icemelon9 opened a new issue #17479: Bug in RNN and LSTM with multiple layers 
for mxnet-mkl
URL: https://github.com/apache/incubator-mxnet/issues/17479
 
 
   ## Description
   When `gluon.rnn.RNN` and `gluon.rnn.LSTM` have multiple layers and input 
size is not equal to hidden size, the output tensors and output states (except 
the state for the first layer) are incorrect. This bug only appears in 
mxnet-mkl package (I checked 1.5.0, 1.5.1, and 1.6.0, all have this bug), not 
in mxnet package.
   
   ### Error Message
   (Paste the complete error message. Please also include stack trace by 
setting environment variable `DMLC_LOG_STACK_TRACE_DEPTH=10` before running 
your script.)
   
   ## To Reproduce
   
   mxnet and mxnet-mkl returns different output results for the following code, 
where the results from mxnet-mkl are wrong.
   
   ```python
   import numpy as np
   import mxnet as mx
   from mxnet import gluon
   
   np.random.seed(0)
   mx.random.seed(0)
   
   dtype = 'float32'
   batch = 1
   seq_len = 3
   hidden_size = 10
   input_size = 5
   num_layers = 2
   data_shape = (seq_len, batch, input_size)
   state_shape = (num_layers, batch, hidden_size)
   
   layer = gluon.rnn.RNN(hidden_size, num_layers, input_size=input_size,
                         bidirectional=False)
   num_states = 1
   # layer = gluon.rnn.LSTM(hidden_size, num_layers, bidirectional=False)
   # num_states = 2
   layer.initialize()
   layer.hybridize()
   
   data_np = np.random.uniform(size=data_shape).astype(dtype)
   data_mx = mx.nd.array(data_np)
   states_mx = []
   for i in range(num_states):
       s = np.random.uniform(size=state_shape).astype(dtype)
       states_mx.append(mx.nd.array(s))
   mx_out, mx_states = layer(data_mx, states_mx)
   print(mx_out.asnumpy())
   print(mx_states[0].asnumpy())
   ```
   
   ### Steps to reproduce
   (Paste the commands you ran that produced the error.)
   
   1.
   2.
   
   ## What have you tried to solve it?
   
   1.
   2.
   
   ## Environment
   
   We recommend using our script for collecting the diagnositc information. Run 
the following command and paste the outputs below:
   ```
   curl --retry 10 -s 
https://raw.githubusercontent.com/dmlc/gluon-nlp/master/tools/diagnose.py | 
python
   
   # paste outputs here
   
   ----------Python Info----------
   Version      : 3.7.3
   Compiler     : GCC 7.3.0
   Build        : ('default', 'Mar 27 2019 22:11:17')
   Arch         : ('64bit', '')
   ------------Pip Info-----------
   Version      : 19.3.1
   Directory    : /home/ubuntu/anaconda3/lib/python3.7/site-packages/pip
   ----------MXNet Info-----------
   Version      : 1.5.0
   Directory    : /home/ubuntu/anaconda3/lib/python3.7/site-packages/mxnet
   Num GPUs     : 0
   Commit Hash   : 75a9e187d00a8b7ebc71412a02ed0e3ae489d91f
   ----------System Info----------
   Platform     : Linux-4.15.0-1057-aws-x86_64-with-debian-buster-sid
   system       : Linux
   node         : ip-172-31-24-84
   release      : 4.15.0-1057-aws
   version      : #59-Ubuntu SMP Wed Dec 4 10:02:00 UTC 2019
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:        x86_64
   CPU op-mode(s):      32-bit, 64-bit
   Byte Order:          Little Endian
   CPU(s):              8
   On-line CPU(s) list: 0-7
   Thread(s) per core:  2
   Core(s) per socket:  4
   Socket(s):           1
   NUMA node(s):        1
   Vendor ID:           GenuineIntel
   CPU family:          6
   Model:               79
   Model name:          Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
   Stepping:            1
   CPU MHz:             2215.251
   CPU max MHz:         3000.0000
   CPU min MHz:         1200.0000
   BogoMIPS:            4600.10
   Hypervisor vendor:   Xen
   Virtualization type: full
   L1d cache:           32K
   L1i cache:           32K
   L2 cache:            256K
   L3 cache:            46080K
   NUMA node0 CPU(s):   0-7
   Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm 
constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq 
ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes 
xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault 
invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx 
xsaveopt
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0020 
sec, LOAD: 0.4746 sec.
   Timing for GluonNLP GitHub: https://github.com/dmlc/gluon-nlp, DNS: 0.0005 
sec, LOAD: 0.3909 sec.
   Timing for GluonNLP: http://gluon-nlp.mxnet.io, DNS: 0.1271 sec, LOAD: 
0.3758 sec.
   Timing for D2L: http://d2l.ai, DNS: 0.0084 sec, LOAD: 0.0419 sec.
   Timing for D2L (zh-cn): http://zh.d2l.ai, DNS: 0.0089 sec, LOAD: 0.0692 sec.
   Timing for FashionMNIST: 
https://repo.mxnet.io/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, 
DNS: 0.0527 sec, LOAD: 0.1357 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0113 sec, LOAD: 
0.3577 sec.
   Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0093 sec, 
LOAD: 0.0664 sec.
   ```
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to