lilipj opened a new issue #17395: Keras model to ONNX to mxnet error
URL: https://github.com/apache/incubator-mxnet/issues/17395
 
 
   ## Description
   I'm trying to import a keras model converted in onnx format with onnx_mxnet 
import module.
   I've built a classic mnist digit classification with keras :
   def define_model():
        model = Sequential()
        model.add(Conv2D(32, (3, 3), activation='relu', 
kernel_initializer='he_uniform', input_shape=(28, 28, 1), name="name_1"))
        model.add(MaxPooling2D((2, 2), name="name_2"))
        model.add(Conv2D(64, (3, 3), activation='relu', 
kernel_initializer='he_uniform', name="name_3"))
        model.add(Conv2D(64, (3, 3), activation='relu', 
kernel_initializer='he_uniform', name="name_4"))
        model.add(MaxPooling2D((2, 2), name="name_5"))
        model.add(Flatten(name="name_6"))
        model.add(Dense(100, activation='relu', 
kernel_initializer='he_uniform', name="name_7"))
        model.add(Dense(10, activation='softmax', name="name_8"))
        # compile model
        opt = SGD(lr=0.01, momentum=0.9)
        model.compile(optimizer=opt, loss='categorical_crossentropy', 
metrics=['accuracy'])
        return model
   
   I've used keras2onnx to convert my model and save it in a .onnx file
   When i import the model with onnx_mxnet.import_model() function, I've got 
the following error 
   Traceback (most recent call last):
     File 
"/home/aurelie.peter/WORK/mnist_handwritten_digit_classification/onnx_to_mxnet.py",
 line 37, in <module>
       sym, arg, aux = onnx_mxnet.import_model(onnx_model_file)
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_model.py",
 line 59, in import_model
       sym, arg_params, aux_params = graph.from_onnx(model_proto.graph)
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_onnx.py",
 line 115, in from_onnx
       inputs = [self._nodes[i] for i in node.input]
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_onnx.py",
 line 115, in <listcomp>
       inputs = [self._nodes[i] for i in node.input]
   KeyError: 'name_1/kernel:0'
   
   
   
   
   ### Error Message
   /home/aurelie.peter/anaconda3/envs/onnx/bin/python3.7 
/home/aurelie.peter/WORK/mnist_handwritten_digit_classification/onnx_to_mxnet.py
   Traceback (most recent call last):
     File 
"/home/aurelie.peter/WORK/mnist_handwritten_digit_classification/onnx_to_mxnet.py",
 line 37, in <module>
       sym, arg, aux = onnx_mxnet.import_model(onnx_model_file)
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_model.py",
 line 59, in import_model
       sym, arg_params, aux_params = graph.from_onnx(model_proto.graph)
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_onnx.py",
 line 115, in from_onnx
       inputs = [self._nodes[i] for i in node.input]
     File 
"/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet/contrib/onnx/onnx2mx/import_onnx.py",
 line 115, in <listcomp>
       inputs = [self._nodes[i] for i in node.input]
   KeyError: 'name_1/kernel:0'
   
   ## To Reproduce
   The digit model comes from 
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
   I've added the following lines
        onnx_model = keras2onnx.convert_keras(model, model.name) # converts the 
keras model to ONNX object.
        onnx.save_model(onnx_model, 'model.onnx')# save the ONNX object into 
.onnx file.
   
   And in another script python I import the onnx model 
   import mxnet as mx
   import mxnet.contrib.onnx as onnx_mxnet
   from mxnet.test_utils import download
   
   onnx_model_file = download("model.onnx")
   sym, arg, aux = onnx_mxnet.import_model(onnx_model_file)
   
   
   
   ### Steps to reproduce
   (Paste the commands you ran that produced the error.)
   
   1.
   2.
   
   ## What have you tried to solve it?
   
   1.
   2.
   
   ## Environment
   Keras : 2.3.1
   keras2onnx : 1.6.0
   tf : 2.0
   We recommend using our script for collecting the diagnositc information. Run 
the following command and paste the outputs below:
   ```
   curl --retry 10 -s 
https://raw.githubusercontent.com/dmlc/gluon-nlp/master/tools/diagnose.py | 
python
   
   # paste outputs here
   ```
   ----------Python Info----------
   Version      : 3.7.5
   Compiler     : GCC 7.3.0
   Build        : ('default', 'Oct 25 2019 15:51:11')
   Arch         : ('64bit', '')
   ------------Pip Info-----------
   Version      : 19.3.1
   Directory    : 
/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/pip
   ----------MXNet Info-----------
   Version      : 1.5.1
   Directory    : 
/home/aurelie.peter/anaconda3/envs/onnx/lib/python3.7/site-packages/mxnet
   Num GPUs     : 0
   Commit Hash   : c9818480680f84daa6e281a974ab263691302ba8
   ----------System Info----------
   Platform     : 
Linux-3.10.0-957.10.1.el7.x86_64-x86_64-with-centos-7.6.1810-Core
   system       : Linux
   node         : centos7io01.olea-medical.local
   release      : 3.10.0-957.10.1.el7.x86_64
   version      : #1 SMP Mon Mar 18 15:06:45 UTC 2019
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:          x86_64
   CPU op-mode(s):        32-bit, 64-bit
   Byte Order:            Little Endian
   CPU(s):                8
   On-line CPU(s) list:   0-7
   Thread(s) per core:    2
   Core(s) per socket:    4
   Socket(s):             1
   NUMA node(s):          1
   Vendor ID:             GenuineIntel
   CPU family:            6
   Model:                 60
   Model name:            Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
   Stepping:              3
   CPU MHz:               3730.371
   CPU max MHz:           3900.0000
   CPU min MHz:           800.0000
   BogoMIPS:              6783.62
   Virtualization:        VT-x
   L1d cache:             32K
   L1i cache:             32K
   L2 cache:              256K
   L3 cache:              8192K
   NUMA node0 CPU(s):     0-7
   Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx 
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology 
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est 
tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt 
tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm epb ssbd ibrs ibpb 
stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep 
bmi2 erms invpcid xsaveopt dtherm ida arat pln pts spec_ctrl intel_stibp 
flush_l1d
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0225 
sec, LOAD: 0.5508 sec.
   Timing for GluonNLP GitHub: https://github.com/dmlc/gluon-nlp, DNS: 0.0011 
sec, LOAD: 0.8648 sec.
   Error open GluonNLP: http://gluon-nlp.mxnet.io, <urlopen error [SSL: 
CERTIFICATE_VERIFY_FAILED] certificate verify failed: self signed certificate 
in certificate chain (_ssl.c:1076)>, DNS finished in 0.05342268943786621 sec.
   Timing for D2L: http://d2l.ai, DNS: 0.0145 sec, LOAD: 0.6090 sec.
   Timing for D2L (zh-cn): http://zh.d2l.ai, DNS: 0.0151 sec, LOAD: 0.2190 sec.
   Error open FashionMNIST: 
https://repo.mxnet.io/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, 
<urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self 
signed certificate in certificate chain (_ssl.c:1076)>, DNS finished in 
0.051079750061035156 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0135 sec, LOAD: 
0.5829 sec.
   Error open Conda: https://repo.continuum.io/pkgs/free/, <urlopen error [SSL: 
CERTIFICATE_VERIFY_FAILED] certificate verify failed: self signed certificate 
in certificate chain (_ssl.c:1076)>, DNS finished in 0.00898432731628418 sec.
   
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to