This is an automated email from the ASF dual-hosted git repository.

dickjc123 pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git


The following commit(s) were added to refs/heads/master by this push:
     new 5ab7f64  [2.0] [BACKPORT] of [1.x][FEATURE] CUDA graphs support 
(#19142) (#20324)
5ab7f64 is described below

commit 5ab7f64c2e99890502aa456798b74523e76f3c17
Author: Dick Carter <[email protected]>
AuthorDate: Fri Mar 18 16:55:07 2022 -0700

    [2.0] [BACKPORT] of [1.x][FEATURE] CUDA graphs support (#19142) (#20324)
    
    * [1.x][FEATURE] CUDA graphs support (#19142)
    
    * Initial cherry-pick
    
    * Store NodeAttrs in OpExecutor
    
    * Do not allow stateful operations in CUDA graphs and provide mechanism
    for marking ops as safe
    
    * Guard against using ops with synchronization
    
    * Cleaning
    
    * Properly guard graphs
    
    * Limit graphs to CUDA 10.2+
    
    * Fix the compilation when graphs are not available
    
    * Guarding the libcuda.so usage behind RTC compilation flag
    
    * Document the env variables
    
    * Add test
    
    * Fix the test
    
    * Use with_environment
    
    * Fix compile and test_cuda_graphs
    
    * Fix lint
    
    * Mark more ops as not CUDA Graphs compatible
    
    * Mark some linalg ops as not CUDA Graphs compatible
    
    * Marked 2 ops CUDA Graphs incompatible due to cpu->gpu copy
    
    * Mark cuDNN Dropout as fully CUDA Graphs compatible.  Reenable tests.
    
    * clang-tidy fixes
    
    * More clang-tidy fixes
    
    * Avoid CUDA_CALL(e): improper macro expansion
    
    * Add compile guard to Dropout's FIsCUDAGraphsCompatible def
    
    * Temporarily add '-s' to pytest serial tests
    
    * Fix DropoutOp.dropout_passthrough_ handling for CUDA Graphs
    
    * Adapt test_gluon_gpu.py::test_cuda_graphs for gluon2.0
    
    * Create CUDA Graph 'dot' files if MXNET_CUDA_GRAPHS_DBG_FILE=<file_prefix>
    
    * Fix clang-tidy
    
    * Fix more clang-tidy
    
    * Skip test_np_standard_binary_funcs test of 0-dim array broadcast
    
    * Improve test_rnn_layers_fp{16,32} invocation
    
    * Run test_rnn_layers_fp32 only when cuDNN is present
    
    * Fix potential out-of-bounds write in count_sketch.cu
    
    * Add temp output to debug centos crash
    
    * Mark InstanceNorm and LeakyRELU as not CUDA Graphs compatible
    
    * Ops calling FStatefulCompute* are not CUDA Graphs compatible by default
    
    * Fix clang-tidy
    
    * Revert "Add temp output to debug centos crash"
    
    This reverts commit e013a85ea599fa761cb98762f11feab6e7d74049.
    
    * Quiet 'unused variable' compilation warning
    
    * Trigger CI
    
    * Check of FCreateOpState removed given new check for FStatefulCompute*
    
    * Revert "Temporarily add '-s' to pytest serial tests"
    
    This reverts commit 5a2f847558a7f55790f1ad1fb5ee930b4ad1a3a9.
    
    Co-authored-by: Przemyslaw Tredak <[email protected]>
---
 docs/static_site/src/pages/api/faq/env_var.md  |  16 +
 include/mxnet/op_attr_types.h                  |  13 +
 src/imperative/attach_op_execs_pass.cc         |  66 +--
 src/imperative/cuda_graphs.h                   | 593 +++++++++++++++++++++++++
 src/imperative/exec_pass.h                     |  19 +
 src/imperative/imperative_utils.h              |  21 +-
 src/operator/contrib/adamw.cu                  |   8 +
 src/operator/contrib/index_array.cu            |   5 +-
 src/operator/contrib/multi_lamb.cu             |   4 +
 src/operator/instance_norm.cu                  |   7 +-
 src/operator/leaky_relu.cu                     |   7 +-
 src/operator/nn/dropout-inl.h                  |   1 -
 src/operator/nn/dropout.cu                     |  21 +-
 src/operator/numpy/linalg/np_eig.cu            |  10 +-
 src/operator/numpy/linalg/np_eigvals.cu        |  10 +-
 src/operator/numpy/linalg/np_norm_backward.cu  |   6 +
 src/operator/numpy/linalg/np_norm_forward.cu   |   9 +-
 src/operator/numpy/np_boolean_mask_assign.cu   |   4 +
 src/operator/numpy/np_constraint_check.cu      |   2 +
 src/operator/numpy/np_matrix_op.cu             |  37 +-
 src/operator/numpy/np_nonzero_op.cu            |   2 +
 src/operator/numpy/np_pad_op.cu                |  12 +-
 src/operator/numpy/np_percentile_op.cu         |   5 +-
 src/operator/numpy/random/np_bernoulli_op.cu   |   5 +-
 src/operator/numpy/random/np_exponential_op.cu |   2 +
 src/operator/numpy/random/np_gamma_op.cu       |   5 +-
 src/operator/numpy/random/np_multinomial_op.cu |   2 +
 src/operator/numpy/random/np_normal_op.cu      |  10 +-
 src/operator/numpy/random/np_pareto_op.cu      |   5 +-
 src/operator/numpy/random/np_power_op.cu       |   5 +-
 src/operator/numpy/random/np_rayleigh_op.cu    |   5 +-
 src/operator/numpy/random/np_weibull_op.cu     |   5 +-
 src/operator/tensor/elemwise_unary_op_basic.cu |   5 +-
 src/operator/tensor/indexing_op.cu             |   5 +-
 src/operator/tensor/la_op.cu                   |  30 +-
 src/operator/tensor/matrix_op.cu               |  24 +-
 tests/python/gpu/test_gluon_gpu.py             | 111 ++++-
 37 files changed, 1033 insertions(+), 64 deletions(-)

diff --git a/docs/static_site/src/pages/api/faq/env_var.md 
b/docs/static_site/src/pages/api/faq/env_var.md
index dad481c..8e12b48 100644
--- a/docs/static_site/src/pages/api/faq/env_var.md
+++ b/docs/static_site/src/pages/api/faq/env_var.md
@@ -170,6 +170,22 @@ $env:MXNET_STORAGE_FALLBACK_LOG_VERBOSE=0
 * MXNET_EXEC_BULK_EXEC_MAX_NODE_TRAIN_BWD
   - Values: Int ```(default=<value of MXNET_EXEC_BULK_EXEC_MAX_NODE_TRAIN>)```
   - The maximum number of nodes in the subgraph executed in bulk during 
training (not inference) in the backward pass.
+* MXNET_ENABLE_CUDA_GRAPHS
+  - Values: 0(false) or 1(true) ```(default=0)```
+  - If set to `1`, MXNet will utilize CUDA graphs when executing models on the 
GPU when possible.
+  - For CUDA graphs execution, one needs to use either symbolic model or Gluon 
model hybridized with options `static_alloc` and `static_shape` set to True.
+* MXNET_CUDA_GRAPHS_VERBOSE
+  - Values: 0(false) or  1(true) ```(default=0)```
+  - If set to `1`, CUDA graphs executor will provide information about the 
graph being captured and executed.
+* MXNET_CUDA_GRAPHS_MAX_LOG_ENTRIES
+  - Values: Int ```(default=0)```
+  - The maximum number of log messages generated by CUDA graphs executor.
+* MXNET_CUDA_GRAPHS_DBG_FILE
+  - Values: String ```(default='', to indicate no debug dot files should be 
created)```
+  - The file prefix for '.dot' files for each graph created.  Full path is 
<prefix>-devN-{trn,inf}.<graphId>.dot .
+* MXNET_CUDA_GRAPHS_DBG_FILE_FLAGS
+  - Values: Int ```(default=<most verbose setting- includes all info>)```
+  - A bitmask to enable various types of info in the debug '.dot' files.  See 
cudaGraphDebugDotFlags in the CUDA runtime API doc for details.
 
 ## Control the Data Communication
 
diff --git a/include/mxnet/op_attr_types.h b/include/mxnet/op_attr_types.h
index 2fec176..c936d3e 100644
--- a/include/mxnet/op_attr_types.h
+++ b/include/mxnet/op_attr_types.h
@@ -357,6 +357,19 @@ using FNeedCalibrateInput = 
std::function<std::vector<int>(const NodeAttrs& attr
  */
 using FNeedCalibrateOutput = std::function<std::vector<int>(const NodeAttrs& 
attrs)>;
 
+#if MXNET_USE_CUDA
+
+/*!
+ * \brief Register a function to determine if
+ * the operator implementation is compatible
+ * with CUDA graphs. This requires the execution
+ * to stay the same as long as the shape and type
+ * of input stays the same.
+ */
+using FIsCUDAGraphsCompatible = std::function<bool(const NodeAttrs& attrs, 
const bool is_train)>;
+
+#endif
+
 }  // namespace mxnet
 
 #endif  // MXNET_OP_ATTR_TYPES_H_
diff --git a/src/imperative/attach_op_execs_pass.cc 
b/src/imperative/attach_op_execs_pass.cc
index 4a8c51d..732391f 100644
--- a/src/imperative/attach_op_execs_pass.cc
+++ b/src/imperative/attach_op_execs_pass.cc
@@ -47,8 +47,10 @@ namespace exec {
 // FComputeExecutor and FStatefulComputeExecutor inherit from this class
 class StorageFallbackOpExecutor : public OpExecutor {
  public:
-  explicit StorageFallbackOpExecutor(std::vector<uint32_t> mutate_idx)
-      : mutate_idx_(std::move(mutate_idx)) {}
+  explicit StorageFallbackOpExecutor(const NodeAttrs& attrs,
+                                     DispatchMode dispatch_mode,
+                                     std::vector<uint32_t> mutate_idx)
+      : OpExecutor(attrs, dispatch_mode), mutate_idx_(std::move(mutate_idx)) {}
 
   void Setup() override {
     init_ = false;
@@ -146,11 +148,13 @@ class StatefulComputeExecutor : public 
StorageFallbackOpExecutor {
     return state_;
   }
 
