stu1130 opened a new issue #18646: URL: https://github.com/apache/incubator-mxnet/issues/18646
## Description ``` import mxnet as mx from mxnet import autograd, np, npx, gluon, init from mxnet.gluon import nn import time npx.set_np() data = mx.np.random.uniform(size=(32, 100, 100), ctx=mx.gpu()) label = mx.np.ones((32, 100, 100), ctx=mx.gpu()) net = nn.Sequential() net.add(nn.BatchNorm(axis=-1)) net.initialize(init.Xavier(), ctx=mx.gpu()) loss = gluon.loss.L2Loss() t = time.time() for _ in range(5000): with autograd.record(): l = loss(net(data), label) l.backward() mx.nd.waitall() print('spent: {}s'.format(time.time() - t)) ``` I got around 5 sec with axis=1 and 30 sec with axis=-1. ## Solution Thanks @ptrendx pointed to point it out, cudnn 7.4 (https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_7xx.html#rel_741) added a new cudnnBatchNormalization*Ex API that gives much better speed for axis = -1 ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org