- * independent of the original. So changes in the copy are not reflected in the
- * original, and vice-versa.
- * <h2>3. Organization of this package</h2>
- * <p>Class naming follows the schema 
<tt>&lt;ElementType&gt;&lt;ImplementationTechnique&gt;List</tt>.
- * For example, we have a {@link org.apache.mahout.math.list.DoubleArrayList}, 
which is a list
- * holding <tt>double</tt> elements implemented with <tt>double</tt>[] arrays.
- * </p>
- * <p>The classes for lists of a given value type are derived from a common 
abstract
- * base class tagged <tt>Abstract&lt;ElementType&gt;</tt><tt>List</tt>. For 
example,
- * all lists operating on <tt>double</tt> elements are derived from
- * {@link org.apache.mahout.math.list.AbstractDoubleList},
- * which in turn is derived from an abstract base class tying together all 
lists
- * regardless of value type, {@link org.apache.mahout.math.list.AbstractList}. 
The abstract
- * base classes provide skeleton implementations for all but few methods. 
Experimental
- * data layouts (such as compressed, sparse, linked, etc.) can easily be 
implemented
- * and inherit a rich set of functionality. Have a look at the javadoc <a 
href="package-tree.html">tree
- * view</a> to get the broad picture.</p>
- * <h2>4. Example usage</h2>
- * <p>The following snippet fills a list, randomizes it, extracts the first 
half
- * of the elements, sums them up and prints the result. It is implemented 
entirely
- * with accessor methods.</p>
- * <table>
- * <td class="PRE">
- * <pre>
- * int s = 1000000;<br>AbstractDoubleList list = new DoubleArrayList();
- * for (int i=0; i&lt;s; i++) { list.add((double)i); }
- * list.shuffle();
- * AbstractDoubleList part = list.partFromTo(0,list.size()/2 - 1);
- * double sum = 0.0;
- * for (int i=0; i&lt;part.size(); i++) { sum += part.get(i); }
- * log.info(sum);
- * </pre>
- * </td>
- * </table>
- * <p> For efficiency, all classes provide back doors to enable 
getting/setting the
- * backing array directly. In this way, the high level operations of these 
classes
- * can be used where appropriate, and one can switch to <tt>[]</tt>-array index
- * notations where necessary. The key methods for this are <tt>public 
&lt;ElementType&gt;[]
- * elements()</tt> and <tt>public void elements(&lt;ElementType&gt;[])</tt>. 
The
- * former trustingly returns the array it internally keeps to store the 
elements.
- * Holding this array in hand, we can use the <tt>[]</tt>-array operator to
- * perform iteration over large lists without needing to copy the array or 
paying
- * the performance penalty introduced by accessor methods. Alternatively any 
JAL
- * algorithm (or other algorithm) can operate on the returned primitive array.
- * The latter method forces a list to internally hold a user provided array. 
Using
- * this approach one can avoid needing to copy the elements into the list.
- * <p>As a consequence, operations on primitive arrays, Colt lists and JAL 
algorithms
- * can freely be mixed at zero-copy overhead.
- * <p> Note that such special treatment certainly breaks encapsulation. This 
functionality
- * is provided for performance reasons only and should only be used when 
absolutely
- * necessary. Here is the above example in mixed notation:
- * <table>
- * <td class="PRE">
- * <pre>
- * int s = 1000000;<br>DoubleArrayList list = new DoubleArrayList(s); // 
list.size()==0, capacity==s
- * list.setSize(s); // list.size()==s<br>double[] values = list.elements();
- * // zero copy, values.length==s<br>for (int i=0; i&lt;s; i++) { 
values[i]=(double)i; }
- * list.shuffle();
- * double sum = 0.0;
- * int limit = values.length/2;
- * for (int i=0; i&lt;limit; i++) { sum += values[i]; }
- * log.info(sum);
- * </pre>
- * </td>
- * </table>
- * <p> Or even more compact using lists as algorithm objects:
- * <table>
- * <td class="PRE">
- * <pre>
- * int s = 1000000;<br>double[] values = new double[s];
- * for (int i=0; i&lt;s; i++) { values[i]=(double)i; }
- * new DoubleArrayList(values).shuffle(); // zero-copy, shuffle via back door
- * double sum = 0.0;
- * int limit = values.length/2;
- * for (int i=0; i&lt;limit; i++) { sum += values[i]; }
- * log.info(sum);
- * </pre>
- * </td>
- * </table>
- * <p>
- * <h2>5. Notes </h2>
- * <p>The quicksorts and mergesorts are the JDK 1.2 V1.26 algorithms, modified 
as
- * necessary to operate on the given data types.
- * </BODY>
- * </HTML>
- */
-package org.apache.mahout.math.list;

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/map/HashFunctions.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/map/HashFunctions.java 
b/math/src/main/java/org/apache/mahout/math/map/HashFunctions.java
deleted file mode 100644
index b749307..0000000
--- a/math/src/main/java/org/apache/mahout/math/map/HashFunctions.java
+++ /dev/null
@@ -1,115 +0,0 @@
-/*
-Copyright 1999 CERN - European Organization for Nuclear Research.
-Permission to use, copy, modify, distribute and sell this software and its 
documentation for any purpose 
-is hereby granted without fee, provided that the above copyright notice appear 
in all copies and 
-that both that copyright notice and this permission notice appear in 
supporting documentation. 
-CERN makes no representations about the suitability of this software for any 
purpose. 
-It is provided "as is" without expressed or implied warranty.
-*/
-package org.apache.mahout.math.map;
-
-
-/**
- * Provides various hash functions.
- */
-public final class HashFunctions {
-
-  /**
-   * Utility class pattern: all static members, no inheritance.
-   */
-  private HashFunctions() {
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(char value) {
-    return value;
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(double value) {
-    long bits = Double.doubleToLongBits(value);
-    return (int) (bits ^ (bits >>> 32));
-
-    //return (int) Double.doubleToLongBits(value*663608941.737);
-    // this avoids excessive hashCollisions in the case values are of the form 
(1.0, 2.0, 3.0, ...)
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(float value) {
-    return Float.floatToIntBits(value * 663608941.737f);
-    // this avoids excessive hashCollisions in the case values are of the form 
(1.0, 2.0, 3.0, ...)
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   * The hashcode computation is similar to the last step
-   * of MurMurHash3.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(int value) {
-    int h = value;
-    h ^= h >>> 16;
-    h *= 0x85ebca6b;
-    h ^= h >>> 13;
-    h *= 0xc2b2ae35;
-    h ^= h >>> 16;
-    return h;
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(long value) {
-    return (int) (value ^ (value >> 32));
-    /*
-    value &= 0x7FFFFFFFFFFFFFFFL; // make it >=0 
(0x7FFFFFFFFFFFFFFFL==Long.MAX_VALUE)
-    int hashCode = 0;
-    do hashCode = 31*hashCode + (int) (value%10);
-    while ((value /= 10) > 0);
-
-    return 28629151*hashCode; // spread even further; h*31^5
-    */
-  }
-
-  /**
-   * Returns a hashcode for the specified object.
-   *
-   * @return a hash code value for the specified object.
-   */
-  public static int hash(Object object) {
-    return object == null ? 0 : object.hashCode();
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(short value) {
-    return value;
-  }
-
-  /**
-   * Returns a hashcode for the specified value.
-   *
-   * @return a hash code value for the specified value.
-   */
-  public static int hash(boolean value) {
-    return value ? 1231 : 1237;
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/map/OpenHashMap.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/map/OpenHashMap.java 
b/math/src/main/java/org/apache/mahout/math/map/OpenHashMap.java
deleted file mode 100644
index 0efca4b..0000000
--- a/math/src/main/java/org/apache/mahout/math/map/OpenHashMap.java
+++ /dev/null
@@ -1,652 +0,0 @@
-/**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
-
-/*
-Copyright � 1999 CERN - European Organization for Nuclear Research.
-Permission to use, copy, modify, distribute and sell this software and its 
documentation for any purpose 
-is hereby granted without fee, provided that the above copyright notice appear 
in all copies and 
-that both that copyright notice and this permission notice appear in 
supporting documentation. 
-CERN makes no representations about the suitability of this software for any 
purpose. 
-It is provided "as is" without expressed or implied warranty.
-*/
-package org.apache.mahout.math.map;
-
-import java.util.ArrayList;
-import java.util.Arrays;
-import java.util.Collection;
-import java.util.List;
-import java.util.Map;
-import java.util.Set;
-
-import org.apache.mahout.math.function.ObjectObjectProcedure;
-import org.apache.mahout.math.function.ObjectProcedure;
-import org.apache.mahout.math.set.AbstractSet;
-import org.apache.mahout.math.set.OpenHashSet;
-
-/**
-  * Open hash map. This implements Map, but it does not respect several 
aspects of the Map contract
-  * that impose the very sorts of performance penalities that this class 
exists to avoid.
-  * {@link #entrySet}, {@link #values}, and {@link #keySet()} do 
<strong>not</strong> return
-  * collections that share storage with the main map, and changes to those 
returned objects
-  * are <strong>not</strong> reflected in the container.
- **/
-public class OpenHashMap<K,V> extends AbstractSet implements Map<K,V> {
-  protected static final byte FREE = 0;
-  protected static final byte FULL = 1;
-  protected static final byte REMOVED = 2;
-  protected static final Object NO_KEY_VALUE = null;
-
-  /** The hash table keys. */
-  protected Object[] table;
-
-  /** The hash table values. */
-  protected Object[] values;
-
-  /** The state of each hash table entry (FREE, FULL, REMOVED). */
-  protected byte[] state;
-
-  /** The number of table entries in state==FREE. */
-  protected int freeEntries;
-
-
-  /** Constructs an empty map with default capacity and default load factors. 
*/
-  public OpenHashMap() {
-    this(DEFAULT_CAPACITY);
-  }
-
-  /**
-   * Constructs an empty map with the specified initial capacity and default 
load factors.
-   *
-   * @param initialCapacity the initial capacity of the map.