-  explicit StatefulComputeExecutor(OpStatePtr state,
+  explicit StatefulComputeExecutor(const NodeAttrs& attrs,
+                                   DispatchMode dispatch_mode,
+                                   OpStatePtr state,
                                    FStatefulCompute fcompute,
                                    ExecType exec_type,
                                    const std::vector<uint32_t>& mutate_idx)
-      : StorageFallbackOpExecutor(mutate_idx),
+      : StorageFallbackOpExecutor(attrs, dispatch_mode, mutate_idx),
         state_(std::move(state)),
         fcompute_(std::move(fcompute)),
         exec_type_(exec_type) {}
@@ -168,7 +172,7 @@ class StatefulComputeExExecutor : public OpExecutor {
     op_ctx.run_ctx = rctx;
     INVALIDATE_OUTPUTS(out_array, req);
     std::vector<NDArray>* pInArray = &in_array;
-    CREATE_DEFAULT_INPUTS_DNNL(in_array, pInArray = &in_array_fallback, 
attrs_);
+    CREATE_DEFAULT_INPUTS_DNNL(in_array, pInArray = &in_array_fallback, attrs);
     fcompute_(state_, op_ctx, *pInArray, req, out_array);
   }
 
@@ -186,17 +190,17 @@ class StatefulComputeExExecutor : public OpExecutor {
     return state_;
   }
 
-  explicit StatefulComputeExExecutor(NodeAttrs attrs,
+  explicit StatefulComputeExExecutor(const NodeAttrs& attrs,
+                                     DispatchMode dispatch_mode,
                                      OpStatePtr state,
                                      FStatefulComputeEx fcompute,
                                      ExecType exec_type)
-      : attrs_(std::move(attrs)),
+      : OpExecutor(attrs, dispatch_mode),
         state_(std::move(state)),
         fcompute_(std::move(fcompute)),
         exec_type_(exec_type) {}
 
  private:
-  NodeAttrs attrs_;
   OpStatePtr state_;
   FStatefulComputeEx fcompute_;
   ExecType exec_type_;
@@ -210,7 +214,7 @@ class FComputeExecutor : public StorageFallbackOpExecutor {
     op_ctx.run_ctx = rctx;
     INVALIDATE_OUTPUTS(out_array, req);
     PreFCompute(is_gpu);
-    fcompute_(attrs_, op_ctx, in_data_, req, out_data_);
+    fcompute_(attrs, op_ctx, in_data_, req, out_data_);
     PostFCompute(is_gpu);
   }
 
@@ -218,17 +222,16 @@ class FComputeExecutor : public StorageFallbackOpExecutor 
{
     return exec_type_;
   }
 
-  explicit FComputeExecutor(NodeAttrs attrs,
+  explicit FComputeExecutor(const NodeAttrs& attrs,
+                            DispatchMode dispatch_mode,
                             FCompute fcompute,
                             ExecType exec_type,
                             const std::vector<uint32_t>& mutate_idx)
-      : StorageFallbackOpExecutor(mutate_idx),
-        attrs_(std::move(attrs)),
+      : StorageFallbackOpExecutor(attrs, dispatch_mode, mutate_idx),
         fcompute_(std::move(fcompute)),
         exec_type_(exec_type) {}
 
  private:
-  NodeAttrs attrs_;
   FCompute fcompute_;
   ExecType exec_type_;
 };
@@ -240,8 +243,8 @@ class FComputeExExecutor : public OpExecutor {
     op_ctx.run_ctx = rctx;
     INVALIDATE_OUTPUTS(out_array, req);
     std::vector<NDArray>* pInArray = &in_array;
-    CREATE_DEFAULT_INPUTS_DNNL(in_array, pInArray = &in_array_fallback, 
attrs_);
-    fcompute_(attrs_, op_ctx, *pInArray, req, out_array);
+    CREATE_DEFAULT_INPUTS_DNNL(in_array, pInArray = &in_array_fallback, attrs);
+    fcompute_(attrs, op_ctx, *pInArray, req, out_array);
   }
 
   void Setup() override {}
@@ -250,11 +253,13 @@ class FComputeExExecutor : public OpExecutor {
     return exec_type_;
   }
 
-  explicit FComputeExExecutor(NodeAttrs attrs, FComputeEx fcompute, ExecType 
exec_type)
-      : attrs_(std::move(attrs)), fcompute_(std::move(fcompute)), 
exec_type_(exec_type) {}
+  explicit FComputeExExecutor(const NodeAttrs& attrs,
+                              DispatchMode dispatch_mode,
+                              FComputeEx fcompute,
+                              ExecType exec_type)
+      : OpExecutor(attrs, dispatch_mode), fcompute_(std::move(fcompute)), 
exec_type_(exec_type) {}
 
