aGiant commented on issue #17814: 
mxnet.gluon.data.vision.transforms.Normalize(mean=0.0, std=1.0) tuple issue 
within hybird_forward()
URL: 
https://github.com/apache/incubator-mxnet/issues/17814#issuecomment-598112586
 
 
   > For the first example, I noticed that you are defining both 
`hybrid_forward` and `forward` at the same time which is not supposed to work 
in this way.
   > 
   > For the second example, you can use `get_constant` instead of `get`
   > 
   > ```python
   > # self.scales = self.params.get('scales', shape=scales.shape, 
init=mx.init.Constant(scales.asnumpy()),  differentiable=False)
   > 
   > self.scales = self.params.get_constant(value=scales)
   > ```
   
   Also tried HybridLambda layer to simplify the normalization, but got some 
very strange error
   
   ```
   <ipython-input-21-6ebe4f1a4082> in <lambda>(F, x)
        21         # self.normalizer = nn.LayerNorm()
        22         with self.name_scope():
   ---> 23             self.normalizer = nn.HybridLambda(lambda F,x: 
(x-min_vec)/max_vec) #NormalizationHybridLayer(min_vec, max_vec)
        24             self.encoder = nn.HybridSequential(prefix='encoder_')
        25             with self.encoder.name_scope():
   
   ~/anaconda3/lib/python3.7/site-packages/mxnet/symbol/symbol.py in 
__sub__(self, other)
       142             return _internal._MinusScalar(self, scalar=other)
       143         else:
   --> 144             raise TypeError('type %s not supported' % 
str(type(other)))
       145 
       146     def __isub__(self, other):
   
   TypeError: type <class 'mxnet.ndarray.ndarray.NDArray'> not supported
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to