wuxun-zhang commented on issue #17884:
URL: https://github.com/apache/incubator-mxnet/pull/17884#issuecomment-616912500


   **Performance numbers for Conv3d op:**
   
   shape | w/o mkldnn | w/mkldnn |
   -- | -- | -- |
   (3, 3, 16, 224, 224) | 3.696679 sec |  0.046571 sec|
   (3, 3, 128, 128, 128) | 11.716535 sec |  0.165749 sec| 
   
   **Test script:**
   ```
   import mxnet as mx
   from mxnet import nd, gluon
   import time
   
   data_shape = [(3, 3, 16, 224, 224), (3, 3, 128, 128, 128)]
   
   for shape in data_shape:
        data = mx.random.uniform(shape=shape)
        weight_shape = (32, shape[1], 3, 3, 3)
        weight = mx.nd.ones(shape=weight_shape)
   
        num_iter = 10
        dry_run = 5
        for i in range(num_iter):
                if i == dry_run:
                        tic = time.time()
                out = mx.nd.Convolution(data, weight, kernel=(3,3,3), 
stride=(1,1,1), num_filter=weight_shape[0], pad=(0,0,0), dilate=(2,2,2), 
no_bias=True, cudnn_off=True, name='conv3d')
                out.asnumpy()
        print("For shape : {}".format(shape))
        print("Average time cost is %f sec" % ((time.time() - 
tic)/(num_iter-dry_run))
   ```


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to