  private:
-  NodeAttrs attrs_;
   FComputeEx fcompute_;
   ExecType exec_type_;
 };
@@ -309,14 +314,15 @@ void CreateOpExecs(const Graph& g, OpExecVector* p_ret, 
OpStateVector* p_state,
     // FStatefulComputeEx is dispatched only when dispatch_mode is 
DispatchMode::kFComputeEx
     if (fcompute_ex != nullptr && dispatch_modes[i] == 
DispatchMode::kFComputeEx) {
       ret[i] = std::make_shared<StatefulComputeExExecutor>(
-          inode.source->attrs, state, fcompute_ex, exec_type);
+          inode.source->attrs, dispatch_modes[i], state, fcompute_ex, 
exec_type);
     } else {
       FStatefulCompute fcompute =
           common::GetFCompute<FStatefulCompute>(op, "FStatefulCompute", 
vctx[i]);
       CHECK(fcompute != nullptr)
           << "One of FStatefulCompute and FStatefulComputeEx must be 
registered "
           << "for stateful operator " << op->name;
-      ret[i] = std::make_shared<StatefulComputeExecutor>(state, fcompute, 
exec_type, mutate_index);
+      ret[i] = std::make_shared<StatefulComputeExecutor>(
+          inode.source->attrs, dispatch_modes[i], state, fcompute, exec_type, 
mutate_index);
     }
   } else if (is_layer_backward.get(op, false)) {
     CHECK_GE(inode.control_deps.size(), 1);
@@ -327,25 +333,33 @@ void CreateOpExecs(const Graph& g, OpExecVector* p_ret, 
OpStateVector* p_state,
         common::GetFCompute<FStatefulComputeEx>(op, "FStatefulComputeEx", 
vctx[i]);
     // FStatefulComputeEx is dispatched only when dispatch_mode is 
DispatchMode::kFComputeEx
     if (fcompute_ex != nullptr && dispatch_modes[i] == 
DispatchMode::kFComputeEx) {
-      ret[i] = std::make_shared<StatefulComputeExExecutor>(
-          inode.source->attrs, ret[fwd_id].get()->state(), fcompute_ex, 
exec_type);
+      ret[i] = std::make_shared<StatefulComputeExExecutor>(inode.source->attrs,
+                                                           dispatch_modes[i],
+                                                           
ret[fwd_id].get()->state(),
+                                                           fcompute_ex,
+                                                           exec_type);
     } else {
       FStatefulCompute fcompute =
           common::GetFCompute<FStatefulCompute>(op, "FStatefulCompute", 
vctx[i]);
       CHECK(fcompute != nullptr)
           << "One of FStatefulCompute and FStatefulComputeEx must be 
registered "
           << "for stateful operator " << op->name;
-      ret[i] = std::make_shared<StatefulComputeExecutor>(
-          ret[fwd_id].get()->state(), fcompute, exec_type, mutate_index);
+      ret[i] = std::make_shared<StatefulComputeExecutor>(inode.source->attrs,
+                                                         dispatch_modes[i],
+                                                         
ret[fwd_id].get()->state(),
+                                                         fcompute,
+                                                         exec_type,
+                                                         mutate_index);
     }
   } else {
     FCompute fcompute   = common::GetFCompute<FCompute>(op, "FCompute", 
vctx[i]);
     FComputeEx fcomp_ex = common::GetFCompute<FComputeEx>(op, "FComputeEx", 
vctx[i]);
     if (fcomp_ex != nullptr && dispatch_modes[i] == DispatchMode::kFComputeEx) 
{
-      ret[i] = std::make_shared<FComputeExExecutor>(inode.source->attrs, 
fcomp_ex, exec_type);
+      ret[i] = std::make_shared<FComputeExExecutor>(
+          inode.source->attrs, dispatch_modes[i], fcomp_ex, exec_type);
     } else if (fcompute != nullptr) {
       ret[i] = std::make_shared<FComputeExecutor>(
-          inode.source->attrs, fcompute, exec_type, mutate_index);
+          inode.source->attrs, dispatch_modes[i], fcompute, exec_type, 
mutate_index);
     } else {
       LOG(INFO) << "Neither FCompute nor FComputeEx registered " << op->name;
     }
diff --git a/src/imperative/cuda_graphs.h b/src/imperative/cuda_graphs.h
new file mode 100644
index 0000000..c9e16d8
--- /dev/null
+++ b/src/imperative/cuda_graphs.h
@@ -0,0 +1,593 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * Copyright (c) 2020 by Contributors
+ * \file cuda_graphs.h
+ * \brief Wrappers for use of CUDA Graphs API
+ */
+#ifndef MXNET_IMPERATIVE_CUDA_GRAPHS_H_
+#define MXNET_IMPERATIVE_CUDA_GRAPHS_H_
+
+#include <mxnet/base.h>
+#include <vector>
+#include <string>
+#include <map>
+#include <set>
+#include <sstream>
+
+#include "./exec_pass.h"
+#include "../common/cuda/utils.h"
+
+#if MXNET_USE_CUDA
+#define CUDA_GRAPHS_AVAILABLE (CUDA_VERSION >= 10020)
+#else
+#define CUDA_GRAPHS_AVAILABLE (0)
+#endif
+
+#if CUDA_GRAPHS_AVAILABLE
+
+namespace mxnet {
+namespace cuda_graphs {
+
+inline std::string CudaDim3ToString(const dim3& dims) {
+  std::stringstream ss;
+  if (dims.z != 1)
+    ss << "(" << dims.x << "," << dims.y << "," << dims.z << ")";
+  else if (dims.y != 1)
+    ss << "(" << dims.x << "," << dims.y << ")";
+  else
+    ss << "(" << dims.x << ")";
+  return ss.str();
+}
+
+// Return the list of CUDA Graph nodes from a graph
+inline std::vector<cudaGraphNode_t> GetCudaGraphNodes(cudaGraph_t cuda_graph) {
+  size_t numNodes;
+  CUDA_CALL(cudaGraphGetNodes(cuda_graph, 
static_cast<cudaGraphNode_t*>(nullptr), &numNodes));
+  if (numNodes == 0)
+    return std::vector<cudaGraphNode_t>();
+  std::vector<cudaGraphNode_t> graphNodes(numNodes);
+  CUDA_CALL(cudaGraphGetNodes(cuda_graph, graphNodes.data(), &numNodes));
+  return graphNodes;
+}
+
+// Create a description of a CUDA Graph node
+inline std::string CudaGraphNodeToString(const cudaGraphNode_t node) {
+  std::stringstream ss;
+
+  // The following introspection calls are made through the driver API in 
order to bypass
+  // problems that would arise if multiple statically-linked copies of the 
runtime exist.
+
+  CUgraphNode cu_node = node;
+  CUgraphNodeType t;
+  CUDA_DRIVER_CALL(cuGraphNodeGetType(cu_node, &t));
+  switch (t) {
+    case CU_GRAPH_NODE_TYPE_KERNEL: {
+      CUDA_KERNEL_NODE_PARAMS kparams;
+      auto err = cuGraphKernelNodeGetParams(cu_node, &kparams);
+      if (err == CUDA_SUCCESS) {
+        ss << "GPUKernel@" << kparams.func;
+        dim3 gridDim(kparams.gridDimX, kparams.gridDimY, kparams.gridDimZ);
+        dim3 blockDim(kparams.blockDimX, kparams.blockDimY, kparams.blockDimZ);
+        ss << "<<<gridDim=" << CudaDim3ToString(gridDim)
+           << ", blkDim=" << CudaDim3ToString(blockDim) << ">>>";
+        ss << "(...";
+        if (kparams.sharedMemBytes != 0)
+          ss << ", dynSharedMemBytes=" << kparams.sharedMemBytes;
+        ss << ")";
+      } else {
+        ss << "GPU Kernel: cuGraphKernelNodeGetParams() fails with " << err;
+      }
+    } break;
+    case CU_GRAPH_NODE_TYPE_MEMCPY: {
+      cudaMemcpy3DParms mparams = {};
+      CUDA_CALL(cudaGraphMemcpyNodeGetParams(node, &mparams));
+      // If memcpy is seen, return without setting up runnable executor
+      switch (mparams.kind) {
+        case cudaMemcpyHostToHost:
+          ss << "Host->Host ";
+          break;
+        case cudaMemcpyHostToDevice:
+          ss << "Host->Device ";
+          break;
+        case cudaMemcpyDeviceToHost:
+          ss << "Device->Host ";
+          break;
+        case cudaMemcpyDeviceToDevice:
+          ss << "Device->Device ";
+          break;
+        default:
+          break;
+      }
+      ss << "Memcpy";
+    } break;
+    case CU_GRAPH_NODE_TYPE_MEMSET: {
+      cudaMemsetParams mparams = {};
+      CUDA_CALL(cudaGraphMemsetNodeGetParams(node, &mparams));
+      if (mparams.height == 1 && mparams.elementSize == 1) {
+        ss << "cudaMemset(devPtr=" << mparams.dst << ", value=" << 
mparams.value
+           << ", count=" << mparams.width << ")";
+      } else {
+        if (mparams.elementSize == 1)
+          ss << "cudaMemset2D";
+        else
+          ss << "MemSet<elemBytes=" << mparams.elementSize << ">";
+        ss << "(devPtr=" << mparams.dst << ", pitch=" << mparams.pitch
+           << ", value=" << mparams.value << ", width=" << mparams.width
+           << ", height=" << mparams.height << ")";
+      }
+    } break;
+    case CU_GRAPH_NODE_TYPE_HOST:
+      ss << "Host (executable) node";
+      break;
+    case CU_GRAPH_NODE_TYPE_GRAPH:
+      ss << "Node which executes an embedded graph";
+      break;
+    case CU_GRAPH_NODE_TYPE_EMPTY:
+      ss << "Empty (no-op) node";
+      break;
+    default:
+      ss << "Unknown/Invalid node type " << t;
+  }
+  return ss.str();
+}
+
+// CUDA Graphs are managed in RAII fashion by smart pointers below.
+// Function objects (preferred for readability) provide the deleter function.
+class CudaGraphDeleter {
+ public:
+  void operator()(cudaGraph_t graph) {
+    if (graph != nullptr)
+      CUDA_CALL(cudaGraphDestroy(graph));
+  }
+};
+
+// CUDA Graphs Executors are managed in RAII fashion by smart pointers below.
+// Function objects (preferred for readability) provide the deleter function.
+class CudaGraphExecDeleter {
+ public:
+  void operator()(cudaGraphExec_t graph_exec) {
+    if (graph_exec != nullptr)
+      CUDA_CALL(cudaGraphExecDestroy(graph_exec));
+  }
+};
+
+// A CUDA Graphs executor for a portion of an Operator Segment (i.e. a 
'SubSegment'),
+// characterized by a starting index in the OpExecutor list and a number of 
ops.
+class CudaGraphsSubSegExec {
+ public:
+  CudaGraphsSubSegExec(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list,
+                       const RunContext& rctx,
+                       bool is_gpu,
+                       bool verbose,
+                       int from_op_idx,
+                       int num_ops,
+                       bool ops_are_cuda_graph_compatible = true)
+      : from_op_idx_(from_op_idx),
+        num_ops_(num_ops),
+        graph_(nullptr),
+        graph_exec_(nullptr),
+        graph_exec_id_(0) {
+    if (ops_are_cuda_graph_compatible) {
+      MakeGraph(exec_list, rctx, is_gpu, verbose, from_op_idx, num_ops);
+      MakeGraphExec(exec_list, rctx);
+    }
+  }
+
+  void Update(const std::vector<std::shared_ptr<exec::OpExecutor>>& exec_list,
+              const RunContext& rctx,
+              bool is_gpu,
+              bool verbose) {
+    // Current executor should be Runnable with the same parameters
+    CHECK(IsRunnable());
+    MakeGraph(exec_list, rctx, is_gpu, verbose, from_op_idx_, num_ops_);
+
+    cudaGraphExecUpdateResult update_result = cudaGraphExecUpdateError;
+    cudaGraphNode_t error_node;
+    cudaError_t err =
+        cudaGraphExecUpdate(graph_exec_.get(), graph_.get(), &error_node, 
&update_result);
+    switch (err) {
+      case cudaErrorGraphExecUpdateFailure:
+        MakeGraphExec(exec_list, rctx);
+        break;
+      case cudaSuccess:
+        CHECK_EQ(update_result, cudaGraphExecUpdateSuccess);
+        break;
+      default:
+        // Respond normally to unusual cudaGraphExecUpdate() ret vals
+        CUDA_CALL(err);
+    }
+  }
+
+  void RunSubSeg(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list,
+                 const RunContext& rctx,
+                 bool is_gpu) {
+    if (IsRunnable()) {
+      auto s                  = rctx.get_stream<gpu>();
+      const cudaStream_t cu_s = mshadow::Stream<gpu>::GetStream(s);
+      CUDA_CALL(cudaGraphLaunch(graph_exec_.get(), cu_s));
+    } else {
+      // No CUDA Graph could be made for this portion of the OpSegment.  Run 
conventionally.
+      for (int i = 0; i != num_ops_; ++i)
+        exec_list[from_op_idx_ + i]->Run(rctx, is_gpu);
+    }
+  }
+
+  bool IsRunnable() {
+    return graph_exec_ != nullptr;
+  }
+
+  int NumGraphNodes() {
+    size_t numNodes;
+    CUDA_CALL(cudaGraphGetNodes(graph_.get(), 
static_cast<cudaGraphNode_t*>(nullptr), &numNodes));
+    return numNodes;
+  }
+
+ private:
+  void MakeGraph(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list,
+                 const RunContext& rctx,
+                 bool is_gpu,
+                 bool verbose,
+                 int from_op_idx,
+                 int num_ops) {
+    auto s                  = rctx.get_stream<gpu>();
+    const cudaStream_t cu_s = mshadow::Stream<gpu>::GetStream(s);
+    // Create CUDA Graph
+    // Use of cudaStreamCaptureModeThreadLocal allows other threads like GPU 
Copy workers
+    // to sync their streams without disturbing this capture.
+    CUDA_CALL(cudaStreamBeginCapture(cu_s, cudaStreamCaptureModeThreadLocal));
+    // Run those oprs in the sub segment while capturing- no actual GPU work 
is launched.
+    for (int i = 0; i != num_ops; ++i)
+      exec_list[from_op_idx + i]->Run(rctx, is_gpu);
+    cudaGraph_t cuda_graph = nullptr;
+    CUDA_CALL(cudaStreamEndCapture(cu_s, &cuda_graph));
+    graph_.reset(cuda_graph, CudaGraphDeleter());
+
+    if (verbose) {
+      std::vector<cudaGraphNode_t> graph_nodes = GetCudaGraphNodes(cuda_graph);
+      size_t num_nodes                         = graph_nodes.size();
+      LOG(INFO) << "  Graph has " << num_nodes << " nodes:";
+      for (size_t i = 0; i != num_nodes; ++i) {
+        LOG(INFO) << "    node " << i << " = " << 
CudaGraphNodeToString(graph_nodes[i]);
+      }
+    }
+  }
+
+  void MakeGraphExec(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list,
+                     const RunContext& rctx) {
+    // Note that this routine is not invoked when a graph executor is merely 
updated.
+    cudaGraphExec_t cuda_graph_exec;
+    cudaGraphNode_t error_node;
+    char log_buffer[1000];
+
+    CUDA_CALL(cudaGraphInstantiate(&cuda_graph_exec, graph_.get(), 
&error_node, log_buffer, 1000));
+    graph_exec_.reset(cuda_graph_exec, CudaGraphExecDeleter());
+
+    // At this point we have a CUDA Graph executor
+    static int num_graph_creations = 0;
+    graph_exec_id_                 = num_graph_creations++;
+
+    static size_t max_log_entries = 
dmlc::GetEnv("MXNET_CUDA_GRAPHS_MAX_LOG_ENTRIES", 0);
+    if (graph_exec_id_ < max_log_entries) {
+      LOG(INFO) << "Created CUDA graph " << graph_exec_id_;
+      if (num_graph_creations == max_log_entries)
+        LOG(INFO) << "Further CUDA graph creation log messages are 
suppressed.";
+    }
+    // Create a .dot file for graph visualization if requested
+    static std::string dotfile_base = 
dmlc::GetEnv("MXNET_CUDA_GRAPHS_DBG_FILE", std::string());
+    if (dotfile_base.size() > 0) {
+#if CUDA_VERSION >= 11030
+      static int dotfile_flags = 
dmlc::GetEnv("MXNET_CUDA_GRAPHS_DBG_FILE_FLAGS",
+                                              
static_cast<int>(cudaGraphDebugDotFlagsVerbose));
+      std::ostringstream filename;
+      const bool is_train = exec_list.size() > 0 && 
exec_list[0]->op_ctx.is_train;
+      int dev_id          = rctx.ctx.dev_id;
+      filename << dotfile_base << "-"
+               << "dev" << dev_id << "-" << (is_train ? "trn" : "inf") << "-" 
<< graph_exec_id_
+               << ".dot";
+      CUDA_CALL(cudaGraphDebugDotPrint(graph_.get(), filename.str().c_str(), 
dotfile_flags));
+#else
+      [[maybe_unused]] static bool dot_file_unsupported = []() {  // NOLINT