-   * @throws IllegalArgumentException if the initial capacity is less than 
zero.
-   */
-  public OpenHashMap(int initialCapacity) {
-    this(initialCapacity, DEFAULT_MIN_LOAD_FACTOR, DEFAULT_MAX_LOAD_FACTOR);
-  }
-
-  /**
-   * Constructs an empty map with the specified initial capacity and the 
specified minimum and maximum load factor.
-   *
-   * @param initialCapacity the initial capacity.
-   * @param minLoadFactor   the minimum load factor.
-   * @param maxLoadFactor   the maximum load factor.
-   * @throws IllegalArgumentException if <tt>initialCapacity < 0 || 
(minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
-   *                                  (maxLoadFactor <= 0.0 || maxLoadFactor 
>= 1.0) || (minLoadFactor >=
-   *                                  maxLoadFactor)</tt>.
-   */
-  public OpenHashMap(int initialCapacity, double minLoadFactor, double 
maxLoadFactor) {
-    setUp(initialCapacity, minLoadFactor, maxLoadFactor);
-  }
-
-  /** Removes all (key,value) associations from the receiver. Implicitly calls 
<tt>trimToSize()</tt>. */
-  @Override
-  public void clear() {
-    Arrays.fill(this.state, FREE);
-    distinct = 0;
-    freeEntries = table.length; // delta
-    trimToSize();
-  }
-
-  /**
-   * Returns a deep copy of the receiver.
-   *
-   * @return a deep copy of the receiver.
-   */
-  @Override
-  @SuppressWarnings("unchecked")
-  public Object clone() {
-    OpenHashMap<K,V> copy = (OpenHashMap<K,V>) super.clone();
-    copy.table = copy.table.clone();
-    copy.values = copy.values.clone();
-    copy.state = copy.state.clone();
-    return copy;
-  }
-
-  /**
-   * Returns <tt>true</tt> if the receiver contains the specified key.
-   *
-   * @return <tt>true</tt> if the receiver contains the specified key.
-   */
-  @SuppressWarnings("unchecked")
-  @Override
-  public boolean containsKey(Object key) {
-    return indexOfKey((K)key) >= 0;
-  }
-
-  /**
-   * Returns <tt>true</tt> if the receiver contains the specified value.
-   *
-   * @return <tt>true</tt> if the receiver contains the specified value.
-   */
-  @SuppressWarnings("unchecked")
-  @Override
-  public boolean containsValue(Object value) {
-    return indexOfValue((V)value) >= 0;
-  }
-
-  /**
-   * Ensures that the receiver can hold at least the specified number of 
associations without needing to allocate new
-   * internal memory. If necessary, allocates new internal memory and 
increases the capacity of the receiver. <p> This
-   * method never need be called; it is for performance tuning only. Calling 
this method before <tt>put()</tt>ing a
-   * large number of associations boosts performance, because the receiver 
will grow only once instead of potentially
-   * many times and hash collisions get less probable.
-   *
-   * @param minCapacity the desired minimum capacity.
-   */
-  @Override
-  public void ensureCapacity(int minCapacity) {
-    if (table.length < minCapacity) {
-      int newCapacity = nextPrime(minCapacity);
-      rehash(newCapacity);
-    }
-  }
-
-  /**
-   * Applies a procedure to each key of the receiver, if any. Note: Iterates 
over the keys in no particular order.
-   * Subclasses can define a particular order, for example, "sorted by key". 
All methods which <i>can</i> be expressed
-   * in terms of this method (most methods can) <i>must guarantee</i> to use 
the <i>same</i> order defined by this
-   * method, even if it is no particular order. This is necessary so that, for 
example, methods <tt>keys</tt> and
-   * <tt>values</tt> will yield association pairs, not two uncorrelated lists.
-   *
-   * @param procedure the procedure to be applied. Stops iteration if the 
procedure returns <tt>false</tt>, otherwise
-   *                  continues.
-   * @return <tt>false</tt> if the procedure stopped before all keys where 
iterated over, <tt>true</tt> otherwise.
-   */
-  @SuppressWarnings("unchecked")
-  public boolean forEachKey(ObjectProcedure<K> procedure) {
-    for (int i = table.length; i-- > 0;) {
-      if (state[i] == FULL && !procedure.apply((K)table[i])) {
-        return false;
-      }
-    }
-    return true;
-  }
-
-  /**
-   * Applies a procedure to each (key,value) pair of the receiver, if any. 
Iteration order is guaranteed to be
-   * <i>identical</i> to the order used by method {@link 
#forEachKey(ObjectProcedure)}.
-   *
-   * @param procedure the procedure to be applied. Stops iteration if the 
procedure returns <tt>false</tt>, otherwise
-   *                  continues.
-   * @return <tt>false</tt> if the procedure stopped before all keys where 
iterated over, <tt>true</tt> otherwise.
-   */
-  @SuppressWarnings("unchecked")
-  public boolean forEachPair(ObjectObjectProcedure<K,V> procedure) {
-    for (int i = table.length; i-- > 0;) {
-      if (state[i] == FULL && !procedure.apply((K)table[i], (V)values[i])) {
-        return false;
-      }
-    }
-    return true;
-  }
-
-  /**
-   * Returns the value associated with the specified key. It is often a good 
idea to first check with {@link
-   * #containsKey(Object)} whether the given key has a value associated or 
not, i.e. whether there exists an association
-   * for the given key or not.
-   *
-   * @param key the key to be searched for.
-   * @return the value associated with the specified key; <tt>0</tt> if no 
such key is present.
-   */
-  @SuppressWarnings("unchecked")
-  @Override
-  public V get(Object key) {
-    int i = indexOfKey((K)key);
-    if (i < 0) {
-      return null;
-    } //not contained
-    return (V)values[i];
-  }
-
-  /**
-   * @param key the key to be added to the receiver.
-   * @return the index where the key would need to be inserted, if it is not 
already contained. Returns -index-1 if the
-   *         key is already contained at slot index. Therefore, if the 
returned index < 0, then it is already contained
-   *         at slot -index-1. If the returned index >= 0, then it is NOT 
already contained and should be inserted at
-   *         slot index.
-   */
-  protected int indexOfInsertion(K key) {
-    Object[] tab = table;
-    byte[] stat = state;
-    int length = tab.length;
-
-    int hash = key.hashCode() & 0x7FFFFFFF;
-    int i = hash % length;
-    int decrement = hash % (length - 2); // double hashing, see 
http://www.eece.unm.edu/faculty/heileman/hash/node4.html
-    //int decrement = (hash / length) % length;
-    if (decrement == 0) {
-      decrement = 1;
-    }
-
-    // stop if we find a removed or free slot, or if we find the key itself
-    // do NOT skip over removed slots (yes, open addressing is like that...)
-    while (stat[i] == FULL && !equalsMindTheNull(key, tab[i])) {
-      i -= decrement;
-      //hashCollisions++;
-      if (i < 0) {
-        i += length;
-      }
-    }
-
-    if (stat[i] == REMOVED) {
-      // stop if we find a free slot, or if we find the key itself.
-      // do skip over removed slots (yes, open addressing is like that...)
-      // assertion: there is at least one FREE slot.
-      int j = i;
-      while (stat[i] != FREE && (stat[i] == REMOVED || tab[i] != key)) {
-        i -= decrement;
-        //hashCollisions++;
-        if (i < 0) {
-          i += length;
-        }
-      }
-      if (stat[i] == FREE) {
-        i = j;
-      }
-    }
-
-
-    if (stat[i] == FULL) {
-      // key already contained at slot i.
-      // return a negative number identifying the slot.
-      return -i - 1;
-    }
-    // not already contained, should be inserted at slot i.
-    // return a number >= 0 identifying the slot.
-    return i;
-  }
-
-  /**
-   * @param key the key to be searched in the receiver.
-   * @return the index where the key is contained in the receiver, returns -1 
if the key was not found.
-   */
-  protected int indexOfKey(K key) {
-    Object[] tab = table;
-    byte[] stat = state;
-    int length = tab.length;
-
-    int hash = key.hashCode() & 0x7FFFFFFF;
-    int i = hash % length;
-    int decrement = hash % (length - 2); // double hashing, see 
http://www.eece.unm.edu/faculty/heileman/hash/node4.html
-    //int decrement = (hash / length) % length;
-    if (decrement == 0) {
-      decrement = 1;
-    }
-
-    // stop if we find a free slot, or if we find the key itself.
-    // do skip over removed slots (yes, open addressing is like that...)
-    while (stat[i] != FREE && (stat[i] == REMOVED || !equalsMindTheNull(key, 
tab[i]))) {
-      i -= decrement;
-      //hashCollisions++;
-      if (i < 0) {
-        i += length;
-      }
-    }
-
-    if (stat[i] == FREE) {
-      return -1;
-    } // not found
-    return i; //found, return index where key is contained
-  }
-
-  /**
-   * @param value the value to be searched in the receiver.
-   * @return the index where the value is contained in the receiver, returns 
-1 if the value was not found.
-   */
-  protected int indexOfValue(V value) {
-    Object[] val = values;
-    byte[] stat = state;
-
-    for (int i = stat.length; --i >= 0;) {
-      if (stat[i] == FULL && equalsMindTheNull(val[i], value)) {
-        return i;
-      }
-    }
-
-    return -1; // not found
-  }
-
-  /**
-   * Fills all keys contained in the receiver into the specified list. Fills 
the list, starting at index 0. After this
-   * call returns the specified list has a new size that equals 
<tt>this.size()</tt>. 
-   * This method can be used
-   * to iterate over the keys of the receiver.
-   *
-   * @param list the list to be filled, can have any size.
-   */
-  @SuppressWarnings("unchecked")
-  public void keys(List<K> list) {
-    list.clear();
-  
-
-    Object [] tab = table;
-    byte[] stat = state;
-
-    for (int i = tab.length; i-- > 0;) {
-      if (stat[i] == FULL) {
-        list.add((K)tab[i]);
-      }
-    }
-  }
-
-  /**
-   * Associates the given key with the given value. Replaces any old 
<tt>(key,someOtherValue)</tt> association, if
-   * existing.
