ciyongch commented on a change in pull request #17147: [WIP] Quantized Elemwise 
Mul Operator
URL: https://github.com/apache/incubator-mxnet/pull/17147#discussion_r360804532
 
 

 ##########
 File path: src/operator/quantization/quantized_elemwise_mul.cc
 ##########
 @@ -0,0 +1,265 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ *  Copyright (c) 2016 by Contributors
+ * \file quantized_elemwise_mul.cc
+ * \brief CPU Implementation of basic elementwise binary broadcast operators
+ */
+#include <mxnet/op_attr_types.h>
+#include "../tensor/elemwise_binary_op-inl.h"
+#include "./quantized_elemwise_mul-inl.h"
+#include "./quantization_utils.h"
+
+namespace mxnet {
+namespace op {
+
+DMLC_REGISTER_PARAMETER(QuantizeElemwiseMulParam);
+
+static std::vector<std::string> QuantizedElemwiseMulOutputNames(const 
NodeAttrs &attrs) {
+  const QuantizeElemwiseMulParam& params = 
nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
+  if (params.enable_float_output)
+    return std::vector<std::string>{"output"};
+  else
+    return std::vector<std::string>{"output", "min_output", "max_output"};
+}
+
+inline bool QuantizedElemwiseMulOpShape(const nnvm::NodeAttrs& attrs,
+                                        mxnet::ShapeVector *in_attrs,
+                                        mxnet::ShapeVector *out_attrs) {
+  using namespace mshadow;
+  const QuantizeElemwiseMulParam& params = 
nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
+  const mxnet::TShape &lshape = (*in_attrs)[quantized_elemwise_mul::kLhs];
+  const mxnet::TShape &rshape = (*in_attrs)[quantized_elemwise_mul::kRhs];
+  if (!ndim_is_known(lshape) || !ndim_is_known(rshape)) return false;
+  CHECK_EQ(lshape.ndim(), rshape.ndim()) << "Currently, quantized elemwise 
multiply doesn't support broadcast.";
+  for (int i = 0; i < lshape.ndim(); ++i) {
+    CHECK_EQ(lshape[i], rshape[i]);
+  }
+  SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kLhsMin, 
mxnet::TShape(1, 1));
+  SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kLhsMax, 
mxnet::TShape(1, 1));
+  SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kRhsMin, 
mxnet::TShape(1, 1));
+  SHAPE_ASSIGN_CHECK(*in_attrs, quantized_elemwise_mul::kRhsMax, 
mxnet::TShape(1, 1));
+  out_attrs->clear();
+
+  mxnet::TShape oshape(lshape);
+  out_attrs->push_back(oshape);
+  if (!params.enable_float_output) {
+    out_attrs->push_back(mxnet::TShape(1, 1));
+    out_attrs->push_back(mxnet::TShape(1, 1));
+  }
+  return shape_is_known(oshape);
+}
+
+inline bool QuantizedElemwiseMulOpType(const nnvm::NodeAttrs& attrs,
+                                       std::vector<int> *in_type,
+                                       std::vector<int> *out_type) {
+  const QuantizeElemwiseMulParam& params = 
nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
+  for (int i = 0; i < 2; ++i) {
+    if (in_type->at(i) == mshadow::kInt8) {
+      TYPE_ASSIGN_CHECK(*in_type, i, mshadow::kInt8);
+    } else {
+      LOG(ERROR) << "currently, quantized elemwise mul only support int8 
inputs.";
+    }
+  }
+  TYPE_ASSIGN_CHECK(*in_type, 2, mshadow::kFloat32);
+  TYPE_ASSIGN_CHECK(*in_type, 3, mshadow::kFloat32);
+  TYPE_ASSIGN_CHECK(*in_type, 4, mshadow::kFloat32);
+  TYPE_ASSIGN_CHECK(*in_type, 5, mshadow::kFloat32);
+
+  int dtype = mshadow::kInt32;
+  if (params.max_calib_range.has_value() && 
params.min_calib_range.has_value()) {
+    dtype = mshadow::kInt8;
+  }
+  if (!params.enable_float_output) {
+    TYPE_ASSIGN_CHECK(*out_type, 0, dtype);
+    TYPE_ASSIGN_CHECK(*out_type, 1, mshadow::kFloat32);
+    TYPE_ASSIGN_CHECK(*out_type, 2, mshadow::kFloat32);