+        LOG(INFO) << "MXNET_CUDA_GRAPHS_DBG_FILE setting ignored- requires 
CUDA version >= 11.3";
+        return true;
+      }();
+#endif  // CUDA_VERSION >= 11030
+    }
+  }
+
+  int from_op_idx_;
+  int num_ops_;
+  using cudaGraphStruct_t     = typename 
std::remove_pointer<cudaGraph_t>::type;
+  using cudaGraphExecStruct_t = typename 
std::remove_pointer<cudaGraphExec_t>::type;
+  std::shared_ptr<cudaGraphStruct_t> graph_;
+  std::shared_ptr<cudaGraphExecStruct_t> graph_exec_;
+  size_t graph_exec_id_;
+};
+
+// The CudaGraph executor and associated Tempspace ptrs for which it is valid.
+struct CudaGraphInfo {
+  std::vector<CudaGraphsSubSegExec> cuda_graph_subseg_execs;
+  bool has_been_run_conventionally = false;
+  std::vector<void*> tempspace_dptrs;
+};
+// A CUDA graph is maintained for every combination of cudaStream_t (i.e. GPU 
Worker) and
+// the state of the is_train flag of the OpContext.  If the tempspace_dptrs 
change, we
+// don't expect to ever see the old tempspace_dptrs config again, so we 
discard the CUDA graph.
+struct CudaGraphCacheKey {
+  cudaStream_t cu_s;
+  bool is_train;
+  // overload '<' so CudaGraphCacheKey can be used as a std::map key
+  bool operator<(const CudaGraphCacheKey& other) const {
+    return cu_s < other.cu_s || (cu_s == other.cu_s && is_train < 
other.is_train);
+  }
+};
+using CudaGraphCache = std::map<CudaGraphCacheKey, CudaGraphInfo>;
+
+class CudaGraphsExec {
+ public:
+  CudaGraphsExec(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list,
+                 bool is_gpu,
+                 const char* opr_names)
+      : verbose_(false), is_enabled_(false) {
+    opr_names_ = opr_names ? std::string(opr_names) : std::string();
+    if (is_gpu) {
+      is_enabled_ = dmlc::GetEnv("MXNET_ENABLE_CUDA_GRAPHS", false);
+      verbose_    = dmlc::GetEnv("MXNET_CUDA_GRAPHS_VERBOSE", false);
+      SetTempSpaces(exec_list);
+    }
+  }
+
+  void RunAll(const std::vector<std::shared_ptr<exec::OpExecutor>>& exec_list,
+              const RunContext& rctx,
+              bool is_gpu) {
+    // If this a CPU op or CUDA Graphs use isn't possible, run normally and 
return
+    if (!is_gpu || !is_enabled_) {
+      // Run all opr in the sub-graph
+      exec::OpExecutor::RunAll(exec_list, rctx, is_gpu);
+      return;
+    }
+
+    // Also if we're in a warm-up period where tempspace pointers are likely
+    // to change, run normally and return
+    auto s                  = rctx.get_stream<gpu>();
+    const cudaStream_t cu_s = mshadow::Stream<gpu>::GetStream(s);
+    // All the ops in the bulked segment will have the same setting of 
is_train as the first op
+    const bool is_train         = exec_list.size() > 0 && 
exec_list[0]->op_ctx.is_train;
+    const CudaGraphCacheKey key = {cu_s, is_train};
+    // Look-up the CUDA Graph info for this combo of stream and is_train 
setting
+    // This may create a default-initialized new entry.
+    auto& cuda_graph_info = cache_[key];
+    if (!cuda_graph_info.has_been_run_conventionally) {
+      // Run all opr in the sub-graph
+      exec::OpExecutor::RunAll(exec_list, rctx, is_gpu);
+      cuda_graph_info.has_been_run_conventionally = true;
+      return;
+    }
+
+    // At this point we will launch one or more CUDA Graphs through CUDA 
Graphs 'executors'
+    //     (there might be more than one executor if some ops in the segment 
are not capturable)
+    auto before_exec_tempspace_ptrs = GetGPUTempspacePtrs(s);
+
+    // Executors exist, but the tempspace pts have changed, so update them 
in-place via 'recapture'.
+    if (cuda_graph_info.cuda_graph_subseg_execs.size() > 0 &&
+        cuda_graph_info.tempspace_dptrs != before_exec_tempspace_ptrs) {
+      // Update all runnable executors.  Non-runnable executors launch their 
ops conventionally.
+      for (auto& subseg_exec : cuda_graph_info.cuda_graph_subseg_execs) {
+        if (subseg_exec.IsRunnable())
+          subseg_exec.Update(exec_list, rctx, is_gpu, verbose_);
+      }
+    } else if (cuda_graph_info.cuda_graph_subseg_execs.size() == 0) {
+      // No executors exist yet, so create them.
+      if (verbose_)
+        LOG(INFO) << "Capturing CUDA graph of op segment " << opr_names_;
+      // Make one or more CUDA Graphs, avoiding ops that are not compatible.
+      for (size_t first_op_idx = 0; first_op_idx != exec_list.size();) {
+        int num_good_ops = 0;
+        for (size_t last_op_idx = first_op_idx; last_op_idx != 
exec_list.size(); ++last_op_idx) {
+          if (OpOK(exec_list[last_op_idx]))
+            num_good_ops++;
+          else
+            break;
+        }
+        if (num_good_ops > 0) {
+          CreateSubExecOverRegion(exec_list,
+                                  rctx,
+                                  is_gpu,
+                                  first_op_idx,
+                                  first_op_idx + num_good_ops,
+                                  &cuda_graph_info.cuda_graph_subseg_execs);
+          first_op_idx += num_good_ops;
+        }
+        if (first_op_idx != exec_list.size()) {
+          // We had to have hit an op that was not OK.
+          if (verbose_) {
+            LOG(INFO) << "Bypassing notOK op segment[" << first_op_idx << "," 
<< first_op_idx << "]"
+                      << " of op segment " << opr_names_;
+          }
+          CudaGraphsSubSegExec notOK_opseg(exec_list, rctx, is_gpu, false, 
first_op_idx, 1, false);
+          cuda_graph_info.cuda_graph_subseg_execs.push_back(notOK_opseg);
+          first_op_idx++;
+        }
+      }
+      // During graph capture, the ops may be asking for the tempworkspace.  
This should
+      // not alter the base pointers, since this op seg has been executed 
before on this
+      // stream (i.e. on this gpu worker).  Safest to double-check this though.
+      auto after_capture_tempspace_ptrs = GetGPUTempspacePtrs(s);
+      if (before_exec_tempspace_ptrs != after_capture_tempspace_ptrs)
+        LOG(FATAL) << "Internal error: saw change in TempSpace ptrs during 
CUDA graph use.";
+      cuda_graph_info.tempspace_dptrs = before_exec_tempspace_ptrs;
+    }
+    // Now execute the CUDA Graph that we either just created or looked-up in 
the cache.
+    if (verbose_) {
+      int runnable_execs = 0;
+      int bypassed_ops   = 0;
+      for (auto& subseg_exec : cuda_graph_info.cuda_graph_subseg_execs) {
+        if (subseg_exec.IsRunnable()) {
+          LOG(INFO) << "Launching captured graph with " << 
subseg_exec.NumGraphNodes() << " nodes.";
+          runnable_execs++;
+        } else {
+          bypassed_ops++;
+        }
+      }
+      if (bypassed_ops > 0)
+        LOG(INFO) << "    (bypassing " << bypassed_ops << " un-capturable 
ops)";
+    }
+    for (auto& subseg_exec : cuda_graph_info.cuda_graph_subseg_execs)
+      subseg_exec.RunSubSeg(exec_list, rctx, is_gpu);
+  }
+
+ private:
+  // Make a CUDA Graph of the region of ops [from_op_idx, upto_op_idx).  If 
such a graph
+  // is not runnable, e.g. if it includes memcpys from unpinned cpu memory, 
then make a
+  // number of smaller graphs that avoid those ops with the memcpys.
+  void CreateSubExecOverRegion(const 
std::vector<std::shared_ptr<exec::OpExecutor>>& exec_list,
+                               const RunContext& rctx,
+                               bool is_gpu,
+                               size_t from_op_idx,
+                               size_t upto_op_idx,
+                               std::vector<CudaGraphsSubSegExec>* 
cuda_graph_subseg_execs) {
+    // Optimistically try to create a CUDA Graph of the entire op segment 
region
+
+    int num_ops = upto_op_idx - from_op_idx;
+    CudaGraphsSubSegExec full_opseg(exec_list, rctx, is_gpu, verbose_, 
from_op_idx, num_ops);
+    if (full_opseg.IsRunnable()) {
+      cuda_graph_subseg_execs->push_back(full_opseg);
+    } else {
+      if (verbose_)
+        LOG(INFO) << "  Graph was not runnable- creating op sub-segments...";
+      // Enter fall-back approach to making many sub-execs
+      for (size_t first_op_idx = from_op_idx; first_op_idx != upto_op_idx;) {
+        int num_good_ops = 0;
+        for (size_t last_op_idx = first_op_idx; last_op_idx != upto_op_idx; 
++last_op_idx) {
+          CudaGraphsSubSegExec single_opseg(exec_list, rctx, is_gpu, false, 
last_op_idx, 1);
+          if (single_opseg.IsRunnable())
+            num_good_ops++;
+          // Is it time to create a subseg exec from accumulated good ops?
+          if (num_good_ops > 0 && (last_op_idx == upto_op_idx - 1 || 
!single_opseg.IsRunnable())) {
+            if (verbose_)
+              LOG(INFO) << "Capturing CUDA graph of op sub segment[" << 
first_op_idx << ":"
+                        << (first_op_idx + num_good_ops - 1) << "]"
+                        << " of op segment " << opr_names_;
+            CudaGraphsSubSegExec good_opseg(
+                exec_list, rctx, is_gpu, verbose_, first_op_idx, num_good_ops);
+            CHECK(good_opseg.IsRunnable()) << "Unexpected issue with CUDA 
Graphs creation";
+            cuda_graph_subseg_execs->push_back(good_opseg);
+            first_op_idx += num_good_ops;
+          }
+          // If the last single op was not runnable, use the exec to handle 
that op conventionally
+          if (!single_opseg.IsRunnable()) {
+            if (verbose_) {
+              LOG(INFO) << "Bypassing op sub segment[" << last_op_idx << "," 
<< last_op_idx << "]"
+                        << " of op segment " << opr_names_;
+              // Generate throw-away exec in order to produce a diagnostic 
listing of graph nodes
+              CudaGraphsSubSegExec dummy(exec_list, rctx, is_gpu, verbose_, 
last_op_idx, 1);
+            }
+            cuda_graph_subseg_execs->push_back(single_opseg);
+            first_op_idx++;
+            break;
+          }
+        }
+      }
+    }
+  }
+
+  // Is the Op OK to make part of a CUDA Graph?
+  bool OpOK(const std::shared_ptr<exec::OpExecutor>& exec) {
+    static auto& fgraphcompatible = 
Op::GetAttr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible");
+    static auto& fcompute_ex      = Op::GetAttr<FComputeEx>("FComputeEx<gpu>");
+    static auto& fstatefulcompute = 
Op::GetAttr<FStatefulCompute>("FStatefulCompute<gpu>");
+    static auto& fstatefulcompute_ex = 
Op::GetAttr<FStatefulComputeEx>("FStatefulComputeEx<gpu>");
+    const auto& attrs                = exec->attrs;
+    if (attrs.op != nullptr) {
+      const auto f = fgraphcompatible.get(attrs.op, nullptr);
+      if (f != nullptr) {
+        return f(attrs, exec->op_ctx.is_train);
+      }
+      if (fstatefulcompute.get(attrs.op, nullptr) != nullptr ||
+          fstatefulcompute_ex.get(attrs.op, nullptr) != nullptr) {
+        if (verbose_) {
+          LOG(INFO) << "Omitting stateful operator " << attrs.op->name << " 
from CUDA graph.";
+        }
+        return false;
+      }
+      if ((fcompute_ex.get(attrs.op, nullptr) != nullptr &&
+           exec->dispatch_mode == DispatchMode::kFComputeEx) ||
+          exec->dispatch_mode == DispatchMode::kFComputeFallback) {
+        if (verbose_) {
+          LOG(INFO) << "Omitting operator " << attrs.op->name
+                    << " from CUDA graph due to dispatch mode "
+                    << static_cast<int>(exec->dispatch_mode);
+        }
+        return false;
+      }
+    }
+    for (auto& resource : exec->op_ctx.requested) {
+      if (!(resource.req.type == ResourceRequest::kTempSpace)) {
+        if (verbose_) {
+          LOG(INFO) << "Omitting operator " << attrs.op->name
+                    << " from CUDA graph due to using the resource type "
+                    << static_cast<int>(resource.req.type);
+        }
+        return false;
+      }
+    }
+    return true;
+  }
+
+  // Determine Tempspaces used by ops.  Other resource uses disable CUDA 
Graphs.
+  void SetTempSpaces(const std::vector<std::shared_ptr<exec::OpExecutor>>& 
exec_list) {
+    // Gather info about the ops use of TempSpace.
+    if (is_enabled_) {
+      std::set<Resource*> tempspaces_set;
+      for (auto& exec : exec_list) {
+        for (auto& resource : exec->op_ctx.requested) {
+          if (resource.req.type == ResourceRequest::kTempSpace) {
+            tempspaces_set.insert(&resource);
+          }
+        }
+      }
+      tempspaces_.assign(tempspaces_set.begin(), tempspaces_set.end());
+    }
+  }
+
+  // Return the addresses of the gpu TempSpace areas
+  std::vector<void*> GetGPUTempspacePtrs(mshadow::Stream<gpu>* s) {
+    std::vector<void*> ret;
+    for (const auto& resource : tempspaces_) {
+      // Ask for minimal allocation to get base pointer without increasing the 
size
+      auto* base_ptr = resource->get_space_typed<gpu, 1, 
char>(mshadow::Shape1(1), s).dptr_;
+      ret.push_back(static_cast<void*>(base_ptr));
+    }
+    return ret;
+  }
+
+  CudaGraphCache cache_;
+  std::vector<Resource*> tempspaces_;
+  std::string opr_names_;
+  bool verbose_;
+  bool is_enabled_;
+};
+
+}  // namespace cuda_graphs
+}  // namespace mxnet
+
+#endif  // CUDA_GRAPHS_AVAILABLE
+
+#endif  // MXNET_IMPERATIVE_CUDA_GRAPHS_H_
diff --git a/src/imperative/exec_pass.h b/src/imperative/exec_pass.h
index 7667d97..02fa967 100644
--- a/src/imperative/exec_pass.h
+++ b/src/imperative/exec_pass.h
@@ -30,6 +30,7 @@
 #include <mxnet/graph_attr_types.h>
 #include <nnvm/graph.h>
 #include <nnvm/graph_attr_types.h>
+#include <utility>
 #include <vector>
 #include <memory>
 #include <string>
@@ -84,6 +85,13 @@ class OpExecutor {
   std::vector<OpReqType> req;
   /*! \brief runtime op context, contains allocated resources */
   OpContext op_ctx;
+  /*! \brief attributes of the node */
+  NodeAttrs attrs;
+  /*! \brief dispatch mode of the executor */
+  DispatchMode dispatch_mode;
+
+  explicit OpExecutor(NodeAttrs attrs, DispatchMode dispatch_mode)
+      : attrs(std::move(attrs)), dispatch_mode(dispatch_mode) {}
   /*! \brief virtual destructor */
   virtual ~OpExecutor() {}
   /*!
@@ -98,6 +106,17 @@ class OpExecutor {
    * \param rctx The runtime context passed in by environment.
    */
   virtual void Run(RunContext rctx, bool is_gpu) = 0;
+  /*!
+   * \brief run the operators of a vector of execs, given runtime context on 
device.
+   *  This function call does not synchronize the stream.
+   * \param rctx The runtime context passed in by environment.
+   */
+  static void RunAll(const std::vector<std::shared_ptr<OpExecutor>>& execs,
+                     RunContext rctx,
+                     bool is_gpu) {
+    for (auto& exec : execs)
+      exec->Run(rctx, is_gpu);
+  }
   /*! \return the execution type */
   virtual ExecType exec_type() const = 0;
   /*! \return return engine variable for operator states */
diff --git a/src/imperative/imperative_utils.h 
b/src/imperative/imperative_utils.h
index ce1a60f..7f90528 100644
--- a/src/imperative/imperative_utils.h
+++ b/src/imperative/imperative_utils.h
@@ -27,6 +27,8 @@
 #include <utility>
 #include <vector>
 
