This is an automated email from the ASF dual-hosted git repository.

bgawrych pushed a commit to branch v1.x
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git


The following commit(s) were added to refs/heads/v1.x by this push:
     new c5d0adb  [v1.x][BUGFIX] Fix 
tests/python/dnnl/subgraphs/test_conv_subgraph.py (#20971)
c5d0adb is described below

commit c5d0adb3603f82d2d75893124affa23375cb32da
Author: bartekkuncer <[email protected]>
AuthorDate: Wed Mar 23 17:44:31 2022 +0100

    [v1.x][BUGFIX] Fix tests/python/dnnl/subgraphs/test_conv_subgraph.py 
(#20971)
    
    * [v1.x][BUGFIX] Fix tests/python/dnnl/subgraphs/test_conv_subgraph.py
    
    * Fix sanity
---
 src/operator/nn/mkldnn/mkldnn_convolution.cc | 70 ++++++++++++++--------------
 1 file changed, 35 insertions(+), 35 deletions(-)

diff --git a/src/operator/nn/mkldnn/mkldnn_convolution.cc 
b/src/operator/nn/mkldnn/mkldnn_convolution.cc
index 2a2c6d7..78f95bd 100644
--- a/src/operator/nn/mkldnn/mkldnn_convolution.cc
+++ b/src/operator/nn/mkldnn/mkldnn_convolution.cc
@@ -109,41 +109,41 @@ 
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> GetConvFwdImpl(
     int mask = (param.requantize_scales.size() > 1) ? 2 : 0;
     attr.set_output_scales(mask, param.requantize_scales);
   }
-  auto GetConvFwdPd =
-      [&param, &data, &weights, &output, &attr](const 
mkldnn::convolution_forward::desc& desc) {
-        auto engine = CpuEngine::Get()->get_engine();
-        try {
-          // MKLDNN introduced padded formats since 0.15 which require more 
memory compared to the
-          // actual size of the tensor. Currently, MKLDNN operators still 
reuse memory from memory
-          // planning, so here we need to select a suboptimal kernel for 
computation that has the
-          // expected memory size requirements
-          auto conv_pd =
-              
std::make_shared<mkldnn::convolution_forward::primitive_desc>(desc, attr, 
engine);
-          while (conv_pd->dst_desc().get_size() != GetArraySize(output) ||
-                 conv_pd->src_desc().get_size() != GetArraySize(data) ||
-                 (!param.mkldnn_param.quantized &&
-                  conv_pd->weights_desc().get_size() != GetArraySize(weights)) 
||
-                 // With the upgrade of MKLDNN to version 2.4+
-                 // tests/python/mkl/test_subgraph.py::test_pos_conv_add 
started failing. Switching
-                 // away from primitive with weight mkldnn::format_tag 
ABcd4b16a4b in order to
-                 // temporairly fix the issue until full fix arrives. Tracking 
issue:
-                 // https://github.com/apache/incubator-mxnet/issues/20826.
-                 (param.mkldnn_param.quantized && 
conv_pd->weights_desc().dims()[1] < 4 &&
-                  conv_pd->weights_desc().data.padded_dims[1] == 16)) {
-            // next_impl() will visit desc and engine, please make sure they 
are still alive here.
-            CHECK(conv_pd->next_impl()) << "No convolution implementation for 
this request.";
-          }
-          return conv_pd;
-        } catch (mkldnn::error& e) {
-          if (e.status == mkldnn_unimplemented && 
param.mkldnn_param.quantized) {
-            LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is "
-                          "required for int8 convolution";
-          } else {
-            LOG(ERROR) << e.message;
-          }
-          throw;
-        }
-      };
+  auto GetConvFwdPd = [&param, &data, &weights, &output, &attr](
+                          const mkldnn::convolution_forward::desc& desc) {
+    auto engine = CpuEngine::Get()->get_engine();
+    try {
+      // MKLDNN introduced padded formats since 0.15 which require more memory 
compared to the
+      // actual size of the tensor. Currently, MKLDNN operators still reuse 
memory from memory
+      // planning, so here we need to select a suboptimal kernel for 
computation that has the
+      // expected memory size requirements
+      auto conv_pd =
+          std::make_shared<mkldnn::convolution_forward::primitive_desc>(desc, 
attr, engine);
+      while (
+          conv_pd->dst_desc().get_size() != GetArraySize(output) ||
+          conv_pd->src_desc().get_size() != GetArraySize(data) ||
+          (!param.mkldnn_param.quantized &&
+           conv_pd->weights_desc().get_size() != GetArraySize(weights)) ||
+          // With the upgrade of MKLDNN to version 2.4+
+          // tests/python/mkl/test_subgraph.py::test_pos_conv_add started 
failing. Switching away
+          // from blocking weights in order to temporarily fix the issue until 
full fix arrives.
+          // Tracking issue: 
https://github.com/apache/incubator-mxnet/issues/20826.
+          (param.mkldnn_param.quantized && conv_pd->weights_desc().dims()[1] < 
4 &&
+           conv_pd->weights_desc().data.padded_dims[1] != 
conv_pd->weights_desc().dims()[1])) {
+        // next_impl() will visit desc and engine, please make sure they are 
still alive here.
+        CHECK(conv_pd->next_impl()) << "No convolution implementation for this 
request.";
+      }
+      return conv_pd;
+    } catch (mkldnn::error& e) {
+      if (e.status == mkldnn_unimplemented && param.mkldnn_param.quantized) {
+        LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is "
+                      "required for int8 convolution";
+      } else {
+        LOG(ERROR) << e.message;
+      }
+      throw;
+    }
+  };
 
   if (param.conv_param.dilate.ndim() == 0 && bias_md_ptr == nullptr) {
     mkldnn::convolution_forward::desc desc(prop,

Reply via email to