lostella opened a new issue #17868: Cholesky factorization crashes on MXNet 
1.6.0 on Linux
URL: https://github.com/apache/incubator-mxnet/issues/17868
 
 
   ## Description
   Cholesky factorization crashes on MXNet 1.6.0 on Linux, instead of raising 
an exception like it does on macOS. 
   
   ### Error Message
   ```
   terminate called after throwing an instance of 'dmlc::Error'
     what():  [14:01:07] src/operator/tensor/./../linalg_impl.h:691: Check 
failed: ret == 0 (2 vs. 0) : spotrf failed in lapack on cpu. This may happen 
when the input matrix is either not symmetric or not positive definite.
   Stack trace:
     [bt] (0) 
/usr/local/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x307d3b) 
[0x7f78ae7a5d3b]
     [bt] (1) 
/usr/local/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x314ad0b) 
[0x7f78b15e8d0b]
   
   
   Aborted
   ```
   
   ## To Reproduce
   ```python
   import mxnet as mx
   import numpy as np
   
   A = mx.nd.array(
       [[[1, 0], [0, -2]], [[1, 0], [0, 4]]], ctx=mx.cpu(), dtype=np.float32
   )
   
   try:
       L = mx.nd.linalg.potrf(A)
       print(L)
   except mx.MXNetError as err:
       print("maybe matrix is not symmetric and positive definite?")
   ```
   
   ## Environment
   
   ```
   ----------Python Info----------
   Version      : 3.7.4
   Compiler     : GCC 8.3.0
   Build        : ('default', 'Aug 14 2019 12:09:51')
   Arch         : ('64bit', 'ELF')
   ------------Pip Info-----------
   Version      : 20.0.2
   Directory    : /usr/local/lib/python3.7/site-packages/pip
   ----------MXNet Info-----------
   Version      : 1.6.0
   Directory    : /usr/local/lib/python3.7/site-packages/mxnet
   Num GPUs     : 0
   Commit Hash   : 6eec9da55c5096079355d1f1a5fa58dcf35d6752
   ----------System Info----------
   Platform     : Linux-4.9.184-linuxkit-x86_64-with-debian-10.0
   system       : Linux
   node         : e5d687384f3d
   release      : 4.9.184-linuxkit
   version      : #1 SMP Tue Jul 2 22:58:16 UTC 2019
   ----------Hardware Info----------
   machine      : x86_64
   processor    :
   Architecture:        x86_64
   CPU op-mode(s):      32-bit, 64-bit
   Byte Order:          Little Endian
   Address sizes:       39 bits physical, 48 bits virtual
   CPU(s):              2
   On-line CPU(s) list: 0,1
   Thread(s) per core:  1
   Core(s) per socket:  1
   Socket(s):           2
   Vendor ID:           GenuineIntel
   CPU family:          6
   Model:               142
   Model name:          Intel(R) Core(TM) i7-7660U CPU @ 2.50GHz
   Stepping:            9
   CPU MHz:             2500.000
   BogoMIPS:            4992.00
   L1d cache:           32K
   L1i cache:           32K
   L2 cache:            256K
   L3 cache:            4096K
   Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht pbe syscall nx pdpe1gb lm 
constant_tsc rep_good nopl xtopology nonstop_tsc pni pclmulqdq dtes64 ds_cpl 
ssse3 sdbg fma cx16 xtpr pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c 
rdrand hypervisor lahf_lm abm 3dnowprefetch kaiser fsgsbase bmi1 hle avx2 bmi2 
erms rtm xsaveopt arat
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0633 
sec, LOAD: 1.5485 sec.
   Timing for GluonNLP GitHub: https://github.com/dmlc/gluon-nlp, DNS: 0.0040 
sec, LOAD: 0.8173 sec.
   Timing for GluonNLP: http://gluon-nlp.mxnet.io, DNS: 1.0898 sec, LOAD: 
0.8475 sec.
   Timing for D2L: http://d2l.ai, DNS: 0.0738 sec, LOAD: 1.3540 sec.
   Timing for D2L (zh-cn): http://zh.d2l.ai, DNS: 0.0777 sec, LOAD: 0.5348 sec.
   Timing for FashionMNIST: 
https://repo.mxnet.io/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, 
DNS: 0.1271 sec, LOAD: 1.5946 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0576 sec, LOAD: 
1.1366 sec.
   Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0450 sec, 
LOAD: 0.2497 sec.
   ```
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to