+#include "./exec_pass.h"
+#include "./cuda_graphs.h"
 #include "../c_api/c_api_common.h"
 #include "../common/exec_utils.h"
 #include "../common/utils.h"
@@ -1248,6 +1250,21 @@ inline Engine::OprHandle CreateEngineOp(
   bool is_gpu   = default_ctx.dev_mask() == gpu::kDevMask;
   bool is_async = execs.size() > 1 ? false : execs[0]->exec_type() == 
ExecType::kAsync;
 
+#if CUDA_GRAPHS_AVAILABLE
+  // Provide initialized `cuda_graphs_exec`, which when captured
+  // by exec_fun, acts like a static variable inside the mutable closure.
+  cuda_graphs::CudaGraphsExec cuda_graphs_exec(execs, is_gpu, opr_names);
+  auto exec_fun = [cuda_graphs_exec, execs, is_async, is_gpu](
+                      RunContext ctx,
+                      Engine::CallbackOnStart on_start,
+                      Engine::CallbackOnComplete on_complete) mutable {
+    on_start();
+    if (is_async) {
+      execs[0]->op_ctx.async_on_complete = on_complete;
+    }
+    // Run all opr in the sub-graph with CUDA graphs executor if possible
+    cuda_graphs_exec.RunAll(execs, ctx, is_gpu);
+#else
   auto exec_fun = [execs, is_async, is_gpu](RunContext ctx,
                                             Engine::CallbackOnStart on_start,
                                             Engine::CallbackOnComplete 
on_complete) {
@@ -1255,8 +1272,8 @@ inline Engine::OprHandle CreateEngineOp(
     if (is_async) {
       execs[0]->op_ctx.async_on_complete = on_complete;
     }
-    for (const auto& exec : execs)
-      exec->Run(ctx, is_gpu);
+    exec::OpExecutor::RunAll(execs, ctx, is_gpu);
+#endif
     // call on complete only if it is async op
     if (!is_async) {
       if (is_gpu) {
diff --git a/src/operator/contrib/adamw.cu b/src/operator/contrib/adamw.cu
index 8023788..0b24790 100644
--- a/src/operator/contrib/adamw.cu
+++ b/src/operator/contrib/adamw.cu
@@ -45,15 +45,23 @@ void GetScaleFloat<gpu>(mshadow::Stream<gpu>* s, const 
TBlob& scale_blob, float*
         })}
 
 NNVM_REGISTER_OP(_adamw_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", adamw::MPUpdate<gpu, 
AdamWUpdate<gpu>>);
 
 NNVM_REGISTER_OP(_mp_adamw_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", adamw::MPUpdate<gpu, 
MPAdamWUpdate<gpu>>);
 
 NNVM_REGISTER_OP(_multi_adamw_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", adamw::multiMPUpdate<gpu, false>);
 
 NNVM_REGISTER_OP(_multi_mp_adamw_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", adamw::multiMPUpdate<gpu, true>);
 
 }  // namespace adamw
diff --git a/src/operator/contrib/index_array.cu 
b/src/operator/contrib/index_array.cu
index 482cbf6..3702fed 100644
--- a/src/operator/contrib/index_array.cu
+++ b/src/operator/contrib/index_array.cu
@@ -82,7 +82,10 @@ void IndexArrayForwardGPU(const nnvm::NodeAttrs& attrs,
   }
 }
 
-NNVM_REGISTER_OP(_contrib_index_array).set_attr<FCompute>("FCompute<gpu>", 
IndexArrayForwardGPU);
+NNVM_REGISTER_OP(_contrib_index_array)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", IndexArrayForwardGPU);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/contrib/multi_lamb.cu 
b/src/operator/contrib/multi_lamb.cu
index 118ec63..c6bedfc 100644
--- a/src/operator/contrib/multi_lamb.cu
+++ b/src/operator/contrib/multi_lamb.cu
@@ -268,9 +268,13 @@ void CallKernel2(Stream<gpu>* s,
 }
 
 NNVM_REGISTER_OP(_multi_lamb_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
     .set_attr<FCompute>("FCompute<gpu>", MultiLAMBUpdate<gpu, false>);
 
 NNVM_REGISTER_OP(_multi_mp_lamb_update)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
     .set_attr<FCompute>("FCompute<gpu>", MultiLAMBUpdate<gpu, true>);
 
 }  // namespace op
diff --git a/src/operator/instance_norm.cu b/src/operator/instance_norm.cu
index ca45dbb..ce11fbf 100644
--- a/src/operator/instance_norm.cu
+++ b/src/operator/instance_norm.cu
@@ -28,9 +28,14 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(InstanceNorm).set_attr<FCompute>("FCompute<gpu>", 
InstanceNormForward<gpu>);
+NNVM_REGISTER_OP(InstanceNorm)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", InstanceNormForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_instance_norm)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
     .set_attr<FCompute>("FCompute<gpu>", InstanceNormBackward<gpu>);
 