-   *
-   * @param key   the key the value shall be associated with.
-   * @param value the value to be associated.
-   * @return <tt>true</tt> if the receiver did not already contain such a key; 
<tt>false</tt> if the receiver did
-   *         already contain such a key - the new value has now replaced the 
formerly associated value.
-   */
-  @SuppressWarnings("unchecked")
-  @Override
-  public V put(K key, V value) {
-    int i = indexOfInsertion(key);
-    if (i < 0) { //already contained
-      i = -i - 1;
-      V previous = (V) this.values[i];
-      this.values[i] = value;
-      return previous;
-    }
-
-    if (this.distinct > this.highWaterMark) {
-      int newCapacity = chooseGrowCapacity(this.distinct + 1, 
this.minLoadFactor, this.maxLoadFactor);
-      rehash(newCapacity);
-      return put(key, value);
-    }
-
-    this.table[i] = key;
-    this.values[i] = value;
-    if (this.state[i] == FREE) {
-      this.freeEntries--;
-    }
-    this.state[i] = FULL;
-    this.distinct++;
-
-    if (this.freeEntries < 1) { //delta
-      int newCapacity = chooseGrowCapacity(this.distinct + 1, 
this.minLoadFactor, this.maxLoadFactor);
-      rehash(newCapacity);
-    }
-
-    return null;
-  }
-
-  /**
-   * Rehashes the contents of the receiver into a new table with a smaller or 
larger capacity. This method is called
-   * automatically when the number of keys in the receiver exceeds the high 
water mark or falls below the low water
-   * mark.
-   */
-  @SuppressWarnings("unchecked")
-  protected void rehash(int newCapacity) {
-    int oldCapacity = table.length;
-    //if (oldCapacity == newCapacity) return;
-
-    Object[] oldTable = table;
-    Object[] oldValues = values;
-    byte[] oldState = state;
-
-    Object[] newTable = new Object[newCapacity];
-    Object[] newValues = new Object[newCapacity];
-    byte[] newState = new byte[newCapacity];
-
-    this.lowWaterMark = chooseLowWaterMark(newCapacity, this.minLoadFactor);
-    this.highWaterMark = chooseHighWaterMark(newCapacity, this.maxLoadFactor);
-
-    this.table = newTable;
-    this.values = newValues;
-    this.state = newState;
-    this.freeEntries = newCapacity - this.distinct; // delta
-
-    for (int i = oldCapacity; i-- > 0;) {
-      if (oldState[i] == FULL) {
-        Object element = oldTable[i];
-        int index = indexOfInsertion((K)element);
-        newTable[index] = element;
-        newValues[index] = oldValues[i];
-        newState[index] = FULL;
-      }
-    }
-  }
-
-  /**
-   * Removes the given key with its associated element from the receiver, if 
present.
-   *
-   * @param key the key to be removed from the receiver.
-   * @return <tt>true</tt> if the receiver contained the specified key, 
<tt>false</tt> otherwise.
-   */
-  @SuppressWarnings("unchecked")
-  @Override
-  public V remove(Object key) {
-    int i = indexOfKey((K)key);
-    if (i < 0) {
-      return null;
-    }
-    // key not contained
-    V removed = (V) values[i];
-
-    this.state[i] = REMOVED;
-    //this.values[i]=0; // delta
-    this.distinct--;
-
-    if (this.distinct < this.lowWaterMark) {
-      int newCapacity = chooseShrinkCapacity(this.distinct, 
this.minLoadFactor, this.maxLoadFactor);
-      rehash(newCapacity);
-    }
-
-    return removed;
-  }
-
-  /**
-   * Initializes the receiver.
-   *
-   * @param initialCapacity the initial capacity of the receiver.
-   * @param minLoadFactor   the minLoadFactor of the receiver.
-   * @param maxLoadFactor   the maxLoadFactor of the receiver.
-   * @throws IllegalArgumentException if <tt>initialCapacity < 0 || 
(minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
-   *                                  (maxLoadFactor <= 0.0 || maxLoadFactor 
>= 1.0) || (minLoadFactor >=
-   *                                  maxLoadFactor)</tt>.
-   */
-  @Override
-  protected void setUp(int initialCapacity, double minLoadFactor, double 
maxLoadFactor) {
-    int capacity = initialCapacity;
-    super.setUp(capacity, minLoadFactor, maxLoadFactor);
-    capacity = nextPrime(capacity);
-    if (capacity == 0) {
-      capacity = 1;
-    } // open addressing needs at least one FREE slot at any time.
-
-    this.table = new Object[capacity];
-    this.values = new Object[capacity];
-    this.state = new byte[capacity];
-
-    // memory will be exhausted long before this pathological case happens, 
anyway.
-    this.minLoadFactor = minLoadFactor;
-    if (capacity == PrimeFinder.LARGEST_PRIME) {
-      this.maxLoadFactor = 1.0;
-    } else {
-      this.maxLoadFactor = maxLoadFactor;
-    }
-
-    this.distinct = 0;
-    this.freeEntries = capacity; // delta
-
-    // lowWaterMark will be established upon first expansion.
-    // establishing it now (upon instance construction) would immediately make 
the table shrink upon first put(...).
-    // After all the idea of an "initialCapacity" implies violating 
lowWaterMarks when an object is young.
-    // See ensureCapacity(...)
-    this.lowWaterMark = 0;
-    this.highWaterMark = chooseHighWaterMark(capacity, this.maxLoadFactor);
-  }
-
-  /**
-   * Trims the capacity of the receiver to be the receiver's current size. 
Releases any superfluous internal memory. An
-   * application can use this operation to minimize the storage of the 
receiver.
-   */
-  @Override
-  public void trimToSize() {
-    // * 1.2 because open addressing's performance exponentially degrades 
beyond that point
-    // so that even rehashing the table can take very long
-    int newCapacity = nextPrime((int) (1 + 1.2 * size()));
-    if (table.length > newCapacity) {
-      rehash(newCapacity);
-    }
-  }
-
-  /**
-   * Access for unit tests.
-   * @param capacity
-   * @param minLoadFactor
-   * @param maxLoadFactor
-   */
-  void getInternalFactors(int[] capacity, 
-      double[] minLoadFactor, 
-      double[] maxLoadFactor) {
-    capacity[0] = table.length;
-    minLoadFactor[0] = this.minLoadFactor;
-    maxLoadFactor[0] = this.maxLoadFactor;
-  }
-
-  private class MapEntry implements Map.Entry<K,V> {
-    private final K key;
-    private final V value;
-    
-    MapEntry(K key, V value) {
-      this.key = key;
-      this.value = value;
-    }
-
-    @Override
-    public K getKey() {
-      return key;
-    }
-
-    @Override
-    public V getValue() {
-      return value;
-    }
-
-    @Override
-    public V setValue(V value) {
-      throw new UnsupportedOperationException("Map.Entry.setValue not 
supported for OpenHashMap");
-    }
-    
-  }
-
-  /**
-   * Allocate a set to contain Map.Entry objects for the pairs and return it.
-   */
-  @Override
-  public Set<java.util.Map.Entry<K,V>> entrySet() {
-    final Set<Entry<K, V>> entries = new OpenHashSet<>();
-    forEachPair(new ObjectObjectProcedure<K,V>() {
-      @Override
-      public boolean apply(K key, V value) {
-        entries.add(new MapEntry(key, value));
-        return true;
-      }
-    });
-    return entries;
-  }
-
-  /**
-   * Allocate a set to contain keys and return it.
-   * This violates the 'backing' provisions of the map interface.
-   */
-  @Override
-  public Set<K> keySet() {
-    final Set<K> keys = new OpenHashSet<>();
-    forEachKey(new ObjectProcedure<K>() {
-      @Override
-      public boolean apply(K element) {
-        keys.add(element);
-        return true;
-      }
-    });
-    return keys;
-  }
-
-  @Override
-  public void putAll(Map<? extends K,? extends V> m) {
-    for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
-      put(e.getKey(), e.getValue());
-    }
-  }
-
-  /**
-   * Allocate a list to contain the values and return it.
-   * This violates the 'backing' provision of the Map interface.
-   */
-  @Override
-  public Collection<V> values() {
-    final List<V> valueList = new ArrayList<>();
-    forEachPair(new ObjectObjectProcedure<K,V>() {
-      @Override
-      public boolean apply(K key, V value) {
-        valueList.add(value);
-        return true;
-      }
-    });
-    return valueList;
-  }
-
-  @SuppressWarnings("unchecked")
-  @Override
-  public boolean equals(Object obj) {
-    if (!(obj instanceof OpenHashMap)) {
-      return false;
-    }
-    final OpenHashMap<K,V> o = (OpenHashMap<K,V>) obj;
-    if (o.size() != size()) {
-      return false;
-    }
-    final boolean[] equal = new boolean[1];
-    equal[0] = true;
-    forEachPair(new ObjectObjectProcedure<K,V>() {
-      @Override
-      public boolean apply(K key, V value) {
-        Object ov = o.get(key);
-        if (!value.equals(ov)) {
-          equal[0] = false;
-          return false;
-        }
-        return true;
-      }
-    });
-    return equal[0];
-  }
-
-  @Override
-  public String toString() {
-    final StringBuilder sb = new StringBuilder();
-    sb.append('{');
-    forEachPair(new ObjectObjectProcedure<K,V>() {
-      @Override
-      public boolean apply(K key, V value) {
-        sb.append('[');
-        sb.append(key);
-        sb.append(" -> ");
-        sb.append(value);
-        sb.append("] ");
-        return true;
-      }
-    });
-    sb.append('}');
-    return sb.toString();
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/map/PrimeFinder.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/map/PrimeFinder.java 
b/math/src/main/java/org/apache/mahout/math/map/PrimeFinder.java
deleted file mode 100644
index b02611e..0000000
--- a/math/src/main/java/org/apache/mahout/math/map/PrimeFinder.java
+++ /dev/null
@@ -1,145 +0,0 @@
-/**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
-
-package org.apache.mahout.math.map;
-
-import java.util.Arrays;
-
-/**
- * Not of interest for users; only for implementors of hashtables.
