This is an automated email from the ASF dual-hosted git repository.

zhenghuijin pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git


The following commit(s) were added to refs/heads/master by this push:
     new dadb5b7c17 Fix CI on master branch (#21001)
dadb5b7c17 is described below

commit dadb5b7c1729418f98926438b69eedae5bc8dbbc
Author: bartekkuncer <[email protected]>
AuthorDate: Fri Apr 15 07:01:52 2022 +0200

    Fix CI on master branch (#21001)
    
    * Dissable test_conv2d_16c for gpu CI
    
    * Add space
    
    * Fix linkcheck
---
 docs/python_docs/python/tutorials/packages/onnx/fine_tuning_gluon.md    | 2 +-
 .../python/tutorials/packages/onnx/inference_on_onnx_model.md           | 2 +-
 tests/python/unittest/test_gluon.py                                     | 2 ++
 3 files changed, 4 insertions(+), 2 deletions(-)

diff --git 
a/docs/python_docs/python/tutorials/packages/onnx/fine_tuning_gluon.md 
b/docs/python_docs/python/tutorials/packages/onnx/fine_tuning_gluon.md
index d7c9986240..312ed8f85a 100644
--- a/docs/python_docs/python/tutorials/packages/onnx/fine_tuning_gluon.md
+++ b/docs/python_docs/python/tutorials/packages/onnx/fine_tuning_gluon.md
@@ -106,7 +106,7 @@ if not os.path.isdir(os.path.join(model_folder, 
current_model)):
 
 ## Downloading the Caltech101 dataset
 
-The [Caltech101 
dataset](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) is made of 
pictures of objects belonging to 101 categories. About 40 to 800 images per 
category. Most categories have about 50 images.
+The [Caltech101 dataset](https://data.caltech.edu/records/20086) is made of 
pictures of objects belonging to 101 categories. About 40 to 800 images per 
category. Most categories have about 50 images.
 
 *L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from 
few training examples: an incremental Bayesian approach tested on 101 object 
categories. IEEE. CVPR 2004, Workshop on Generative-Model
 Based Vision. 2004*
diff --git 
a/docs/python_docs/python/tutorials/packages/onnx/inference_on_onnx_model.md 
b/docs/python_docs/python/tutorials/packages/onnx/inference_on_onnx_model.md
index f4465170e7..760f3d175a 100644
--- a/docs/python_docs/python/tutorials/packages/onnx/inference_on_onnx_model.md
+++ b/docs/python_docs/python/tutorials/packages/onnx/inference_on_onnx_model.md
@@ -243,7 +243,7 @@ plot_predictions(caltech101_images, result[3:7], 
categories, TOP_P)
 
 **Hmm, not so good...**  Even though predictions are close, they are not 
accurate, which is due to the fact that the ImageNet dataset does not contain 
`wrench`, `dolphin`, or `lotus` categories and our network has been trained on 
ImageNet.
 
-Lucky for us, the [Caltech101 
dataset](http://www.vision.caltech.edu/Image_Datasets/Caltech101/) has them, 
let's see how we can fine-tune our network to classify these categories 
correctly.
+Lucky for us, the [Caltech101 dataset](https://data.caltech.edu/records/20086) 
has them, let's see how we can fine-tune our network to classify these 
categories correctly.
 
 We show that in our next tutorial:
 
diff --git a/tests/python/unittest/test_gluon.py 
b/tests/python/unittest/test_gluon.py
index 2a209face2..33fd48a256 100644
--- a/tests/python/unittest/test_gluon.py
+++ b/tests/python/unittest/test_gluon.py
@@ -1809,6 +1809,8 @@ def check_layer_forward_withinput(net, x):
     mx.test_utils.assert_almost_equal(out1.asnumpy(), out2.asnumpy(), 
rtol=1e-5, atol=1e-6)
 
 @use_np
[email protected](mx.device.num_gpus(), reason="Temporairly disabled on gpu 
due to failing centos-gpu CI " +
+                                          "tracked at 
https://github.com/apache/incubator-mxnet/issues/20978";)
 @pytest.mark.parametrize('chn_num', [16, 256])
 @pytest.mark.parametrize('kernel', [1, 3, 224])
 def test_conv2d_16c(chn_num, kernel):

Reply via email to