+  } else {
+    TYPE_ASSIGN_CHECK(*out_type, 0, mshadow::kFloat32);
+  }
+  return true;
+}
+
+inline bool QuantizedElemwiseMulOpStorageType(const nnvm::NodeAttrs& attrs,
+                                              int dev_mask,
+                                              DispatchMode* dispatch_mode,
+                                              std::vector<int> *in_attrs,
+                                              std::vector<int> *out_attrs) {
+  using namespace common;
+  *dispatch_mode = DispatchMode::kFCompute;
+
+  for (auto &v : *out_attrs) {
+    v = kDefaultStorage;
+    if (common::stype_string(v).compare("unknown") == 0) {
+      return false;
+    }
+  }
+
+  for (auto &v : *in_attrs) {
+    v = kDefaultStorage;
+    if (common::stype_string(v).compare("unknown") == 0) {
+      return false;
+    }
+  }
+  return true;
+}
+
+void QuantizedElemwiseMulOpForward(const nnvm::NodeAttrs &attrs,
+                                   const OpContext &ctx,
+                                   const std::vector<TBlob> &inputs,
+                                   const std::vector<OpReqType> &req,
+                                   const std::vector<TBlob> &outputs) {
+  const QuantizeElemwiseMulParam& params = 
nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
+  using namespace mxnet_op;
+
+  float lhs_min = inputs[quantized_elemwise_mul::kLhsMin].dptr<float>()[0];
+  float lhs_max = inputs[quantized_elemwise_mul::kLhsMax].dptr<float>()[0];
+  float rhs_min = inputs[quantized_elemwise_mul::kRhsMin].dptr<float>()[0];
+  float rhs_max = inputs[quantized_elemwise_mul::kRhsMax].dptr<float>()[0];
+
+  float cached_output_min_ = 0.f;
+  float cached_output_max_ = 0.f;
+  float out_data_scale = 1.f;
+  float out_scale = 1.f;
+  // output default set as int32
+  float output_data_range = kInt32Range;
+  // dataA && dataB are uint8
+  if (outputs[quantized_elemwise_mul::kOut].type_flag_ == mshadow::kInt8) {
+    output_data_range = kInt8Range;
+  } else {
+    output_data_range = kInt32Range;
+  }
+  if (!params.enable_float_output) {
+    if (params.max_calib_range.has_value() && 
params.min_calib_range.has_value()) {
+      cached_output_min_ = params.min_calib_range.value();
+      cached_output_max_ = params.max_calib_range.value();
+      out_data_scale = output_data_range / MaxAbs(cached_output_min_, 
cached_output_max_);
+      auto lhs_scale = kInt8Range / MaxAbs(lhs_min, lhs_max);
+      auto rhs_scale = kInt8Range / MaxAbs(rhs_min, rhs_max);
+      out_scale = out_data_scale / lhs_scale / rhs_scale;
+    } else {
+      Stream<cpu> *s = ctx.get_stream<cpu>();
+      if (inputs[quantized_elemwise_mul::kLhs].type_flag_ == mshadow::kInt8 &&
+          inputs[quantized_elemwise_mul::kRhs].type_flag_ == mshadow::kInt8) {
+        mxnet_op::Kernel<QuantizationRangeForS8S8MultiplicationStruct, 
cpu>::Launch(
+            s, 1, &cached_output_min_, &cached_output_max_, &lhs_min, 
&lhs_max, &rhs_min, &rhs_max);
+      } else {
+        LOG(ERROR) << "lhs and rhs only support iny8 dtype.";
+      }
+    }
+  } else {
+    auto lhs_scale = kInt8Range / MaxAbs(lhs_min, lhs_max);
+    auto rhs_scale = kInt8Range / MaxAbs(rhs_min, rhs_max);
+    out_scale = 1.0 / lhs_scale / rhs_scale;
+  }
+
+  size_t out_size = outputs[quantized_elemwise_mul::kOut].Size();
+  auto *input_l = inputs[quantized_elemwise_mul::kLhs].dptr<int8_t>();
+  auto *input_r = inputs[quantized_elemwise_mul::kRhs].dptr<int8_t>();
+  // TODO(Xinyu): a temp solution to enable Elemwise INT8 computation,
+  // will be refactored after the DNNL primitive is done.