- * Used to keep hash table capacities prime numbers.
- *
- * <p>Choosing prime numbers as hash table capacities is a good idea to keep 
them working fast,
- * particularly under hash table expansions.
- *
- * <p>However, JDK 1.2, JGL 3.1 and many other toolkits do nothing to keep 
capacities prime.
- * This class provides efficient means to choose prime capacities.
- *
- * <p>Choosing a prime is <tt>O(log 300)</tt> (binary search in a list of 300 
int's).
- * Memory requirements: 1 KB static memory.
- *
- */
-public final class PrimeFinder {
-
-  /** The largest prime this class can generate; currently equal to 
<tt>Integer.MAX_VALUE</tt>. */
-  public static final int LARGEST_PRIME = Integer.MAX_VALUE; //yes, it is 
prime.
-
-  /**
-   * The prime number list consists of 11 chunks. Each chunk contains prime 
numbers. A chunk starts with a prime P1. The
-   * next element is a prime P2. P2 is the smallest prime for which holds: P2 
>= 2*P1. The next element is P3, for which
-   * the same holds with respect to P2, and so on.
-   *
-   * Chunks are chosen such that for any desired capacity >= 1000 the list 
includes a prime number <= desired capacity *
-   * 1.11 (11%). For any desired capacity >= 200 the list includes a prime 
number <= desired capacity * 1.16 (16%). For
-   * any desired capacity >= 16 the list includes a prime number <= desired 
capacity * 1.21 (21%).
-   *
-   * Therefore, primes can be retrieved which are quite close to any desired 
capacity, which in turn avoids wasting
-   * memory. For example, the list includes 
1039,1117,1201,1277,1361,1439,1523,1597,1759,1907,2081. So if you need a
-   * prime >= 1040, you will find a prime <= 1040*1.11=1154.
-   *
-   * Chunks are chosen such that they are optimized for a hashtable 
growthfactor of 2.0; If your hashtable has such a
-   * growthfactor then, after initially "rounding to a prime" upon hashtable 
construction, it will later expand to prime
-   * capacities such that there exist no better primes.
-   *
-   * In total these are about 32*10=320 numbers -> 1 KB of static memory 
needed. If you are stingy, then delete every
-   * second or fourth chunk.
-   */
-
-  private static final int[] PRIME_CAPACITIES = {
-    //chunk #0
-    LARGEST_PRIME,
-
-    //chunk #1
-    5, 11, 23, 47, 97, 197, 397, 797, 1597, 3203, 6421, 12853, 25717, 51437, 
102877, 205759,
-    411527, 823117, 1646237, 3292489, 6584983, 13169977, 26339969, 52679969, 
105359939,
-    210719881, 421439783, 842879579, 1685759167,
-
-    //chunk #2
-    433, 877, 1759, 3527, 7057, 14143, 28289, 56591, 113189, 226379, 452759, 
905551, 1811107,
-    3622219, 7244441, 14488931, 28977863, 57955739, 115911563, 231823147, 
463646329, 927292699,
-    1854585413,
-
-    //chunk #3
-    953, 1907, 3821, 7643, 15287, 30577, 61169, 122347, 244703, 489407, 
978821, 1957651, 3915341,
-    7830701, 15661423, 31322867, 62645741, 125291483, 250582987, 501165979, 
1002331963,
-    2004663929,
-
-    //chunk #4
-    1039, 2081, 4177, 8363, 16729, 33461, 66923, 133853, 267713, 535481, 
1070981, 2141977, 4283963,
-    8567929, 17135863, 34271747, 68543509, 137087021, 274174111, 548348231, 
1096696463,
-
-    //chunk #5
-    31, 67, 137, 277, 557, 1117, 2237, 4481, 8963, 17929, 35863, 71741, 
143483, 286973, 573953,
-    1147921, 2295859, 4591721, 9183457, 18366923, 36733847, 73467739, 
146935499, 293871013,
-    587742049, 1175484103,
-
-    //chunk #6
-    599, 1201, 2411, 4831, 9677, 19373, 38747, 77509, 155027, 310081, 620171, 
1240361, 2480729,
-    4961459, 9922933, 19845871, 39691759, 79383533, 158767069, 317534141, 
635068283, 1270136683,
-
-    //chunk #7
-    311, 631, 1277, 2557, 5119, 10243, 20507, 41017, 82037, 164089, 328213, 
656429, 1312867,
-    2625761, 5251529, 10503061, 21006137, 42012281, 84024581, 168049163, 
336098327, 672196673,
-    1344393353,
-
-    //chunk #8
-    3, 7, 17, 37, 79, 163, 331, 673, 1361, 2729, 5471, 10949, 21911, 43853, 
87719, 175447, 350899,
-    701819, 1403641, 2807303, 5614657, 11229331, 22458671, 44917381, 89834777, 
179669557,
-    359339171, 718678369, 1437356741,
-
-    //chunk #9
-    43, 89, 179, 359, 719, 1439, 2879, 5779, 11579, 23159, 46327, 92657, 
185323, 370661, 741337,
-    1482707, 2965421, 5930887, 11861791, 23723597, 47447201, 94894427, 
189788857, 379577741,
-    759155483, 1518310967,
-
-    //chunk #10
-    379, 761, 1523, 3049, 6101, 12203, 24407, 48817, 97649, 195311, 390647, 
781301, 1562611,
-    3125257, 6250537, 12501169, 25002389, 50004791, 100009607, 200019221, 
400038451, 800076929,
-    1600153859
-  };
-
-
-  static { //initializer
-    // The above prime numbers are formatted for human readability.
-    // To find numbers fast, we sort them once and for all.
-
-    Arrays.sort(PRIME_CAPACITIES);
-  }
-
-  /** Makes this class non instantiable, but still let's others inherit from 
it. */
-  private PrimeFinder() {
-  }
-
-  /**
-   * Returns a prime number which is {@code <= desiredCapacity} and very close 
to {@code desiredCapacity}
-   * (within 11% if {@code desiredCapacity <= 1000}).
-   *
-   * @param desiredCapacity the capacity desired by the user.
-   * @return the capacity which should be used for a hashtable.
-   */
-  public static int nextPrime(int desiredCapacity) {
-    int i = java.util.Arrays.binarySearch(PRIME_CAPACITIES, desiredCapacity);
-    if (i < 0) {
-      // desired capacity not found, choose next prime greater than desired 
capacity
-      i = -i - 1; // remember the semantics of binarySearch...
-    }
-    return PRIME_CAPACITIES[i];
-  }
-
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/map/QuickOpenIntIntHashMap.java
----------------------------------------------------------------------
diff --git 
a/math/src/main/java/org/apache/mahout/math/map/QuickOpenIntIntHashMap.java 
b/math/src/main/java/org/apache/mahout/math/map/QuickOpenIntIntHashMap.java
deleted file mode 100644
index 6a7cef8..0000000
--- a/math/src/main/java/org/apache/mahout/math/map/QuickOpenIntIntHashMap.java
+++ /dev/null
@@ -1,215 +0,0 @@
-/*
-Copyright � 1999 CERN - European Organization for Nuclear Research.
-Permission to use, copy, modify, distribute and sell this software and its 
documentation for any purpose 
-is hereby granted without fee, provided that the above copyright notice appear 
in all copies and 
-that both that copyright notice and this permission notice appear in 
supporting documentation. 
-CERN makes no representations about the suitability of this software for any 
purpose. 
-It is provided "as is" without expressed or implied warranty.
-*/
-package org.apache.mahout.math.map;
-
-/**
- * Status: Experimental; Do not use for production yet. Hash map holding 
(key,value) associations of type
- * <tt>(int-->int)</tt>; Automatically grows and shrinks as needed; 
Implemented using open addressing with double
- * hashing. First see the <a href="package-summary.html">package summary</a> 
and javadoc <a
- * href="package-tree.html">tree view</a> to get the broad picture.
- *
- * Implements open addressing with double hashing, using "Brent's variation". 
Brent's variation slows insertions a bit
- * down (not much) but reduces probes (collisions) for successful searches, in 
particular for large load factors. (It
- * does not improve unsuccessful searches.) See D. Knuth, Searching and 
Sorting, 3rd ed., p.533-545
- *
- * @author [email protected]
- * @version 1.0, 09/24/99
- * @see java.util.HashMap
- */
-class QuickOpenIntIntHashMap extends OpenIntIntHashMap {
-  //public int totalProbesSaved = 0; // benchmark only
-
-  /** Constructs an empty map with default capacity and default load factors. 
*/
-  QuickOpenIntIntHashMap() {
-    this(DEFAULT_CAPACITY);
-  }
-
-  /**
-   * Constructs an empty map with the specified initial capacity and default 
load factors.
-   *
-   * @param initialCapacity the initial capacity of the map.
-   * @throws IllegalArgumentException if the initial capacity is less than 
zero.
-   */
-  QuickOpenIntIntHashMap(int initialCapacity) {
-    this(initialCapacity, DEFAULT_MIN_LOAD_FACTOR, DEFAULT_MAX_LOAD_FACTOR);
-  }
-
-  /**
-   * Constructs an empty map with the specified initial capacity and the 
specified minimum and maximum load factor.
-   *
-   * @param initialCapacity the initial capacity.
-   * @param minLoadFactor   the minimum load factor.
-   * @param maxLoadFactor   the maximum load factor.
-   * @throws IllegalArgumentException if <tt>initialCapacity < 0 || 
(minLoadFactor < 0.0 || minLoadFactor >= 1.0) ||
-   *                                  (maxLoadFactor <= 0.0 || maxLoadFactor 
>= 1.0) || (minLoadFactor >=
-   *                                  maxLoadFactor)</tt>.
-   */
-  QuickOpenIntIntHashMap(int initialCapacity, double minLoadFactor, double 
maxLoadFactor) {
-    setUp(initialCapacity, minLoadFactor, maxLoadFactor);
-  }
-
-  /**
-   * Associates the given key with the given value. Replaces any old 
<tt>(key,someOtherValue)</tt> association, if
-   * existing.
