This is an automated email from the ASF dual-hosted git repository.
apeforest pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git
The following commit(s) were added to refs/heads/master by this push:
new 5486828 [Large Tensor] Fixed SoftmaxActivation op (#17634)
5486828 is described below
commit 5486828ea5b5ddcd5d5441533664820aab937edf
Author: Connor Goggins <[email protected]>
AuthorDate: Thu Feb 20 10:20:08 2020 -0800
[Large Tensor] Fixed SoftmaxActivation op (#17634)
* Changed dtype for data & gradient dimensions
* Add nightly test
---
src/operator/nn/softmax_activation-inl.h | 14 +++++++-------
tests/nightly/test_large_array.py | 12 ++++++++++++
2 files changed, 19 insertions(+), 7 deletions(-)
diff --git a/src/operator/nn/softmax_activation-inl.h
b/src/operator/nn/softmax_activation-inl.h
index 1c67380..9f8e581 100644
--- a/src/operator/nn/softmax_activation-inl.h
+++ b/src/operator/nn/softmax_activation-inl.h
@@ -82,9 +82,9 @@ void SoftmaxActivationCompute(const nnvm::NodeAttrs& attrs,
} else {
CHECK_GE(in_data.ndim(), 3)
<< "Input need to have a least 3 dimensions when mode=channel";
- int n = in_data.size(0);
- int k = in_data.size(1);
- Shape<3> s3 = Shape3(n, k, static_cast<int>(in_data.Size()/n/k));
+ index_t n = in_data.size(0);
+ index_t k = in_data.size(1);
+ Shape<3> s3 = Shape3(n, k, static_cast<index_t>(in_data.Size()/n/k));
Tensor<xpu, 3, real_t> data = in_data.get_with_shape<xpu, 3, real_t>(s3,
s);
Tensor<xpu, 3, real_t> out = out_data.get_with_shape<xpu, 3, real_t>(s3,
s);
Softmax(out, data);
@@ -107,10 +107,10 @@ void SoftmaxActivationGradCompute(const nnvm::NodeAttrs&
attrs,
const OpReqType &req = reqs[0];
const TBlob &in_grad = outputs[0];
// Use 3d tensor for both mode -> {instance, channel}. Get shapes
- int total_size = in_grad.Size();
- int batch_size = in_grad.shape_[0];
- int channel_num = in_grad.shape_[1];
- int rest_size = total_size / (batch_size * channel_num);
+ index_t total_size = in_grad.Size();
+ index_t batch_size = in_grad.shape_[0];
+ index_t channel_num = in_grad.shape_[1];
+ index_t rest_size = total_size / (batch_size * channel_num);
const Shape<3> data_shape = Shape3(batch_size, channel_num, rest_size);
// Get tensors
Stream<xpu> *s = ctx.get_stream<xpu>();
diff --git a/tests/nightly/test_large_array.py
b/tests/nightly/test_large_array.py
index 379030a..4e09cfe 100644
--- a/tests/nightly/test_large_array.py
+++ b/tests/nightly/test_large_array.py
@@ -127,6 +127,17 @@ def test_nn():
expected_grad_out[k] = -1
assert np.isclose(grad_out - softmax_out, expected_grad_out).all()
+ def check_softmax_activation():
+ data = nd.random_normal(shape=(2**29, 2, 2, 2))
+ out = nd.random_normal(shape=(2**29, 2, 2, 2))
+
+ res = nd.SoftmaxActivation(data=data, out=out)
+
+ assert res.shape[0] == 536870912
+ assert res.shape[1] == 2
+ assert res.shape[2] == 2
+ assert res.shape[3] == 2
+
def np_softmax(x, axis=-1, temperature=1.0):
x = x - np.max(x, axis=axis, keepdims=True)
x = np.exp(x/temperature)
@@ -450,6 +461,7 @@ def test_nn():
check_softmax()
check_softmax_cross_entropy()
check_softmax_output()
+ check_softmax_activation()
check_log_softmax()
check_leaky_relu()
check_pooling()