+  if (!params.enable_float_output) {
+    if (params.max_calib_range.has_value() && 
params.min_calib_range.has_value()) {
+      typedef int8_t out_type;
+      auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
+  #pragma omp simd
+      for (size_t i = 0; i < out_size; ++i) {
+        const int8_t a = input_l[i];
+        const int8_t b = input_r[i];
+        out_data[i] = static_cast<out_type>(a * b * out_scale);
+      }
+    } else {
+      typedef int32_t out_type;
+      auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
+  #pragma omp simd
+      for (size_t i = 0; i < out_size; ++i) {
+        const int8_t a = input_l[i];
+        const int8_t b = input_r[i];
+        out_data[i] = static_cast<out_type>(a * b * out_scale);
+      }
+    }
+  } else {
+    typedef float_t out_type;
+    auto *out_data = outputs[quantized_elemwise_mul::kOut].dptr<out_type>();
+#pragma omp simd
+    for (size_t i = 0; i < out_size; ++i) {
+      const int8_t a = input_l[i];
+      const int8_t b = input_r[i];
+      out_data[i] = static_cast<out_type>(a * b * out_scale);
+    }
+  }
+
+  if (!params.enable_float_output) {
+    outputs[quantized_elemwise_mul::kOutMin].dptr<float>()[0] = 
cached_output_min_;
+    outputs[quantized_elemwise_mul::kOutMax].dptr<float>()[0] = 
cached_output_max_;
+  }
+}
+
+NNVM_REGISTER_OP(_contrib_quantized_elemwise_mul)
+.describe(R"code(Multiplies arguments int8 element-wise.
+)code" ADD_FILELINE)
+.set_num_inputs(6)
+.set_num_outputs([](const NodeAttrs& attrs) {
+  const QuantizeElemwiseMulParam& params = 
nnvm::get<QuantizeElemwiseMulParam>(attrs.parsed);
+  return (!params.enable_float_output) ? 3 : 1;
+})
+.set_attr<nnvm::FListInputNames>("FListInputNames",
+  [](const NodeAttrs& attrs) {
+    return std::vector<std::string>{"lhs", "rhs", "lhs_min", "lhs_max", 
"rhs_min", "rhs_max"};
+  })
+.set_attr<nnvm::FListOutputNames>("FListOutputNames", 
QuantizedElemwiseMulOutputNames)
+.set_attr<mxnet::FInferShape>("FInferShape", QuantizedElemwiseMulOpShape)
+.set_attr<nnvm::FInferType>("FInferType", QuantizedElemwiseMulOpType)
+.set_attr<FInferStorageType>("FInferStorageType", 
QuantizedElemwiseMulOpStorageType)
+.set_attr<FResourceRequest>("FResourceRequest",
+  [](const NodeAttrs& attrs) {
+    return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
+  })
+.set_attr<FCompute>("FCompute<cpu>", QuantizedElemwiseMulOpForward)
+// TODO(Xinyu): a temp solution to enable GluonCV INT8 flow,
+// will be reverted after the improvement of CachedOP is done.
+.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
+.set_attr<FNeedRequantize>("FNeedRequantize", [](const NodeAttrs& attrs) { 
return true; })
+.add_argument("lhs", "NDArray-or-Symbol", "first input")
+.add_argument("rhs", "NDArray-or-Symbol", "second input")
+.add_argument("lhs_min", "NDArray-or-Symbol", "Minimum value of first input.")
+.add_argument("lhs_max", "NDArray-or-Symbol", "Maximum value of first input.")
+.add_argument("rhs_min", "NDArray-or-Symbol", "Minimum value of second input.")
+.add_argument("rhs_max", "NDArray-or-Symbol", "Maximum value of second input.")
+.set_attr_parser(ParamParser<QuantizeElemwiseMulParam>)
+.add_arguments(QuantizeElemwiseMulParam::__FIELDS__());
+
+NNVM_REGISTER_OP(elemwise_mul)
+.set_attr<FQuantizable>("FQuantizable", [](const NodeAttrs& attrs) {
+    return QuantizeType::kMust;
 
 Review comment:
   Suppose this ops is `kSupport` instead of `kMust`, right?

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to