-   *
-   * @param key   the key the value shall be associated with.
-   * @param value the value to be associated.
-   * @return <tt>true</tt> if the receiver did not already contain such a key; 
<tt>false</tt> if the receiver did
-   *         already contain such a key - the new value has now replaced the 
formerly associated value.
-   */
-  @Override
-  public boolean put(int key, int value) {
-    /*
-       This is open addressing with double hashing, using "Brent's variation".
-       Brent's variation slows insertions a bit down (not much) but reduces 
probes (collisions) for successful searches,
-       in particular for large load factors.
-       (It does not improve unsuccessful searches.)
-       See D. Knuth, Searching and Sorting, 3rd ed., p.533-545
-
-       h1(key) = hash % M
-       h2(key) = decrement = Max(1, hash/M % M)
-       M is prime = capacity = table.length
-       probing positions are table[(h1-j*h2) % M] for j=0,1,...
-       (M and h2 could also be chosen differently, but h2 is required to be 
relative prime to M.)
-    */
-
-    int[] tab = table;
-    byte[] stat = state;
-    int length = tab.length;
-
-    int hash = HashFunctions.hash(key) & 0x7FFFFFFF;
-    int i = hash % length;
-    int decrement = (hash / length) % length;
-    if (decrement == 0) {
-      decrement = 1;
-    }
-
-    // stop if we find a removed or free slot, or if we find the key itself
-    // do NOT skip over removed slots (yes, open addressing is like that...)
-    //int comp = comparisons;
-    int t = 0;  // the number of probes
-    int p0 = i; // the first position to probe
-    while (stat[i] == FULL && tab[i] != key) {
-      t++;
-      i -= decrement;
-      //hashCollisions++;
-      if (i < 0) {
-        i += length;
-      }
-    }
-    if (stat[i] == FULL) {
-      // key already contained at slot i.
-      this.values[i] = value;
-      return false;
-    }
-    // not already contained, should be inserted at slot i.
-
-    if (this.distinct > this.highWaterMark) {
-      int newCapacity = chooseGrowCapacity(this.distinct + 1, 
this.minLoadFactor, this.maxLoadFactor);
-      rehash(newCapacity);
-      return put(key, value);
-    }
-
-    /*
-    Brent's variation does a local reorganization to reduce probes. It 
essentially means:
-    We test whether it is possible to move the association we probed first 
(table[p0]) out of the way.
-    If this is possible, it will reduce probes for the key to be inserted, 
since it takes its place;
-    it gets hit earlier.
-    However, future probes for the key that we move out of the way will 
increase.
-    Thus we only move it out of the way, if we have a net gain, that is, if we 
save more probes than we loose.
-    For the first probe we safe more than we loose if the number of probes we 
needed was >=2 (t>=2).
-    If the first probe cannot be moved out of the way, we try the next probe 
(p1).
-    Now we safe more than we loose if t>=3.
-    We repeat this until we find that we cannot gain or that we can indeed 
move p(x) out of the way.
-
-    Note: Under the great majority of insertions t<=1, so the loop is entered 
very infrequently.
-    */
-    while (t > 1) {
-      int key0 = tab[p0];
-      hash = HashFunctions.hash(key0) & 0x7FFFFFFF;
-      decrement = (hash / length) % length;
-      if (decrement == 0) {
-        decrement = 1;
-      }
-      int pc = p0 - decrement; // pc = (p0-j*decrement) % M, j=1,2,..
-      if (pc < 0) {
-        pc += length;
-      }
-
-      if (stat[pc] != FREE) { // not a free slot, continue searching for free 
slot to move to, or break.
-        p0 = pc;
-        t--;
-      } else { // free or removed slot found, now move...
-        tab[pc] = key0;
-        stat[pc] = FULL;
-        values[pc] = values[p0];
-        i = p0; // prepare to insert: table[p0]=key
-        t = 0; // break loop
-      }
-    }
-
-    this.table[i] = key;
-    this.values[i] = value;
-    if (this.state[i] == FREE) {
-      this.freeEntries--;
-    }
-    this.state[i] = FULL;
-    this.distinct++;
-
-    if (this.freeEntries < 1) { //delta
-      int newCapacity = chooseGrowCapacity(this.distinct + 1, 
this.minLoadFactor, this.maxLoadFactor);
-      rehash(newCapacity);
-    }
-
-    return true;
-  }
-
-  /**
-   * Rehashes the contents of the receiver into a new table with a smaller or 
larger capacity. This method is called
-   * automatically when the number of keys in the receiver exceeds the high 
water mark or falls below the low water
-   * mark.
-   */
-  @Override
-  protected void rehash(int newCapacity) {
-    int oldCapacity = table.length;
-    //if (oldCapacity == newCapacity) return;
-
-    int[] oldTable = table;
-    int[] oldValues = values;
-    byte[] oldState = state;
-
-    int[] newTable = new int[newCapacity];
-    int[] newValues = new int[newCapacity];
-    byte[] newState = new byte[newCapacity];
-
-    this.lowWaterMark = chooseLowWaterMark(newCapacity, this.minLoadFactor);
-    this.highWaterMark = chooseHighWaterMark(newCapacity, this.maxLoadFactor);
-
-    this.table = newTable;
-    this.values = newValues;
-    this.state = newState;
-    this.freeEntries = newCapacity - this.distinct; // delta
-
-    int tmp = this.distinct;
-    this.distinct = Integer.MIN_VALUE; // switch of watermarks
-    for (int i = oldCapacity; i-- > 0;) {
-      if (oldState[i] == FULL) {
-        put(oldTable[i], oldValues[i]);
-        /*
-        int element = oldTable[i];
-        int index = indexOfInsertion(element);
-        newTable[index]=element;
-        newValues[index]=oldValues[i];
-        newState[index]=FULL;
-        */
-      }
-    }
-    this.distinct = tmp;
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/map/package-info.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/map/package-info.java 
b/math/src/main/java/org/apache/mahout/math/map/package-info.java
deleted file mode 100644
index 9356f45..0000000
--- a/math/src/main/java/org/apache/mahout/math/map/package-info.java
+++ /dev/null
@@ -1,250 +0,0 @@
-/**
- * <HTML>
- * <BODY>
- * Automatically growing and shrinking maps holding objects or primitive
- * data types such as <tt>int</tt>, <tt>double</tt>, etc. Currently all maps 
are
- * based upon hashing.
- * <h2><a name="Overview"></a>1. Overview</h2>
- * <p>The map package offers flexible object oriented abstractions modelling 
automatically
- * resizing maps. It is designed to be scalable in terms of performance and 
memory
- * requirements.</p>
- * <p>Features include: </p>
- * <p></p>
- * <ul>
- * <li>Maps operating on objects as well as all primitive data types such as 
<code>int</code>,
- * <code>double</code>, etc.
- * </li>
- * <li>Compact representations</li>
- * <li>Support for quick access to associations</li>
- * <li>A number of general purpose map operations</li>
- * </ul>
- * <p>File-based I/O can be achieved through the standard Java built-in 
serialization
- * mechanism. All classes implement the {@link java.io.Serializable} interface.
- * However, the toolkit is entirely decoupled from advanced I/O. It provides 
data
- * structures and algorithms only.
- * <p> This toolkit borrows some terminology from the Javasoft <a
- * 
href="http://www.javasoft.com/products/jdk/1.2/docs/guide/collections/index.html";>
- * Collections framework</a> written by Josh Bloch and introduced in JDK 1.2.
- * <h2>2. Introduction</h2>
- * <p>A map is an associative container that manages a set of (key,value) 
pairs.
- * It is useful for implementing a collection of one-to-one mappings. A 
(key,value)
- * pair is called an <i>association</i>. A value can be looked up up via its 
key.
- * Associations can quickly be set, removed and retrieved. They are stored in a
- * hashing structure based on the hash code of their keys, which is obtained by
- * using a hash function. </p>
- * <p> A map can, for example, contain <tt>Name-->Location</tt> associations 
like
- * <tt>{("Pete", "Geneva"), ("Steve", "Paris"), ("Robert", "New York")}</tt> 
used
- * in address books or <tt>Index-->Value</tt> mappings like <tt>{(0, 100), (3,
- * 1000), (100000, 70)}</tt> representing sparse lists or matrices. For example
- * this could mean at index 0 we have a value of 100, at index 3 we have a 
value
- * of 1000, at index 1000000 we have a value of 70, and at all other indexes we
- * have a value of, say, zero. Another example is a map of IP addresses to 
domain
- * names (DNS). Maps can also be useful to represent<i> multi sets</i>, that 
is,
- * sets where elements can occur more than once. For multi sets one would have
- * <tt>Value-->Frequency</tt> mappings like <tt>{(100, 1), (50, 1000), (101, 
3))}</tt>
- * meaning element 100 occurs 1 time, element 50 occurs 1000 times, element 101
- * occurs 3 times. Further, maps can also manage 
<tt>ObjectIdentifier-->Object</tt>
- * mappings like <tt>{(12, obj1), (7, obj2), (10000, obj3), (9, obj4)}</tt> 
used
- * in Object Databases.
- * <p> A map cannot contain two or more <i>equal</i> keys; a key can map to at 
most
- * one value. However, more than one key can map to identical values. For 
primitive
- * data types "equality" of keys is defined as identity (operator <tt>==</tt>).
- * For maps using <tt>Object</tt> keys, the meaning of "equality" can be 
specified
- * by the user upon instance construction. It can either be defined to be 
identity
- * (operator <tt>==</tt>) or to be given by the method {@link 
java.lang.Object#equals(Object)}.
- * Associations of kind <tt>(AnyType,Object)</tt> can be of the form 
<tt>(AnyKey,null)
- * </tt>, i.e. values can be <tt>null</tt>.
- * <p> The classes of this package make no guarantees as to the order of the 
elements
- * returned by iterators; in particular, they do not guarantee that the order 
will
- * remain constant over time.