 }  // namespace op
diff --git a/src/operator/leaky_relu.cu b/src/operator/leaky_relu.cu
index d461949..82ec59b 100644
--- a/src/operator/leaky_relu.cu
+++ b/src/operator/leaky_relu.cu
@@ -28,9 +28,14 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(LeakyReLU).set_attr<FCompute>("FCompute<gpu>", 
LeakyReLUCompute<gpu>);
+NNVM_REGISTER_OP(LeakyReLU)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", LeakyReLUCompute<gpu>);
 
 NNVM_REGISTER_OP(_backward_LeakyReLU)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
     .set_attr<FCompute>("FCompute<gpu>", LeakyReLUGradCompute<gpu>);
 
 }  // namespace op
diff --git a/src/operator/nn/dropout-inl.h b/src/operator/nn/dropout-inl.h
index 18f94cf..0baa8e4 100644
--- a/src/operator/nn/dropout-inl.h
+++ b/src/operator/nn/dropout-inl.h
@@ -437,7 +437,6 @@ class DropoutOp {
     using namespace mshadow::expr;
     Stream<xpu>* s = ctx.get_stream<xpu>();
     if (!this->dropout_passthrough_) {
-      this->dropout_passthrough_ = true;
       const TBlob& gdata         = in_grad[dropout::kData];
       const TBlob& grad          = out_grad[dropout::kOut];
       const TBlob& mask          = out_data[dropout::kMask];
diff --git a/src/operator/nn/dropout.cu b/src/operator/nn/dropout.cu
index d6c97f5..414b82e 100644
--- a/src/operator/nn/dropout.cu
+++ b/src/operator/nn/dropout.cu
@@ -28,7 +28,26 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(Dropout).set_attr<FStatefulCompute>("FStatefulCompute<gpu>", 
DropoutCompute<gpu>);
+NNVM_REGISTER_OP(Dropout)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool 
is_train) {
+                                         // Dropout is a passthrough during 
inference for all impls
+                                         if (!is_train)
+                                           return true;
+#if MXNET_USE_CUDNN_DROPOUT
+                                         // cuDNN impl is compatible during 
training as well
+                                         const DropoutParam& param =
+                                             
nnvm::get<DropoutParam>(attrs.parsed);
+                                         real_t pkeep = 1.0f - param.p;
+                                         bool cudnn_off =
+                                             param.cudnn_off && 
param.cudnn_off.value();
+                                         bool cudnn_available = pkeep > 0 && 
!cudnn_off;
+                                         return cudnn_available;
+#else
+                                         return false;
+#endif  // MXNET_USE_CUDNN_DROPOUT
+                                       })
+    .set_attr<FStatefulCompute>("FStatefulCompute<gpu>", DropoutCompute<gpu>);
 
 NNVM_REGISTER_OP(_backward_Dropout)
     .set_attr<FStatefulCompute>("FStatefulCompute<gpu>", 
DropoutGradCompute<gpu>);
diff --git a/src/operator/numpy/linalg/np_eig.cu 
b/src/operator/numpy/linalg/np_eig.cu
index 1f89106..a217b6d 100644
--- a/src/operator/numpy/linalg/np_eig.cu
+++ b/src/operator/numpy/linalg/np_eig.cu
@@ -28,11 +28,17 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_eig).set_attr<FCompute>("FCompute<gpu>", 
EigOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_eig)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", EigOpForward<gpu>);
 
 #if MXNET_USE_CUSOLVER == 1
 
-NNVM_REGISTER_OP(_npi_eigh).set_attr<FCompute>("FCompute<gpu>", 
EighOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_eigh)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", EighOpForward<gpu>);
 
 #endif
 
diff --git a/src/operator/numpy/linalg/np_eigvals.cu 
b/src/operator/numpy/linalg/np_eigvals.cu
index dc03805..be00d8c 100644
--- a/src/operator/numpy/linalg/np_eigvals.cu
+++ b/src/operator/numpy/linalg/np_eigvals.cu
@@ -28,11 +28,17 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_eigvals).set_attr<FCompute>("FCompute<gpu>", 
EigvalsOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_eigvals)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", EigvalsOpForward<gpu>);
 
 #if MXNET_USE_CUSOLVER == 1
 
-NNVM_REGISTER_OP(_npi_eigvalsh).set_attr<FCompute>("FCompute<gpu>", 
EigvalshOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_eigvalsh)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", EigvalshOpForward<gpu>);
 
 #endif
 
diff --git a/src/operator/numpy/linalg/np_norm_backward.cu 
b/src/operator/numpy/linalg/np_norm_backward.cu
index 24d8783..23a021d 100644
--- a/src/operator/numpy/linalg/np_norm_backward.cu
+++ b/src/operator/numpy/linalg/np_norm_backward.cu
@@ -26,6 +26,12 @@ namespace mxnet {
 namespace op {
 
 NNVM_REGISTER_OP(_backward_npi_norm)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) {
+                                         const NumpyNormParam& param =
+                                             
nnvm::get<NumpyNormParam>(attrs.parsed);
+                                         return param.axis.value().ndim() == 2;
+                                       })
     .set_attr<FCompute>("FCompute<gpu>", NumpyNormComputeBackward<gpu>);
 
 }  // namespace op
diff --git a/src/operator/numpy/linalg/np_norm_forward.cu 
b/src/operator/numpy/linalg/np_norm_forward.cu
index 8926763..7399727 100644
--- a/src/operator/numpy/linalg/np_norm_forward.cu
+++ b/src/operator/numpy/linalg/np_norm_forward.cu
@@ -25,7 +25,14 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_norm).set_attr<FCompute>("FCompute<gpu>", 
NumpyNormComputeForward<gpu>);
+NNVM_REGISTER_OP(_npi_norm)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) {
+                                         const NumpyNormParam& param =
+                                             
nnvm::get<NumpyNormParam>(attrs.parsed);
+                                         return param.axis.value().ndim() == 2;
+                                       })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyNormComputeForward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/np_boolean_mask_assign.cu 
b/src/operator/numpy/np_boolean_mask_assign.cu
index 10f8612..216e8ff 100644
--- a/src/operator/numpy/np_boolean_mask_assign.cu
+++ b/src/operator/numpy/np_boolean_mask_assign.cu
@@ -273,9 +273,13 @@ void NumpyBooleanAssignForwardGPU(const nnvm::NodeAttrs& 
attrs,
 }
 
 NNVM_REGISTER_OP(_npi_boolean_mask_assign_scalar)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", NumpyBooleanAssignForwardGPU);
 
 NNVM_REGISTER_OP(_npi_boolean_mask_assign_tensor)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", NumpyBooleanAssignForwardGPU);
 
 }  // namespace op
diff --git a/src/operator/numpy/np_constraint_check.cu 
b/src/operator/numpy/np_constraint_check.cu
index 04a0a36..26a5f01 100644
--- a/src/operator/numpy/np_constraint_check.cu
+++ b/src/operator/numpy/np_constraint_check.cu
@@ -38,6 +38,8 @@ void GetReduceOutput<gpu>(mshadow::Stream<gpu>* s, const 
TBlob& output_blob, boo
 }
 
 NNVM_REGISTER_OP(_npx_constraint_check)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", ConstraintCheckForward<gpu>);
 
 }  // namespace op
diff --git a/src/operator/numpy/np_matrix_op.cu 
b/src/operator/numpy/np_matrix_op.cu
index f207814..2785898 100644
--- a/src/operator/numpy/np_matrix_op.cu
+++ b/src/operator/numpy/np_matrix_op.cu
@@ -52,9 +52,15 @@ NNVM_REGISTER_OP(_npi_column_stack)
 NNVM_REGISTER_OP(_backward_np_column_stack)
     .set_attr<FCompute>("FCompute<gpu>", NumpyColumnStackBackward<gpu>);
 
-NNVM_REGISTER_OP(_npi_tril_indices).set_attr<FCompute>("FCompute<gpu>", 
TrilindicesOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_tril_indices)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", TrilindicesOpForward<gpu>);
 
-NNVM_REGISTER_OP(_npi_roll).set_attr<FCompute>("FCompute<gpu>", 
NumpyRollCompute<gpu>);
+NNVM_REGISTER_OP(_npi_roll)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyRollCompute<gpu>);
 
 template <>
 void NumpyFlipForwardImpl<gpu>(const OpContext& ctx,
@@ -92,9 +98,15 @@ void NumpyFlipForwardImpl<gpu>(const OpContext& ctx,
   });
 }
 
-NNVM_REGISTER_OP(_npi_flip).set_attr<FCompute>("FCompute<gpu>", 
NumpyFlipForward<gpu>);
+NNVM_REGISTER_OP(_npi_flip)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyFlipForward<gpu>);
 
-NNVM_REGISTER_OP(_backward_npi_flip).set_attr<FCompute>("FCompute<gpu>", 
NumpyFlipForward<gpu>);
+NNVM_REGISTER_OP(_backward_npi_flip)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyFlipForward<gpu>);
 
 NNVM_REGISTER_OP(_npi_moveaxis).set_attr<FCompute>("FCompute<gpu>", 
NumpyMoveaxisCompute<gpu>);
 
@@ -103,7 +115,22 @@ 
NNVM_REGISTER_OP(_npi_rollaxis).set_attr<FCompute>("FCompute<gpu>", NumpyRollaxi
 NNVM_REGISTER_OP(_npi_rollaxis_backward)
     .set_attr<FCompute>("FCompute<gpu>", NumpyRollaxisBackward<gpu>);
 
-NNVM_REGISTER_OP(_npi_rot90).set_attr<FCompute>("FCompute<gpu>", 
NumpyRot90Compute<gpu>);
+NNVM_REGISTER_OP(_npi_rot90)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) {
+                                         const auto& param =
+                                             
nnvm::get<NumpyRot90Param>(attrs.parsed);
+                                         // Should track code in 
NumpyRot90Compute()
+                                         int real_k(param.k);
+                                         real_k = real_k % 4;
+                                         if (real_k < 0) {
+                                           real_k += 4;
+                                         }
+                                         // Avoid NumpyRot90ComputeFlipIml(),
+                                         // which uses mshadow::Copy()
+                                         return real_k != 2;
+                                       })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyRot90Compute<gpu>);
 
 NNVM_REGISTER_OP(_npi_hsplit).set_attr<FCompute>("FCompute<gpu>", 
HSplitOpForward<gpu>);
 
diff --git a/src/operator/numpy/np_nonzero_op.cu 
b/src/operator/numpy/np_nonzero_op.cu
index 1499030..597331e 100644
--- a/src/operator/numpy/np_nonzero_op.cu
+++ b/src/operator/numpy/np_nonzero_op.cu
@@ -115,6 +115,8 @@ NNVM_REGISTER_OP(_npx_nonzero)
                                 [](const NodeAttrs& attrs) {
                                   return 
std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
                                 })
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs& attrs, const bool) 
{ return false; })
     .set_attr<FComputeEx>("FComputeEx<gpu>", NonzeroForwardGPU);
 
