This is an automated email from the ASF dual-hosted git repository.
lausen pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/incubator-mxnet.git
The following commit(s) were added to refs/heads/master by this push:
new 37c9dd6 Fix for handling negative indices in the fusion of slice
(#17937)
37c9dd6 is described below
commit 37c9dd6f3416efd269cfa07859b5de0fe09ef94d
Author: Przemyslaw Tredak <[email protected]>
AuthorDate: Sat Apr 11 14:54:42 2020 -0700
Fix for handling negative indices in the fusion of slice (#17937)
* Fix for handling of negative axis, begin and end in fusion of slice ops
* Added test
---
src/operator/fusion/fused_op-inl.h | 8 ++++----
src/operator/fusion/fused_op.cu | 7 +++++++
tests/python/gpu/test_fusion.py | 16 +++++++++++++++-
3 files changed, 26 insertions(+), 5 deletions(-)
diff --git a/src/operator/fusion/fused_op-inl.h
b/src/operator/fusion/fused_op-inl.h
index 0504149..e45569f 100644
--- a/src/operator/fusion/fused_op-inl.h
+++ b/src/operator/fusion/fused_op-inl.h
@@ -391,8 +391,8 @@ __device__ inline VectorType<DType, nvec> load_slice(const
DType * input, const
strides[ndim-1] = 1;
#pragma unroll
for (int dim = ndim-1; dim >=0; dim--) {
- if (begin[dim] < 0) begin[dim] = shape[dim] - begin[dim];
- if (end[dim] < 0) end[dim] = shape[dim] - end[dim];
+ if (begin[dim] < 0) begin[dim] = shape[dim] + begin[dim];
+ if (end[dim] < 0) end[dim] = shape[dim] + end[dim];
if (end[dim] == INT_MAX) end[dim] = shape[dim];
if (dim > 0) {
ref_strides[dim-1] = ref_strides[dim] * (end[dim] - begin[dim]);
@@ -434,8 +434,8 @@ __device__ inline VectorType<DType, nvec>
fast_load_slice(const DType * input,
strides[ndim-1] = 1;
#pragma unroll
for (int dim = ndim-1; dim >=0; dim--) {
- if (begin[dim] < 0) begin[dim] = shape[dim] - begin[dim];
- if (end[dim] < 0) end[dim] = shape[dim] - end[dim];
+ if (begin[dim] < 0) begin[dim] = shape[dim] + begin[dim];
+ if (end[dim] < 0) end[dim] = shape[dim] + end[dim];
if (end[dim] == INT_MAX) end[dim] = shape[dim];
if (dim > 0) {
ref_strides[dim-1] = ref_strides[dim] * (end[dim] - begin[dim]);
diff --git a/src/operator/fusion/fused_op.cu b/src/operator/fusion/fused_op.cu
index 544dd02..7f86c05 100644
--- a/src/operator/fusion/fused_op.cu
+++ b/src/operator/fusion/fused_op.cu
@@ -270,6 +270,13 @@ std::string FusedOp::GenerateCode(const
std::vector<OpReqType> &req,
return out;
};
auto build_tuple = [ndim](int axis, const std::string str, const
std::string def) {
+ if (axis < 0 &&
+ axis >= -ndim) {
+ axis += ndim;
+ }
+ if (axis < 0 || axis >= ndim) {
+ LOG(FATAL) << "Axis " << axis << " is out of bounds for array of
dimension " << ndim;
+ }
std::string tuple = "{";
for (int i = 0; i < axis; i++) {
tuple = tuple + def + ",";
diff --git a/tests/python/gpu/test_fusion.py b/tests/python/gpu/test_fusion.py
index c0a8bdb..8e0f063 100644
--- a/tests/python/gpu/test_fusion.py
+++ b/tests/python/gpu/test_fusion.py
@@ -191,7 +191,10 @@ def check_other_ops():
b = mx.sym.Variable('b')
c = mx.sym.Variable('c')
shape = rand_shape_2d()
- shape = (5,) + shape
+ shape = list((5,) + shape)
+ # Make sure there is at least 2 elements for the test with negative indices
+ shape[1] += 1
+ shape[2] += 1
arr1 = mx.random.uniform(shape=shape)
arr2 = mx.random.uniform(shape=shape)
arr3 = mx.random.uniform(shape=shape)
@@ -200,6 +203,9 @@ def check_other_ops():
check_fused_symbol(mx.sym.slice_axis(a, axis=0, begin=1, end=4), a=arr1)
+ # Testing handling of negative axis
+ check_fused_symbol(mx.sym.slice_axis(a, axis=-3, begin=1, end=4), a=arr1)
+
begin = (random.randint(0, shape[0]-1),
random.randint(0, shape[1]-1),
random.randint(0, shape[2]-1))
@@ -208,6 +214,14 @@ def check_other_ops():
random.randint(begin[2]+1, shape[2]))
check_fused_symbol(mx.sym.slice(a, begin=begin, end=end), a=arr1)
+ begin = (random.randint(-shape[0], -2),
+ random.randint(-shape[1], -2),
+ random.randint(-shape[2], -2))
+ end = (random.randint(begin[0]+1, -1),
+ random.randint(begin[1]+1, -1),
+ random.randint(begin[2]+1, -1))
+ check_fused_symbol(mx.sym.slice(a, begin=begin, end=end), a=arr1)
+
arr1 = mx.random.uniform(shape=(2,3,4,5))
arr2 = mx.random.uniform(shape=(1,2,3))
check_fused_symbol(mx.sym.slice_like(a,b, axes=[-2, 0]), a=arr1, b=arr2)