- * <h2></h2>
- * <h4>Copying</h4>
- * <p>
- * <p>Any map can be copied. A copy is <i>equal</i> to the original but 
entirely
- * independent of the original. So changes in the copy are not reflected in the
- * original, and vice-versa.
- * <h2>3. Package organization</h2>
- * <p>For most primitive data types and for objects there exists a separate 
map version.
- * All versions are just the same, except that they operate on different data 
types.
- * Colt includes two kinds of implementations for maps: The two different 
implementations
- * are tagged <b>Chained</b> and <b>Open</b>.
- * Note: Chained is no more included. Wherever it is mentioned it is of 
historic interest only.</p>
- * <ul>
- * <li><b>Chained</b> uses extendible separate chaining with chains holding 
unsorted
- * dynamically linked collision lists.
- * <li><b>Open</b> uses extendible open addressing with double hashing.
- * </ul>
- * <p>Class naming follows the schema 
<tt>&lt;Implementation&gt;&lt;KeyType&gt;&lt;ValueType&gt;HashMap</tt>.
- * For example, a {@link org.apache.mahout.math.map.OpenIntDoubleHashMap} 
holds <tt>(int-->double)</tt>
- * associations and is implemented with open addressing. A {@link 
org.apache.mahout.math.map.OpenIntObjectHashMap}
- * holds <tt>(int-->Object)</tt> associations and is implemented with open 
addressing.
- * </p>
- * <p>The classes for maps of a given (key,value) type are derived from a 
common
- * abstract base class tagged 
<tt>Abstract&lt;KeyType&gt;&lt;ValueType&gt;</tt><tt>Map</tt>.
- * For example, all maps operating on <tt>(int-->double)</tt> associations are
- * derived from {@link org.apache.mahout.math.map.AbstractIntDoubleMap}, which 
in turn is derived
- * from an abstract base class tying together all maps regardless of assocation
- * type, {@link org.apache.mahout.math.set.AbstractSet}. The abstract base 
classes provide skeleton
- * implementations for all but few methods. Experimental layouts (such as 
chaining,
- * open addressing, extensible hashing, red-black-trees, etc.) can easily be 
implemented
- * and inherit a rich set of functionality. Have a look at the javadoc <a 
href="package-tree.html">tree
- * view</a> to get the broad picture.</p>
- * <h2>4. Example usage</h2>
- * <TABLE>
- * <TD CLASS="PRE">
- * <PRE>
- * int[]    keys   = {0    , 3     , 100000, 9   };
- * double[] values = {100.0, 1000.0, 70.0  , 71.0};
- * AbstractIntDoubleMap map = new OpenIntDoubleHashMap();
- * // add several associations
- * for (int i=0; i &lt; keys.length; i++) map.put(keys[i], values[i]);
- * log.info("map="+map);
- * log.info("size="+map.size());
- * log.info(map.containsKey(3));
- * log.info("get(3)="+map.get(3));
- * log.info(map.containsKey(4));
- * log.info("get(4)="+map.get(4));
- * log.info(map.containsValue(71.0));
- * log.info("keyOf(71.0)="+map.keyOf(71.0));
- * // remove one association
- * map.removeKey(3);
- * log.info("\nmap="+map);
- * log.info(map.containsKey(3));
- * log.info("get(3)="+map.get(3));
- * log.info(map.containsValue(1000.0));
- * log.info("keyOf(1000.0)="+map.keyOf(1000.0));
- * // clear
- * map.clear();
- * log.info("\nmap="+map);
- * log.info("size="+map.size());
- * </PRE>
- * </TD>
- * </TABLE>
- * yields the following output
- * <TABLE>
- * <TD CLASS="PRE">
- * <PRE>
- * map=[0->100.0, 3->1000.0, 9->71.0, 100000->70.0]
- * size=4
- * true
- * get(3)=1000.0
- * false
- * get(4)=0.0
- * true
- * keyOf(71.0)=9
- * map=[0->100.0, 9->71.0, 100000->70.0]
- * false
- * get(3)=0.0
- * false
- * keyOf(1000.0)=-2147483648
- * map=[]
- * size=0
- * </PRE>
- * </TD>
- * </TABLE>
- * <h2> 5. Notes </h2>
- * <p>
- * Note that implementations are not synchronized.
- * <p>
- * Choosing efficient parameters for hash maps is not always easy.
- * However, since parameters determine efficiency and memory requirements, 
here is a quick guide how to choose them.
- * If your use case does not heavily operate on hash maps but uses them just 
because they provide
- * convenient functionality, you can safely skip this section.
- * For those of you who care, read on.
- * <p>
- * There are three parameters that can be customized upon map construction: 
<tt>initialCapacity</tt>,
- * <tt>minLoadFactor</tt> and <tt>maxLoadFactor</tt>.
- * The more memory one can afford, the faster a hash map.
- * The hash map's capacity is the maximum number of associations that can be 
added without needing to allocate new
- * internal memory.
- * A larger capacity means faster adding, searching and removing.
- * The <tt>initialCapacity</tt> corresponds to the capacity used upon instance 
construction.
- * <p>
- * The <tt>loadFactor</tt> of a hash map measures the degree of "fullness".
- * It is given by the number of assocations (<tt>size()</tt>)
- * divided by the hash map capacity <tt>(0.0 &lt;= loadFactor &lt;= 1.0)</tt>.
- * The more associations are added, the larger the loadFactor and the more 
hash map performance degrades.
- * Therefore, when the loadFactor exceeds a customizable threshold 
(<tt>maxLoadFactor</tt>), the hash map is
- * automatically grown.
- * In such a way performance degradation can be avoided.
- * Similarly, when the loadFactor falls below a customizable threshold 
(<tt>minLoadFactor</tt>), the hash map is
- * automatically shrinked.
- * In such a way excessive memory consumption can be avoided.
- * Automatic resizing (both growing and shrinking) obeys the following 
invariant:
- * <p>
- * <tt>capacity * minLoadFactor <= size() <= capacity * maxLoadFactor</tt>
- * <p> The term <tt>capacity * minLoadFactor</tt> is called the <i>low water 
mark</i>,
- * <tt>capacity * maxLoadFactor</tt> is called the <i>high water mark</i>. In 
other
- * words, the number of associations may vary within the water mark 
constraints.
- * When it goes out of range, the map is automatically resized and memory 
consumption
- * changes proportionally.
- * <ul>
- * <li>To tune for memory at the expense of performance, both increase 
<tt>minLoadFactor</tt> and
- * <tt>maxLoadFactor</tt>.
- * <li>To tune for performance at the expense of memory, both decrease 
<tt>minLoadFactor</tt> and
- * <tt>maxLoadFactor</tt>.
- * As as special case set <tt>minLoadFactor=0</tt> to avoid any automatic 
shrinking.
- * </ul>
- * Resizing large hash maps can be time consuming, <tt>O(size())</tt>, and 
should be avoided if possible (maintaining
- * primes is not the reason).
- * Unnecessary growing operations can be avoided if the number of associations 
is known before they are added, or can be
- * estimated.<p>
- * In such a case good parameters are as follows:
- * <p>
- * <i>For chaining:</i>
- * <br>Set the <tt>initialCapacity = 1.4*expectedSize</tt> or greater.
- * <br>Set the <tt>maxLoadFactor = 0.8</tt> or greater.
- * <p>
- * <i>For open addressing:</i>
- * <br>Set the <tt>initialCapacity = 2*expectedSize</tt> or greater. 
Alternatively call <tt>ensureCapacity(...)</tt>.
- * <br>Set the <tt>maxLoadFactor = 0.5</tt>.
- * <br>Never set <tt>maxLoadFactor &gt; 0.55</tt>; open addressing 
exponentially slows down beyond that point.
- * <p>
- * In this way the hash map will never need to grow and still stay fast.
- * It is never a good idea to set <tt>maxLoadFactor &lt; 0.1</tt>,
- * because the hash map would grow too often.
- * If it is entirelly unknown how many associations the application will use,
- * the default constructor should be used. The map will grow and shrink as 
needed.
- * <p>
- * <b>Comparision of chaining and open addressing</b>
- * <p> Chaining is faster than open addressing, when assuming unconstrained 
memory
- * consumption. Open addressing is more space efficient than chaining, because
- * it does not create entry objects but uses primitive arrays which are 
considerably
- * smaller. Entry objects consume significant amounts of memory compared to the
- * information they actually hold. Open addressing also poses no problems to 
the
- * garbage collector. In contrast, chaining can create millions of entry 
objects
- * which are linked; a nightmare for any garbage collector. In addition, entry
- * object creation is a bit slow. <br>
- * Therefore, with the same amount of memory, or even less memory, hash maps 
with
- * larger capacity can be maintained under open addressing, which yields 
smaller
- * loadFactors, which in turn keeps performance competitive with chaining. In 
our
- * benchmarks, using significantly less memory, open addressing usually is not
- * more than 1.2-1.5 times slower than chaining.
- * <p><b>Further readings</b>:
- * <br>Knuth D., The Art of Computer Programming: Searching and Sorting, 3rd 
ed.
- * <br>Griswold W., Townsend G., The Design and Implementation of Dynamic 
Hashing for Sets and Tables in Icon,
- * Software - Practice and Experience, Vol. 23(4), 351-367 (April 1993).
- * <br>Larson P., Dynamic hash tables, Comm. of the ACM, 31, (4), 1988.
- * <p>
- * <b>Performance:</b>
- * <p>
- * Time complexity:
- * <br>The classes offer <i>expected</i> time complexity <tt>O(1)</tt> (i.e. 
constant time) for the basic operations
- * <tt>put</tt>, <tt>get</tt>, <tt>removeKey</tt>, <tt>containsKey</tt> and 
<tt>size</tt>,
- * assuming the hash function disperses the elements properly among the 
buckets.
- * Otherwise, pathological cases, although highly improbable, can occur, 
degrading performance to <tt>O(N)</tt> in the
- * worst case.