 }  // namespace op
diff --git a/src/operator/numpy/np_pad_op.cu b/src/operator/numpy/np_pad_op.cu
index 01a7035..1b9f4f4 100644
--- a/src/operator/numpy/np_pad_op.cu
+++ b/src/operator/numpy/np_pad_op.cu
@@ -28,9 +28,17 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_pad).set_attr<FCompute>("FCompute<gpu>", 
NumpyPadOpForward<gpu>);
+NNVM_REGISTER_OP(_npi_pad)
+    // Incompatible due to Copy(xpu_tensor, cpu_tensor) in NumpyPadOpForward
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyPadOpForward<gpu>);
 
-NNVM_REGISTER_OP(_backward_npi_pad).set_attr<FCompute>("FCompute<gpu>", 
NumpyPadOpBackward<gpu>);
+NNVM_REGISTER_OP(_backward_npi_pad)
+    // Incompatible due to Copy(xpu_tensor, cpu_tensor) in NumpyPadOpBackward
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyPadOpBackward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/np_percentile_op.cu 
b/src/operator/numpy/np_percentile_op.cu
index 13d076d..2dcc829 100644
--- a/src/operator/numpy/np_percentile_op.cu
+++ b/src/operator/numpy/np_percentile_op.cu
@@ -52,7 +52,10 @@ bool CheckInvalidInput(mshadow::Stream<gpu>* s,
   return is_valid == 0;
 }
 
-NNVM_REGISTER_OP(_npi_percentile).set_attr<FCompute>("FCompute<gpu>", 
NumpyPercentileForward<gpu>);
+NNVM_REGISTER_OP(_npi_percentile)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyPercentileForward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/random/np_bernoulli_op.cu 
b/src/operator/numpy/random/np_bernoulli_op.cu
index 8cdceb5..eee89c1 100644
--- a/src/operator/numpy/random/np_bernoulli_op.cu
+++ b/src/operator/numpy/random/np_bernoulli_op.cu
@@ -27,7 +27,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_bernoulli).set_attr<FCompute>("FCompute<gpu>", 
NumpyBernoulliForward<gpu>);
+NNVM_REGISTER_OP(_npi_bernoulli)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyBernoulliForward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/random/np_exponential_op.cu 
b/src/operator/numpy/random/np_exponential_op.cu
index 60809fb..8ad7386 100644
--- a/src/operator/numpy/random/np_exponential_op.cu
+++ b/src/operator/numpy/random/np_exponential_op.cu
@@ -28,6 +28,8 @@ namespace mxnet {
 namespace op {
 
 NNVM_REGISTER_OP(_npi_exponential)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", NumpyExponentialForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_broadcast_exponential)
diff --git a/src/operator/numpy/random/np_gamma_op.cu 
b/src/operator/numpy/random/np_gamma_op.cu
index 7e3cabc..0191fd5 100644
--- a/src/operator/numpy/random/np_gamma_op.cu
+++ b/src/operator/numpy/random/np_gamma_op.cu
@@ -28,7 +28,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_gamma).set_attr<FCompute>("FCompute<gpu>", 
NumpyGammaForward<gpu, double>);
+NNVM_REGISTER_OP(_npi_gamma)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyGammaForward<gpu, double>);
 
 NNVM_REGISTER_OP(_backward_gamma_sample).set_attr<FCompute>("FCompute<gpu>", 
NumpyGammaGrad<gpu>);
 
diff --git a/src/operator/numpy/random/np_multinomial_op.cu 
b/src/operator/numpy/random/np_multinomial_op.cu
index 083b410..575ad08 100644
--- a/src/operator/numpy/random/np_multinomial_op.cu
+++ b/src/operator/numpy/random/np_multinomial_op.cu
@@ -41,6 +41,8 @@ void CheckPvalGPU(const OpContext& ctx, DType* input, int 
prob_length) {
 }
 
 NNVM_REGISTER_OP(_npi_multinomial)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", NumpyMultinomialForward<gpu>);
 
 }  // namespace op
diff --git a/src/operator/numpy/random/np_normal_op.cu 
b/src/operator/numpy/random/np_normal_op.cu
index db87461..525a0e1 100644
--- a/src/operator/numpy/random/np_normal_op.cu
+++ b/src/operator/numpy/random/np_normal_op.cu
@@ -27,12 +27,18 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_normal).set_attr<FCompute>("FCompute<gpu>", 
NumpyNormalForward<gpu>);
+NNVM_REGISTER_OP(_npi_normal)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyNormalForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_broadcast_normal)
     .set_attr<FCompute>("FCompute<gpu>", NormalReparamBackward<gpu>);
 
-NNVM_REGISTER_OP(_npi_normal_n).set_attr<FCompute>("FCompute<gpu>", 
NumpyNormalForward<gpu>);
+NNVM_REGISTER_OP(_npi_normal_n)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyNormalForward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/random/np_pareto_op.cu 
b/src/operator/numpy/random/np_pareto_op.cu
index 7618d28..82fcd1f 100644
--- a/src/operator/numpy/random/np_pareto_op.cu
+++ b/src/operator/numpy/random/np_pareto_op.cu
@@ -27,7 +27,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_pareto).set_attr<FCompute>("FCompute<gpu>", 
NumpyParetoForward<gpu>);
+NNVM_REGISTER_OP(_npi_pareto)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyParetoForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_broadcast_pareto)
     .set_attr<FCompute>("FCompute<gpu>", ParetoReparamBackward<gpu>);
diff --git a/src/operator/numpy/random/np_power_op.cu 
b/src/operator/numpy/random/np_power_op.cu
index 2904420..f7a6686 100644
--- a/src/operator/numpy/random/np_power_op.cu
+++ b/src/operator/numpy/random/np_power_op.cu
@@ -27,7 +27,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_powerd).set_attr<FCompute>("FCompute<gpu>", 
NumpyPowerForward<gpu>);
+NNVM_REGISTER_OP(_npi_powerd)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyPowerForward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/src/operator/numpy/random/np_rayleigh_op.cu 
b/src/operator/numpy/random/np_rayleigh_op.cu
index 586f174..f67a2fe 100644
--- a/src/operator/numpy/random/np_rayleigh_op.cu
+++ b/src/operator/numpy/random/np_rayleigh_op.cu
@@ -27,7 +27,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_rayleigh).set_attr<FCompute>("FCompute<gpu>", 
NumpyRayleighForward<gpu>);
+NNVM_REGISTER_OP(_npi_rayleigh)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyRayleighForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_broadcast_rayleigh)
     .set_attr<FCompute>("FCompute<gpu>", RayleighReparamBackward<gpu>);
diff --git a/src/operator/numpy/random/np_weibull_op.cu 
b/src/operator/numpy/random/np_weibull_op.cu
index 658be16..4495bab 100644
--- a/src/operator/numpy/random/np_weibull_op.cu
+++ b/src/operator/numpy/random/np_weibull_op.cu
@@ -27,7 +27,10 @@
 namespace mxnet {
 namespace op {
 
-NNVM_REGISTER_OP(_npi_weibull).set_attr<FCompute>("FCompute<gpu>", 
NumpyWeibullForward<gpu>);
+NNVM_REGISTER_OP(_npi_weibull)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", NumpyWeibullForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_broadcast_weibull)
     .set_attr<FCompute>("FCompute<gpu>", WeibullReparamBackward<gpu>);
diff --git a/src/operator/tensor/elemwise_unary_op_basic.cu 
b/src/operator/tensor/elemwise_unary_op_basic.cu
index 7fdc047..5099301 100644
--- a/src/operator/tensor/elemwise_unary_op_basic.cu
+++ b/src/operator/tensor/elemwise_unary_op_basic.cu
@@ -115,7 +115,10 @@ void ShapeComputeGPU(const nnvm::NodeAttrs& attrs,
                   mshadow::Stream<gpu>::GetStream(s));
 }
 
-NNVM_REGISTER_OP(shape_array).set_attr<FCompute>("FCompute<gpu>", 
ShapeComputeGPU);
+NNVM_REGISTER_OP(shape_array)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", ShapeComputeGPU);
 
 void SizeComputeGPU(const nnvm::NodeAttrs& attrs,
                     const OpContext& ctx,
diff --git a/src/operator/tensor/indexing_op.cu 
b/src/operator/tensor/indexing_op.cu
index 9050430..992054f 100644
--- a/src/operator/tensor/indexing_op.cu
+++ b/src/operator/tensor/indexing_op.cu
@@ -957,7 +957,10 @@ 
NNVM_REGISTER_OP(batch_take).set_attr<FCompute>("FCompute<gpu>", BatchTakeOpForw
 
 NNVM_REGISTER_OP(one_hot).set_attr<FCompute>("FCompute<gpu>", 
OneHotOpForward<gpu>);
 
-NNVM_REGISTER_OP(gather_nd).set_attr<FCompute>("FCompute<gpu>", 
GatherNDForwardGPU);
+NNVM_REGISTER_OP(gather_nd)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", GatherNDForwardGPU);
 
 NNVM_REGISTER_OP(scatter_nd).set_attr<FCompute>("FCompute<gpu>", 
ScatterNDForward<gpu>);
 
diff --git a/src/operator/tensor/la_op.cu b/src/operator/tensor/la_op.cu
index 1f16e2d..a32143a 100644
--- a/src/operator/tensor/la_op.cu
+++ b/src/operator/tensor/la_op.cu
@@ -88,6 +88,8 @@ NNVM_REGISTER_OP(_backward_linalg_maketrian)
     .set_attr<FCompute>("FCompute<gpu>", LaOpBackward<gpu, 2, 1, 1, 1, 
copytrian>);
 
 NNVM_REGISTER_OP(_linalg_potri)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpForward<gpu, 2, 2, 1, 1, potri>);
 
 NNVM_REGISTER_OP(_backward_linalg_potri)
@@ -99,32 +101,56 @@ NNVM_REGISTER_OP(_linalg_inverse)
 NNVM_REGISTER_OP(_backward_linalg_inverse)
     .set_attr<FCompute>("FCompute<gpu>", LaOpBackward<gpu, 2, 2, 2, 1, 
inverse_backward>);
 
-NNVM_REGISTER_OP(_linalg_det).set_attr<FCompute>("FCompute<gpu>", 
LaOpDetForward<gpu, 1, det>);
+NNVM_REGISTER_OP(_linalg_det)
+    // Incompatibility comes from allocs made in linalg_batch_getrf(), called 
by det::op()
+    // see https://github.com/apache/incubator-mxnet/issues/19353
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", LaOpDetForward<gpu, 1, det>);
 
