ChaiBapchya commented on issue #17444: [Large Tensor] Add LT support for NN 
optimizers and 1 activation function
URL: https://github.com/apache/incubator-mxnet/pull/17444#issuecomment-580917968
 
 
   @mxnet-label-bot add [pr-awaiting-review]
   @apeforest 
   
   > @ChaiBapchya can you paste the tests run log of opperf indicating they run 
fine w/o giving SIGSEGV
   
   ```
   >>> import mxnet as mx
   >>> mx.nd.signum_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), 
mom=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 2.2022064   0.7840038   1.0334405  ...  0.18898012 -0.5907004
    -1.4777215 ]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.signsgd_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 0.15278001  1.7198559   0.14636855 ...  0.3357248  -0.22160508
     1.5340825 ]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.sgd_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 1.6252067   0.22516885  0.00959079 ... -0.688654    0.6969211
     0.00631838]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.sgd_mom_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), 
mom=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 0.9833377  -0.75289315  0.58504266 ... -1.0496317  -0.08228261
    -1.7657199 ]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.rmspropalex_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), n=mx.nd.random_normal(shape=(2**32 
+ 1)), lr=.01, g=mx.nd.random_normal(shape=(2**32 + 1)), 
delta=mx.nd.random_normal(shape=(2**32 + 1)))
   
   [2.5003266         nan        nan ...        nan        nan 0.13144751]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.mp_sgd_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), 
weight32=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 1.1050267   0.6508057   0.13951734 ... -0.73946345  0.55659974
     1.9047947 ]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.mp_sgd_mom_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), 
mom=mx.nd.random_normal(shape=(2**32 + 1)), 
weight32=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [ 0.8880665  -1.852293    1.0043188  ... -0.5858472   0.554819
     0.26844773]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.ftml_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), d=mx.nd.random_normal(shape=(2**32 
+ 1)), v=mx.nd.random_normal(shape=(2**32 + 1)), 
z=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01, t=1)
   
   [ 0.05790505 -0.819279           nan ...         nan         nan
            nan]
   <NDArray 4294967297 @cpu(0)>
   >>> mx.nd.adam_update(weight=mx.nd.random_normal(shape=(2**32 + 1)), 
grad=mx.nd.random_normal(shape=(2**32 + 1)), 
mean=mx.nd.random_normal(shape=(2**32 + 1)), 
var=mx.nd.random_normal(shape=(2**32 + 1)), lr=.01)
   
   [       nan -1.8923444        nan ...  1.6588118        nan        nan]
   <NDArray 4294967297 @cpu(0)>
   ```
   
   Previously they all used to give SIGSEGV, now they don't @access2rohit 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to