- * Operations <tt>containsValue</tt> and <tt>keyOf</tt> are <tt>O(N)</tt>.
- * <p>
- * Memory requirements for <i>open addressing</i>:
- * <br>worst case: <tt>memory [bytes] = (1/minLoadFactor) * size() * (1 + 
sizeOf(key) + sizeOf(value))</tt>.
- * <br>best case: <tt>memory [bytes] = (1/maxLoadFactor) * size() * (1 + 
sizeOf(key) + sizeOf(value))</tt>.
- * Where <tt>sizeOf(int) = 4</tt>, <tt>sizeOf(double) = 8</tt>, 
<tt>sizeOf(Object) = 4</tt>, etc.
- * Thus, an <tt>OpenIntIntHashMap</tt> with minLoadFactor=0.25 and 
maxLoadFactor=0.5 and 1000000 associations uses
- * between 17 MB and 34 MB.
- * The same map with 1000 associations uses between 17 and 34 KB.
- * <p>
- * </BODY>
- * </HTML>
- */
-package org.apache.mahout.math.map;

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/package-info.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/package-info.java 
b/math/src/main/java/org/apache/mahout/math/package-info.java
deleted file mode 100644
index de664f0..0000000
--- a/math/src/main/java/org/apache/mahout/math/package-info.java
+++ /dev/null
@@ -1,4 +0,0 @@
-/**
- * Core base classes; Operations on primitive arrays such as sorting, 
partitioning and permuting.
- */
-package org.apache.mahout.math;

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/AbstractSamplerFunction.java
----------------------------------------------------------------------
diff --git 
a/math/src/main/java/org/apache/mahout/math/random/AbstractSamplerFunction.java 
b/math/src/main/java/org/apache/mahout/math/random/AbstractSamplerFunction.java
deleted file mode 100644
index d657fd9..0000000
--- 
a/math/src/main/java/org/apache/mahout/math/random/AbstractSamplerFunction.java
+++ /dev/null
@@ -1,39 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import org.apache.mahout.math.function.DoubleFunction;
-
-/**
- * This shim allows samplers to be used to initialize vectors.
- */
-public abstract class AbstractSamplerFunction extends DoubleFunction 
implements Sampler<Double> {
-  /**
-   * Apply the function to the argument and return the result
-   *
-   * @param ignored Ignored argument
-   * @return A sample from this distribution.
-   */
-  @Override
-  public double apply(double ignored) {
-    return sample();
-  }
-
-  @Override
-  public abstract Double sample();
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/ChineseRestaurant.java
----------------------------------------------------------------------
diff --git 
a/math/src/main/java/org/apache/mahout/math/random/ChineseRestaurant.java 
b/math/src/main/java/org/apache/mahout/math/random/ChineseRestaurant.java
deleted file mode 100644
index 8127b92..0000000
--- a/math/src/main/java/org/apache/mahout/math/random/ChineseRestaurant.java
+++ /dev/null
@@ -1,111 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import com.google.common.base.Preconditions;
-import org.apache.mahout.common.RandomUtils;
-import org.apache.mahout.math.list.DoubleArrayList;
-
-import java.util.Random;
-
-/**
- *
- * Generates samples from a generalized Chinese restaurant process (or 
Pittman-Yor process).
- *
- * The number of values drawn exactly once will asymptotically be equal to the 
discount parameter
- * as the total number of draws T increases without bound.  The number of 
unique values sampled will
- * increase as O(alpha * log T) if discount = 0 or O(alpha * T^discount) for 
discount > 0.
- */
-public final class ChineseRestaurant implements Sampler<Integer> {
-
-  private final double alpha;
-  private double weight = 0;
-  private double discount = 0;
-  private final DoubleArrayList weights = new DoubleArrayList();
-  private final Random rand = RandomUtils.getRandom();
-
-  /**
-   * Constructs a Dirichlet process sampler.  This is done by setting discount 
= 0.
-   * @param alpha  The strength parameter for the Dirichlet process.
-   */
-  public ChineseRestaurant(double alpha) {
-    this(alpha, 0);
-  }
-
-  /**
-   * Constructs a Pitman-Yor sampler.
-   *
-   * @param alpha     The strength parameter that drives the number of unique 
values as a function of draws.
-   * @param discount  The discount parameter that drives the percentage of 
values that occur once in a large sample.
-   */
-  public ChineseRestaurant(double alpha, double discount) {
-    Preconditions.checkArgument(alpha > 0, "Strength Parameter, alpha must be 
greater then 0!");
-    Preconditions.checkArgument(discount >= 0 && discount <= 1, "Must be: 0 <= 
discount <= 1");
-    this.alpha = alpha;
-    this.discount = discount;
-  }
-
-  @Override
-  public Integer sample() {
-    double u = rand.nextDouble() * (alpha + weight);
-    for (int j = 0; j < weights.size(); j++) {
-      // select existing options with probability (w_j - d) / (alpha + w)
-      if (u < weights.get(j) - discount) {
-        weights.set(j, weights.get(j) + 1);
-        weight++;
-        return j;
-      } else {
-        u -= weights.get(j) - discount;
-      }
-    }
-
-    // if no existing item selected, pick new item with probability (alpha - 
d*t) / (alpha + w)
-    // where t is number of pre-existing cases
-    weights.add(1);
-    weight++;
-    return weights.size() - 1;
-  }
-
-  /**
-   * @return the number of unique values that have been returned.
-   */
-  public int size() {
-    return weights.size();
-  }
-
-  /**
-   * @return the number draws so far.
-   */
-  public int count() {
-    return (int) weight;
-  }
-
-  /**
-   * @param j Which value to test.
-   * @return  The number of times that j has been returned so far.
-   */
-  public int count(int j) {
-    Preconditions.checkArgument(j >= 0);
-
-    if (j < weights.size()) {
-      return (int) weights.get(j);
-    } else {
-      return 0;
-    }
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/Empirical.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/random/Empirical.java 
b/math/src/main/java/org/apache/mahout/math/random/Empirical.java
deleted file mode 100644
index 78bfec5..0000000
--- a/math/src/main/java/org/apache/mahout/math/random/Empirical.java
+++ /dev/null
@@ -1,124 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import com.google.common.base.Preconditions;
-import org.apache.mahout.common.RandomUtils;
-
-import java.util.Random;
-
-/**
- * Samples from an empirical cumulative distribution.
- */
-public final class Empirical extends AbstractSamplerFunction {
-  private final Random gen;
-  private final boolean exceedMinimum;
-  private final boolean exceedMaximum;
-
-  private final double[] x;
-  private final double[] y;
-  private final int n;
-
-  /**
-   * Sets up a sampler for a specified empirical cumulative distribution 
function.  The distribution
-   * can have optional exponential tails on either or both ends, but otherwise 
does a linear
-   * interpolation between known points.
-   *
-   * @param exceedMinimum  Should we generate samples less than the smallest 
quantile (i.e. generate a left tail)?
-   * @param exceedMaximum  Should we generate samples greater than the largest 
observed quantile (i.e. generate a right
-   *                       tail)?
-   * @param samples        The number of samples observed to get the quantiles.
-   * @param ecdf           Alternating values that represent which percentile 
(in the [0..1] range)
-   *                       and values.  For instance, if you have the min, 
median and max of 1, 3, 10
-   *                       you should pass 0.0, 1, 0.5, 3, 1.0, 10.  Note that 
the list must include
-   *                       the 0-th (1.0-th) quantile if the left (right) tail 
is not allowed.
-   */
-  public Empirical(boolean exceedMinimum, boolean exceedMaximum, int samples, 
double... ecdf) {
-    Preconditions.checkArgument(ecdf.length % 2 == 0, "ecdf must have an even 
count of values");
-    Preconditions.checkArgument(samples >= 3, "Sample size must be >= 3");
-
-    // if we can't exceed the observed bounds, then we have to be given the 
bounds.
-    Preconditions.checkArgument(exceedMinimum || ecdf[0] == 0);
-    Preconditions.checkArgument(exceedMaximum || ecdf[ecdf.length - 2] == 1);
-
-    gen = RandomUtils.getRandom();
-
-    n = ecdf.length / 2;
-    x = new double[n];
-    y = new double[n];
-
-    double lastX = ecdf[1];
-    double lastY = ecdf[0];
-    for (int i = 0; i < ecdf.length; i += 2) {
-      // values have to be monotonic increasing
-      Preconditions.checkArgument(i == 0 || ecdf[i + 1] > lastY);
-      y[i / 2] = ecdf[i + 1];
-      lastY = y[i / 2];
-
-      // quantiles have to be in [0,1] and be monotonic increasing
-      Preconditions.checkArgument(ecdf[i] >= 0 && ecdf[i] <= 1);
-      Preconditions.checkArgument(i == 0 || ecdf[i] > lastX);
-
-      x[i / 2] = ecdf[i];
-      lastX = x[i / 2];
-    }
-
-    // squeeze a bit to allow for unobserved tails
-    double x0 = exceedMinimum ? 0.5 / samples : 0;
-    double x1 = 1 - (exceedMaximum ? 0.5 / samples : 0);
-    for (int i = 0; i < n; i++) {
-      x[i] = x[i] * (x1 - x0) + x0;
-    }
-
-    this.exceedMinimum = exceedMinimum;
-    this.exceedMaximum = exceedMaximum;
-  }
-
-  @Override
-  public Double sample() {
-    return sample(gen.nextDouble());
-  }
-
-  public double sample(double u) {
-    if (exceedMinimum && u < x[0]) {
-      // generate from left tail
-      if (u == 0) {
-        u = 1.0e-16;
-      }
-      return y[0] + Math.log(u / x[0]) * x[0] * (y[1] - y[0]) / (x[1] - x[0]);
-    } else if (exceedMaximum && u > x[n - 1]) {
-      if (u == 1) {
-        u = 1 - 1.0e-16;
-      }
-      // generate from right tail
-      double dy = y[n - 1] - y[n - 2];
-      double dx = x[n - 1] - x[n - 2];
-      return y[n - 1] - Math.log((1 - u) / (1 - x[n - 1])) * (1 - x[n - 1]) * 
dy / dx;
-    } else {
-      // linear interpolation
-      for (int i = 1; i < n; i++) {
-        if (x[i] > u) {
-          double dy = y[i] - y[i - 1];
-          double dx = x[i] - x[i - 1];
-          return y[i - 1] + (u - x[i - 1]) * dy / dx;
-        }
-      }
-      throw new RuntimeException(String.format("Can't happen (%.3f is not in 
[%.3f,%.3f]", u, x[0], x[n - 1]));
-    }
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/IndianBuffet.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/random/IndianBuffet.java 
b/math/src/main/java/org/apache/mahout/math/random/IndianBuffet.java
deleted file mode 100644
index 27b5d84..0000000
--- a/math/src/main/java/org/apache/mahout/math/random/IndianBuffet.java
+++ /dev/null
@@ -1,157 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import com.google.common.base.CharMatcher;
-import com.google.common.base.Charsets;
-import com.google.common.base.Splitter;
-import com.google.common.collect.Iterables;
-import com.google.common.collect.Lists;
-import com.google.common.io.LineProcessor;
-import com.google.common.io.Resources;
-import org.apache.mahout.common.RandomUtils;
-
-import java.io.IOException;
-import java.util.List;
-import java.util.Random;
-
-/**
- * Samples a "document" from an IndianBuffet process.
