sxjscience commented on issue #18022: [Numpy] Weird bug with mixed dtype
URL: 
https://github.com/apache/incubator-mxnet/issues/18022#issuecomment-612266886
 
 
   For this bug, the most weird thing is that it won't raise an error if I 
commented two lines, i.e., the following one will run well (commented two 
lines).
   
   ```python
   import mxnet as mx
   from mxnet.gluon import nn
   import os
   os.environ['MXNET_EXEC_INPLACE_GRAD_SUM_CAP'] = '4'
   os.environ['DMLC_LOG_STACK_TRACE_DEPTH'] = '20'
   
   mx.npx.set_np()
   
   ctx = mx.cpu()
   
   batch_size = 2
   sequence_length = 10
   
   mask = mx.np.random.randint(0, 2, (batch_size, sequence_length), ctx=ctx)
   contextual_embeddings = mx.np.random.normal(0, 1, (2, sequence_length, 256), 
ctx=ctx, dtype=mx.np.float32)
   
   p_mask = 1 - mask
   
   l_start_scores = nn.Dense(1, flatten=False)
   l_end_scores = nn.Dense(1, flatten=False)
   l_start_scores.initialize(ctx=ctx)
   l_end_scores.initialize(ctx=ctx)
   with mx.autograd.record():
       # start_scores = mx.np.squeeze(l_start_scores(contextual_embeddings), -1)
       # start_logits = start_scores * p_mask + (1 - p_mask) * (-1e18)
       contextual_embeddings = mx.np.expand_dims(contextual_embeddings, axis=1) 
 # (B, 1, T, C)
       end_scores = l_end_scores(contextual_embeddings)
       end_scores = mx.np.squeeze(end_scores, -1)
       p_mask = mx.np.expand_dims(p_mask, axis=-1)
       end_logits = p_mask * end_scores + (1 - p_mask) * -1e18
       end_logits = end_logits * p_mask + (1 - p_mask) * -1e18
       loss = end_logits.sum()
   loss.backward()
   mx.npx.waitall()
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to