 NNVM_REGISTER_OP(_backward_linalg_det)
+    // Incompatibility comes from allocs made in linalg_batch_getri(),
+    // called by linalg_batch_det_backward_helper, called by det_backward::op()
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpDetBackward<gpu, 1, 
det_backward>);
 
 NNVM_REGISTER_OP(_linalg_slogdet)
+    // Incompatibility comes from allocs made in linalg_batch_getrf(),
+    // called by slogdet::op().
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpDetForward<gpu, 2, slogdet>);
 
 NNVM_REGISTER_OP(_backward_linalg_slogdet)
+    // Incompatibility comes from allocs made in linalg_batch_getri(),
+    // called by linalg_batch_det_backward_helper, called by 
slogdet_backward::op()
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpDetBackward<gpu, 2, 
slogdet_backward>);
 
 #if MXNET_USE_CUSOLVER == 1
 
 NNVM_REGISTER_OP(_linalg_potrf)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpForward<gpu, 2, 2, 1, 1, potrf>);
 
 NNVM_REGISTER_OP(_backward_linalg_potrf)
     .set_attr<FCompute>("FCompute<gpu>", LaOpBackward<gpu, 2, 2, 2, 1, 
potrf_backward>);
 
 NNVM_REGISTER_OP(_linalg_gelqf)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
     .set_attr<FCompute>("FCompute<gpu>", LaOpForward<gpu, 2, 2, 1, 2, gelqf>);
 
 NNVM_REGISTER_OP(_backward_linalg_gelqf)
     .set_attr<FCompute>("FCompute<gpu>", LaOpBackward<gpu, 2, 2, 4, 1, 
gelqf_backward>);
 
-NNVM_REGISTER_OP(_linalg_syevd).set_attr<FCompute>("FCompute<gpu>", 
LaOpForwSyevd<gpu, syevd>);
+NNVM_REGISTER_OP(_linalg_syevd)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", LaOpForwSyevd<gpu, syevd>);
 
 NNVM_REGISTER_OP(_backward_linalg_syevd)
     .set_attr<FCompute>("FCompute<gpu>", LaOpBackwSyevd<gpu, syevd_backward>);
diff --git a/src/operator/tensor/matrix_op.cu b/src/operator/tensor/matrix_op.cu
index b5bd1c9..00007bd 100644
--- a/src/operator/tensor/matrix_op.cu
+++ b/src/operator/tensor/matrix_op.cu
@@ -412,9 +412,15 @@ NNVM_REGISTER_OP(tile).set_attr<FCompute>("FCompute<gpu>", 
TileOpForward<gpu>);
 
 NNVM_REGISTER_OP(_backward_tile).set_attr<FCompute>("FCompute<gpu>", 
TileOpBackward<gpu>);
 
-NNVM_REGISTER_OP(reverse).set_attr<FCompute>("FCompute<gpu>", 
ReverseOpForward<gpu>);
+NNVM_REGISTER_OP(reverse)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", ReverseOpForward<gpu>);
 
-NNVM_REGISTER_OP(_backward_reverse).set_attr<FCompute>("FCompute<gpu>", 
ReverseOpForward<gpu>);
+NNVM_REGISTER_OP(_backward_reverse)
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", ReverseOpForward<gpu>);
 
 NNVM_REGISTER_OP(stack).set_attr<FCompute>("FCompute<gpu>", 
StackOpForward<gpu>);
 
@@ -429,9 +435,17 @@ 
NNVM_REGISTER_OP(depth_to_space).set_attr<FCompute>("FCompute<gpu>", DepthToSpac
 
 NNVM_REGISTER_OP(space_to_depth).set_attr<FCompute>("FCompute<gpu>", 
SpaceToDepthOpForward<gpu>);
 
-NNVM_REGISTER_OP(_split_v2).set_attr<FCompute>("FCompute<gpu>", 
SplitOpForwardGPU);
-
-NNVM_REGISTER_OP(_split_v2_backward).set_attr<FCompute>("FCompute<gpu>", 
SplitOpBackward<gpu>);
+NNVM_REGISTER_OP(_split_v2)
+    // Incompatible due to Copy(xpu_tensor, cpu_tensor) in SplitOpForwardImpl
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", SplitOpForwardGPU);
+
+NNVM_REGISTER_OP(_split_v2_backward)
+    // Incompatible due to Copy(xpu_tensor, cpu_tensor) in SplitOpBackwardImpl
+    .set_attr<FIsCUDAGraphsCompatible>("FIsCUDAGraphsCompatible",
+                                       [](const NodeAttrs&, const bool) { 
return false; })
+    .set_attr<FCompute>("FCompute<gpu>", SplitOpBackward<gpu>);
 
 }  // namespace op
 }  // namespace mxnet
diff --git a/tests/python/gpu/test_gluon_gpu.py 
b/tests/python/gpu/test_gluon_gpu.py
index 492055f..20a7f26 100644
--- a/tests/python/gpu/test_gluon_gpu.py
+++ b/tests/python/gpu/test_gluon_gpu.py
@@ -18,6 +18,7 @@
 import sys
 import os
 import time
+import random
 import mxnet as mx
 import multiprocessing as mp
 from mxnet.test_utils import check_consistency, set_default_device, 
assert_almost_equal, rand_ndarray, environment
@@ -28,7 +29,7 @@ import pytest
 
 curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
 sys.path.insert(0, os.path.join(curr_path, '../unittest'))
-from common import assert_raises_cudnn_not_satisfied, run_in_spawned_process
+from common import assert_raises_cudnn_not_satisfied, run_in_spawned_process, 
random_seed
 from test_gluon import *
 from test_loss import *
 from test_numpy_loss import *
@@ -595,3 +596,111 @@ def test_cudnn_dropout_reproducibility():
 
     assert_almost_equal(a.grad, b.grad)
 
[email protected]_np
+def test_cuda_graphs():
+    class GraphTester(gluon.HybridBlock):
+        def __init__(self, function_to_test, **kwargs):
+            super(GraphTester, self).__init__(**kwargs)
+            self.f = function_to_test()
+
+        def forward(self, *args):
+            # We need to isolate the operation to be fully inside the graph
+            # in order for graphs usage to be possible
+            copied_args = [mx.np.copy(a) for a in args]
+            outputs = self.f(*copied_args)
+            if isinstance(outputs, (list, tuple)):
+                return [mx.np.copy(o) for o in outputs]
+            else:
+                return mx.np.copy(outputs)
+
+    class TestDesc:
+        def __init__(self, name, f, num_inputs=1, input_dim=4):
+            self.name = name
+            self.f = f
+            self.num_inputs = num_inputs
+            self.input_dim = input_dim
+
+        def generate_inputs(self):
+            shape = tuple(_np.random.randint(4, 11, size=self.input_dim))
+            ret = [mx.np.random.uniform(size=shape) for _ in 
range(self.num_inputs)]
+            for r in ret:
+                r.attach_grad()
+            return ret
+
+    tested_ops = [
+            TestDesc('add', lambda: (lambda x, y: x + y), num_inputs = 2),
+            TestDesc('add_scalar', lambda: (lambda x: x + 0.5)),
+            TestDesc('Conv', lambda: mx.gluon.nn.Conv2D(channels=32, 
kernel_size=(1,1))),
+            TestDesc('ConvTranspose', lambda: 
mx.gluon.nn.Conv2DTranspose(channels=32, kernel_size=(1,1))),
+            TestDesc('Dense', lambda: mx.gluon.nn.Dense(units=128)),
+            TestDesc('Activation', lambda: mx.gluon.nn.Activation('tanh')),
+            TestDesc('Dropout', lambda: mx.gluon.nn.Dropout(0.5)),
+            TestDesc('Flatten', lambda: mx.gluon.nn.Flatten()),
+            TestDesc('MaxPool', lambda: mx.gluon.nn.MaxPool2D()),
+            TestDesc('AvgPool', lambda: mx.gluon.nn.AvgPool2D()),
+            TestDesc('GlobalMaxPool', lambda: mx.gluon.nn.GlobalMaxPool2D()),
+            TestDesc('GlobalAvgPool', lambda: mx.gluon.nn.GlobalAvgPool2D()),
+            TestDesc('ReflectionPad2D', lambda: mx.gluon.nn.ReflectionPad2D()),
+            TestDesc('BatchNorm', lambda: mx.gluon.nn.BatchNorm()),
+            TestDesc('InstanceNorm', lambda: mx.gluon.nn.InstanceNorm()),
+            TestDesc('LayerNorm', lambda: mx.gluon.nn.LayerNorm()),
+            TestDesc('LeakyReLU', lambda: mx.gluon.nn.LeakyReLU(0.1)),
+            TestDesc('PReLU', lambda: mx.gluon.nn.PReLU()),
+            TestDesc('ELU', lambda: mx.gluon.nn.ELU()),
+            TestDesc('SELU', lambda: mx.gluon.nn.SELU()),
+            TestDesc('Swish', lambda: mx.gluon.nn.Swish()),
+        ]
+
+    N = 10
+
+    with environment({'MXNET_ENABLE_CUDA_GRAPHS': '1',
+                      'MXNET_USE_FUSION': '0'}):
+        device = mx.gpu(0)
+        for test_desc in tested_ops:
+            print("Testing ", test_desc.name)
+            inputs = test_desc.generate_inputs()
+            inputsg = [i.copy() for i in inputs]
+            for i in inputsg:
+                i.attach_grad()
+            seed = random.randint(0, 10000)
+            net = GraphTester(test_desc.f)
+            netg = GraphTester(test_desc.f)
+
+            # initialize parameters
+            net.initialize(device=device)
+            netg.initialize(device=device)
+
+            net(*inputs)
+
+            for p1, p2 in zip(net.collect_params().values(), 
netg.collect_params().values()):
+                p2.set_data(p1.data())
+
+            netg.hybridize(static_alloc=True, static_shape=True)
+
+            print("Testing inference mode")
+            with random_seed(seed):
+                for _ in range(N):
+                    assert_almost_equal(net(*inputs), netg(*inputsg))
+
+            mx.npx.waitall()
+            print("Testing training mode")
+            for _ in range(N):
+                with random_seed(seed):
+                    with mx.autograd.record():
+                        out = net(*inputs)
+                    out.backward()
+
+                with random_seed(seed):
+                    with mx.autograd.record():
+                        outg = netg(*inputsg)
+                    outg.backward()
+
+                assert_almost_equal(out, outg)
+                for i, ig in zip(inputs, inputsg):
+                    assert_almost_equal(i.grad, ig.grad)
+
+                for p1, p2 in zip(net.collect_params().values(), 
netg.collect_params().values()):
+                    assert_almost_equal(p1.data(), p2.data())
+                    if p1.grad_req != 'null':
+                        assert_almost_equal(p1.grad(), p2.grad())
+            mx.npx.waitall()

Reply via email to