- *
- * See http://mlg.eng.cam.ac.uk/zoubin/talks/turin09.pdf for details
- */
-public final class IndianBuffet<T> implements Sampler<List<T>> {
-  private final List<Integer> count = Lists.newArrayList();
-  private int documents = 0;
-  private final double alpha;
-  private WordFunction<T> converter = null;
-  private final Random gen;
-
-  public IndianBuffet(double alpha, WordFunction<T> converter) {
-    this.alpha = alpha;
-    this.converter = converter;
-    gen = RandomUtils.getRandom();
-  }
-
-  public static IndianBuffet<Integer> createIntegerDocumentSampler(double 
alpha) {
-    return new IndianBuffet<>(alpha, new IdentityConverter());
-  }
-
-  public static IndianBuffet<String> createTextDocumentSampler(double alpha) {
-    return new IndianBuffet<>(alpha, new WordConverter());
-  }
-
-  @Override
-  public List<T> sample() {
-    List<T> r = Lists.newArrayList();
-    if (documents == 0) {
-      double n = new PoissonSampler(alpha).sample();
-      for (int i = 0; i < n; i++) {
-        r.add(converter.convert(i));
-        count.add(1);
-      }
-      documents++;
-    } else {
-      documents++;
-      int i = 0;
-      for (double cnt : count) {
-        if (gen.nextDouble() < cnt / documents) {
-          r.add(converter.convert(i));
-          count.set(i, count.get(i) + 1);
-        }
-        i++;
-      }
-      int newItems = new PoissonSampler(alpha / documents).sample().intValue();
-      for (int j = 0; j < newItems; j++) {
-        r.add(converter.convert(i + j));
-        count.add(1);
-      }
-    }
-    return r;
-  }
-
-  private interface WordFunction<T> {
-    T convert(int i);
-  }
-
-  /**
-   * Just converts to an integer.
-   */
-  public static class IdentityConverter implements WordFunction<Integer> {
-    @Override
-    public Integer convert(int i) {
-      return i;
-    }
-  }
-
-  /**
-   * Converts to a string.
-   */
-  public static class StringConverter implements WordFunction<String> {
-    @Override
-    public String convert(int i) {
-      return String.valueOf(i);
-    }
-  }
-
-  /**
-   * Converts to one of a list of common English words for reasonably small 
integers and converts
-   * to a token like w_92463 for big integers.
-   */
-  public static final class WordConverter implements WordFunction<String> {
-    private final Splitter onSpace = 
Splitter.on(CharMatcher.WHITESPACE).omitEmptyStrings().trimResults();
-    private final List<String> words;
-
-    public WordConverter() {
-      try {
-        words = Resources.readLines(Resources.getResource("words.txt"), 
Charsets.UTF_8,
-                                    new LineProcessor<List<String>>() {
-            private final List<String> theWords = Lists.newArrayList();
-
-            @Override
-            public boolean processLine(String line) {
-              Iterables.addAll(theWords, onSpace.split(line));
-              return true;
-            }
-
-            @Override
-            public List<String> getResult() {
-              return theWords;
-            }
-          });
-      } catch (IOException e) {
-        throw new ImpossibleException(e);
-      }
-    }
-
-    @Override
-    public String convert(int i) {
-      if (i < words.size()) {
-        return words.get(i);
-      } else {
-        return "w_" + i;
-      }
-    }
-  }
-
-  public static class ImpossibleException extends RuntimeException {
-    public ImpossibleException(Throwable e) {
-      super(e);
-    }
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/Missing.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/random/Missing.java 
b/math/src/main/java/org/apache/mahout/math/random/Missing.java
deleted file mode 100644
index 8141a71..0000000
--- a/math/src/main/java/org/apache/mahout/math/random/Missing.java
+++ /dev/null
@@ -1,59 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import java.util.Random;
-
-import org.apache.mahout.common.RandomUtils;
-
-/**
- * Models data with missing values.  Note that all variables with the same 
fraction of missing
- * values will have the same sequence of missing values.  Similarly, if two 
variables have
- * missing probabilities of p1 > p2, then all of the p2 missing values will 
also be missing for
- * p1.
- */
-public final class Missing<T> implements Sampler<T> {
-  private final Random gen;
-  private final double p;
-  private final Sampler<T> delegate;
-  private final T missingMarker;
-
-  public Missing(int seed, double p, Sampler<T> delegate, T missingMarker) {
-    this.p = p;
-    this.delegate = delegate;
-    this.missingMarker = missingMarker;
-    gen = RandomUtils.getRandom(seed);
-  }
-
-  public Missing(double p, Sampler<T> delegate, T missingMarker) {
-    this(1, p, delegate, missingMarker);
-  }
-
-  public Missing(double p, Sampler<T> delegate) {
-    this(1, p, delegate, null);
-  }
-
-  @Override
-  public T sample() {
-    if (gen.nextDouble() >= p) {
-      return delegate.sample();
-    } else {
-      return missingMarker;
-    }
-  }
-}

http://git-wip-us.apache.org/repos/asf/mahout/blob/e0573de3/math/src/main/java/org/apache/mahout/math/random/MultiNormal.java
----------------------------------------------------------------------
diff --git a/math/src/main/java/org/apache/mahout/math/random/MultiNormal.java 
b/math/src/main/java/org/apache/mahout/math/random/MultiNormal.java
deleted file mode 100644
index 748d4e8..0000000
--- a/math/src/main/java/org/apache/mahout/math/random/MultiNormal.java
+++ /dev/null
@@ -1,118 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *     http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.mahout.math.random;
-
-import org.apache.mahout.common.RandomUtils;
-import org.apache.mahout.math.DenseVector;
-import org.apache.mahout.math.DiagonalMatrix;
-import org.apache.mahout.math.Matrix;
-import org.apache.mahout.math.Vector;
-import org.apache.mahout.math.function.DoubleFunction;
-
-import java.util.Random;
-
-/**
- * Samples from a multi-variate normal distribution.
- * <p/>
- * This is done by sampling from several independent unit normal distributions 
to get a vector u.
- * The sample value that is returned is then A u + m where A is derived from 
the covariance matrix
- * and m is the mean of the result.
- * <p/>
- * If \Sigma is the desired covariance matrix, then you can use any value of A 
such that A' A =
- * \Sigma.  The Cholesky decomposition can be used to compute A if \Sigma is 
positive definite.
- * Slightly more expensive is to use the SVD U S V' = \Sigma and then set A = 
U \sqrt{S}.
- *
- * Useful special cases occur when \Sigma is diagonal so that A = 
\sqrt(\Sigma) or where \Sigma = r I.
- *
- * Another special case is where m = 0.
- */
-public class MultiNormal implements Sampler<Vector> {
-  private final Random gen;
-  private final int dimension;
-  private final Matrix scale;
-  private final Vector mean;
-
-  /**
-   * Constructs a sampler with diagonal scale matrix.
-   * @param diagonal The diagonal elements of the scale matrix.
-   */
-  public MultiNormal(Vector diagonal) {
-    this(new DiagonalMatrix(diagonal), null);
-  }
-
-  /**
-   * Constructs a sampler with diagonal scale matrix and (potentially)
-   * non-zero mean.
-   * @param diagonal The scale matrix's principal diagonal.
-   * @param mean The desired mean.  Set to null if zero mean is desired.
-   */
-  public MultiNormal(Vector diagonal, Vector mean) {
-    this(new DiagonalMatrix(diagonal), mean);
-  }
-
-  /**
-   * Constructs a sampler with non-trivial scale matrix and mean.
-   */
-  public MultiNormal(Matrix a, Vector mean) {
-    this(a, mean, a.columnSize());
-  }
-
-  public MultiNormal(int dimension) {
-    this(null, null, dimension);
-  }
-
-  public MultiNormal(double radius, Vector mean) {
-    this(new DiagonalMatrix(radius, mean.size()), mean);
-  }
-
-  private MultiNormal(Matrix scale, Vector mean, int dimension) {
-    gen = RandomUtils.getRandom();
-    this.dimension = dimension;
-    this.scale = scale;
-    this.mean = mean;
-  }
-
-  @Override
-  public Vector sample() {
-    Vector v = new DenseVector(dimension).assign(
-      new DoubleFunction() {
-        @Override
-        public double apply(double ignored) {
-          return gen.nextGaussian();
-        }
-      }
-    );
-    if (mean != null) {
-      if (scale != null) {
-        return scale.times(v).plus(mean);
-      } else {
-        return v.plus(mean);
-      }
-    } else {
-      if (scale != null) {
-        return scale.times(v);
-      } else {
-        return v;
-      }
-    }
-  }
-
-  public Vector getScale() {
-    return mean;
-  }
-}

Reply via email to